用户名: 密码: 验证码:
多点激励下大跨度钢筋混凝土桥梁地震响应振动台阵试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
桥梁是交通生命线系统的重要枢纽工程,其抗震安全问题一直是学术界和工程界的关注焦点。对于地质条件复杂、空间跨度大的长大桥梁,地震动行波效应和土—结构相互作用(SSI)效应是其地震响应分析中两个关键问题。然而,目前对于多点激励下考虑SSI效应的大跨度桥梁地震响应特性问题,尚缺乏深入的理论分析和系统的试验研究。本文以大跨度连续刚构桥、连续梁桥、连续刚构—简支梁组合桥为研究对象,通过模拟地震振动台阵试验,系统地研究了多点激励下大跨度桥梁的地震响应特征,揭示了行波效应和SSI效应对大跨度桥梁地震响应的影响规律,为建立大跨度桥梁抗震设计理论与方法提供了重要的试验依据。本文的主要研究工作和创新性成果包括如下几个方面:
     (1)考虑行波效应和SSI效应的大跨度钢筋混凝土刚构—连续梁组合桥非线性地震响应数值模拟分析。选取El-Centro地震波、唐山地震北京波,分析了某六跨钢筋混凝土刚构—连续梁组合桥在一致激励和行波激励下的非线性地震响应,研究了行波效应和SSI效应对该刚构—连续梁组合桥地震响应的影响规律。结果表明,行波效应增大了箱梁的受力,箱梁应力峰值随视波速增大单调递减;行波效应使墩梁固结桥墩的受力和变形呈非单调变化规律,地震响应峰值随视波速增大而先减小后增加;SSI效应增大了桥梁结构地震响应,其峰值随剪切波速增大单调递减;同时考虑行波效应和SSI效应,地震响应峰值随视波速变化曲线的拐点位置和切线斜率均发生改变,其地震响应幅值不是两种效应影响下的简单叠加;行波效应和SSI效应对桥梁地震响应的影响程度随地震波和墩梁约束条件的不同而有所差异。
     (2)考虑行波效应和局部场地效应的大比例连续刚构桥模型振动台阵试验研究。选取El-Centro地震波、唐山地震北京波、汶川地震波,对一1:10比例的三跨连续刚构桥模型进行了振动台阵试验,系统分析了一致激励、行波效应和局部场地效应对该连续刚构桥地震响应的影响规律。结果表明,行波效应增大了桥梁结构的地震响应,但其峰值随视波速的增加而单调递减;局部场地效应增大了桥墩变形和墩底受力,但降低了墩梁固结节点受力;同时考虑行波效应和局部场地效应时,桥墩的地震响应比一致激励以及单独考虑行波效应和局部场地效应时有所增大;各个桥墩因其约束形式、承担上部结构荷载等因素的差异而对行波效应、局部场地效应的敏感程度不同;刚构桥对地震动频谱特性十分敏感,不同的地震波作用下,地震响应峰值及增幅均有明显差异。
     (3)考虑行波效应和SSI效应的大比例连续刚构桥模型振动台阵试验研究。拟合三条人工地震波,对上述三跨连续刚构桥模型进行了考虑SSI效应的振动台阵试验,系统分析了行波效应和SSI效应对该连续刚构桥模型地震响应的影响规律。结果表明,地震动频谱特性对考虑SSI效应的桥梁结构地震响应有一定影响,同时考虑SSI效应使桥梁结构墩底的输入地震动峰值和频谱分布发生较大变化;桥墩与上部结构连接形式是影响SSI效应界面力的重要因素,而剪切波速和土层厚度则是影响SSI效应的重要因素;考虑行波效应和SSI效应均增大了桥墩变形、墩底受力和墩梁固结节点受力;同时考虑行波效应和SSI效应,由于输入地震动存在相位差,连续刚构桥的地震响应不是单独考虑行波效应或SSI效应的地震响应的简单叠加,且输入和响应的双重相位差使得同时考虑两种效应的地震响应分析更为复杂;验证了实时耦联动力子结构试验技术的可行性和有效性。
     (4)考虑SSI效应的大比例连续梁桥模型振动台阵试验研究。选取El-Centro地震波、集集(CHI-CHI)地震波和人工地震波,对一1:10比例的四跨高架连续梁桥模型进行了考虑SSI效应的振动台阵试验,系统地分析了SSI效应对连续梁桥地震响应的影响规律。结果表明,SSI效应增大了桥墩变形、墩底受力及墩顶水平加速度,地震响应峰值随剪切波速的减小而单调递增,说明剪切波速是影响SSI效应的重要因素;桥梁结构的加速度响应、位移响应和应变响应对SSI效应的敏感程度有所差异,其中加速度响应对SSI效应最敏感,考虑SSI效应后增幅最大,且SSI效应将引起支座位移的剧烈变化;进一步验证了实时耦联动力子结构试验技术的可行性和有效性。
     (5)大跨度钢筋混凝土连续刚构—简支梁组合桥模型振动台阵试验研究。选取El-Centro地震波、唐山地震北京波和汶川地震波,对由前述三跨连续刚构桥模型与一跨简支梁桥模型组成的连续刚构—简支梁组合桥模型进行了振动台阵试验,系统地分析了桥梁碰撞对该组合桥各部位地震响应的影响规律,并为桥梁碰撞行为和减隔震装置的精细化模拟提供了试验依据。结果表明,行波效应和桥梁结构邻梁刚度、质量差异均为桥梁邻梁碰撞的诱因;考虑行波效应后,铅芯橡胶支座对邻梁碰撞相对位移和碰撞力的控制能力强于板式橡胶支座,但对结构加速度响应的控制不一定优于板式橡胶支座;不同地震波减隔震效果存在差异,说明隔震支座的隔震效果和粘滞阻尼器的控制效果与地震波频率分布密切相关。
Bridges are important transportation infrastructures in lifeline systems, and their earthquake resistance and hazard mitigation is a critical issue in the field of science and engineering. Especially for long-span bridges with complicated geological conditions, traveling wave effects and soil-structure interaction (SSI) should be two key factors in the investigation on the seismic response of long-span bridges. However, there is still a lack of theoretical analysis and experimental study on the seismic response of bridges considering these two factors. This dissertation studies the seismic response characteristics for long-span rigid-framed bridges, continuous girder bridges and continuous rigid-frame girder bridges by shaking table tests. The study reveals some regulations of SSI effects and multi-support excitations on the seismic response of long-span bridges. This work provides some significant basis for establishing the theory and approach of seismic resistant design for long-span bridges. The following innovative work and achievements are included:
     (1) Nonlinear seismic response analysis of rigid-frame continuous girder combination bridges is conducted considering traveling wave effects and soil-structure interaction. The results show that the seismic responses of the box-section girders increases due to traveling wave effects. However, the dynamic responses of bridge piers perform a non-monotonic variation. The seismic responses of bridge also increase due to SSI. The peak of the responses monotonously decreases as the shear wave velocity increases. When the two factors are simultaneously considered, the inflection points and the tangent slopes of peak amplitude-apparent velocity curves are both changed. The corresponding responses can not be evaluated by simply superposition on the individual responses due to either traveling wave effects or SSI. The influence magnitudes of traveling wave effects or SSI are different in terms of earthquake waves and the constraints between the beams and bridge piers.
     (2) A three-span continuous rigid-framed bridge model with1:10scale is tested by shaking table tests, using El-Centro waves, Beijing waves of the Tangshan earthquake and Wenchuan waves. The uniform excitation, traveling wave effects, local site effects are investigated on the seismic response of the continuous rigid-frame bridge model. The experimental results show that the dynamic responses of the bridge model increase due to traveling wave effects. The peak of the responses monotonously decreases as the apparent velocity increases. When local site effect is considered, the deformation of the bridge piers and the loading of the pier bottom increases. Comparatively, the loading of the clamped pier joints is reduced. When traveling wave effects and local site effects are considered simultaneously, the dynamic responses of the bridge pier are larger than those in the cases that uniform excitation, traveling wave effect and local site effect are considered independently. The bridge piers have different sensitivity to traveling wave effects and local site effects according to constraint conditions, upper loading patterns and so on. The continuous rigid frame bridge is greatly sensitive to the spectrum characteristics of the ground motions. The peaks and increase magnitudes significantly vary with different earthquake records.
     (3) An experimental study is fulfilled on a large-scale continuous rigid-frame bridge model by shaking table tests, in which traveling wave effects and soil-structure interaction are considered. The study systematically analyzes the regulation of traveling wave effects and soil-structure interaction affecting the seismic responses of the rigid-frame bridge model. The experimental results indicate that the spectrum characteristics of the ground motions have an influence on the seismic response of the rigid-frame bridge considering SSI effects. Meanwhile, SSI effects lead the seismic input peak at the pier bottoms and spectrum distributaries to change a lot. The constraint condition of the bridge piers is one of the critical parameters affecting the interface force of soil-structure interaction. Furthermore, the velocity of shear waves and the thickness of soil layers are two important factors affecting SSI effects. Traveling wave effects and soil-structure interaction increase the deformation of bridge piers, the loading of pier bottoms as well as the loading of clamped beam-pier joints. When traveling wave effects and SSI are simultaneously considered, there exists phase difference in seismic excitation. The dynamic response of continuous rigid-frame bridges can not be obtained by simply superposition on the individual responses due to either traveling wave effects or SSI. Furthermore, the double phase differences of the inputs and seismic responses make the seismic response analysis of bridges be more complicated considering the two effects simultaneously. Meanwhile, the results also verify the feasibility and effectiveness of the real-time dynamic hybrid testing technique.
     (4) Using El-Centro waves, CHI-CHI waves and artificial waves, respectively, a shaking table test is done on a1:10scaled continuous girder bridge model. The test investigates the influence of SSI effect on the seismic performance of the four-span reinforced concrete bridge. The experimental results indicate that SSI effects increase the dynamic responses of the bridge model. The response peak monotonously increases as the shear wave velocity decreases, which shows the shear wave velocity is an important factor affecting SSI effects. There is a significant difference among the sensitivity of acceleration, displacement and strain to SSI effects. The acceleration is more sensitive to SSI effects and its increase magnitude will be maximum if SSI effects are considered. Furthermore, SSI effects may cause dramatic changes in the relative displacement of bearings. The feasibility and effectiveness of the real-time dynamic hybrid testing technique have been further verified.
     (5) An experimental study is performed on a1:10scaled continuous rigid frame and simply-supported girder combination bridge model by shaking table tests. The combination bridge model consists of a three-span continuous rigid-frame bridge model and a single-span simply-supported girder bridge. The study systematically analyzes the regulation of bridge impact affecting the seismic responses at different locations of the combination bridge model. The results provide experimental data for investigating bridge impact behavior and refine simulating seismic isolation devices. The results show that traveling wave effects, the stiffness difference and the mass difference between the adjacent bridge decks all may result in bridge impact. When traveling wave effects are considered, the isolation effect of lead rubber bearings is better than laminated rubber bearings on controlling relative displacement and impact forces. However, the conclusion may not be applicable in the case of controlling acceleration. The isolation effects are also significantly different in the cases of different seismic ground motion, which indicates that the isolation effects of the isolation bearing and the control effects of viscous dampers have a close relationship with the seismic spectrum distribution.
引文
[1]王东升,郭迅,孙治国等.汶川大地震公路桥梁震害初步调查[J].地震工程与工程振动,2009,29(3):84-94
    [2]杜修力,韩强,李忠献等.5.12汶川地震中山区公路桥梁震害及启示[J].北京工业大学,2008,34(12):1270-1279
    [3]重庆交通科研设计院.公路桥梁抗震设计细则JTG/T B02-01-2008[S].北京,人民交通出版社,2008.
    [4]中华人民共和国交通部部颁标准.公路工程抗震设计规范(JTJ004-89)[S].北京:人民交通出版社,2003.
    [5]中华人民共和国国家标准.铁路工程抗震设计规范(GB50111-2006)[S].北京:中国计划出版社出版,2006.
    [6]钟万勰,林家浩.大跨度桥梁分析方法的一些进展[J].大连理工大学学报,2000,40(2):127-135.
    [7] Kiureghian A D, Neuenhofer A. Response spectrum method for multi-supportseismic excitations[J]. Earthquake Engineering and Structure Dynamics,1992,21:713-740.
    [8] Kiureghian A D, Neuenhofer A. A coherency model for spatially varying groundmotions[J]. Earthquake Engineering and Structure Dynamics,1996,25:99-111.
    [9] Bonganoff J L, Goldberg J E, Schiff A J. The effect of ground transmission timeon the response of long structures[J]. Bulletin of the Seismological Society ofAmerica,1965,55(3):627-640.
    [10] Hao H. Stability of Simple Beam Subjected to Multiple Seismic Excitations[J].Journal of Engineering Mechanics,1997,123(7):739-742.
    [11] Edward L. Wilson, Iqbal Suharwardy, Ashraf Habibullah. A clarification of theorthogonal effects in a three-dimensional seismic analysis[J]. Earthquake Spectra,1995,11(4):659-666..
    [12] Soyluk K. Comparison of random vibration methods for multi-support seismicexcitation analysis of long-span bridges[J]. Engineering Structures,2004,26(11):1573-1583.
    [13] Zanrdo G, Hao H, Modena C. Seismic response of multi-span simply supportedbridges to a spatially varying earthquake ground motion[J]. EarthquakeEngineering and Structure Dynamics,2002,31:1325-1345.
    [14] Nutti C, Vanzi I. Influence of earthquake spatial variability on differential soildisplacements and SDF system response[J]. Earthquake Engineering andStructure Dynamics,2005,34:1353-1374.
    [15] Lou L, Zerva A. Effects of spatially variable gound motions on the seismicresponse of a skewed, multi-span, RC highway bridge[J]. Soil Dynamics andEarthquake Engineering,2005,25:729-740.
    [16] Lupoi A, Franehin P, Pinto PE, et al. Seismic design of bridges accounting forspatial variability of ground motion[J]. Earthquake Engineering and StructuralDynamics,2005,34:327-348.
    [17] Dumanogluid A A, Soyluk K. A stochastic analysis of long span structuressubjected to spatially varying ground motions including the site-responseeffect[J]. Engineering Structures,2003,25(10):1301-1310.
    [18] Dameron R A, Sobash V P, Lam I P. Nonlinear seismic analysis of bridgestructures foundation-soil representation and ground motion input[J]. Computersand Structures,1997,64(5-6):1251-1269.
    [19]陈幼平,周宏业.斜拉桥地震破坏的计算研究.土木工程学报,1996,29(6):61-68
    [20] Nobumichi Yamanmura, Hiroshi Tanaka. Response Analysis of Flexible MDFSystems for Multiple-Support seismic Excitations[J]. Earthquake Engineeringand Structure Dynamics,1990,19:345-347.
    [21] Chau K T, Shen C Y, Gao X. Nonlinear Seismic Soil-pile-structure interactions:Shaking Table Tests and FEM Analysis[J]. Soil Dynamics and EarthquakeEngineering,2009,29:300-310.
    [22] Tang Liang, Ling Xianzhang, Xu Pengju, et al. Shake Table Test of Soil-PileGroups-Bridge Structure Interaction in Liquefiable Ground[J]. EarthquakeEngineering and Engineering Vibration,2010,9(1):39-50.
    [23] Tzanetos N, Elnashai A S, Hamdan F H, et al. Inelastie dynamic response of RCbridges subjected to spatial non-synchronous earthquake motion Anlaysis.Advances in Structural Engineering,2000,3(3):191-214.
    [24]王成博,史志利,李忠献.随机地震动场多点激励下大跨度连续刚构桥的地震反应分析[J].地震工程与工程振动,2003,23(6):57-62.
    [25]王蕾,赵成刚,王智峰.考虑地形影响和多点激励的大跨高墩桥地震响应分析[J].土木工程学报,2006,39(1):50-53.
    [26]李忠献,黄健,丁阳.不同地震激励下大跨度斜拉桥的地震反应分析[J].中国公路学报,2005,18(3):48-53.
    [27] Nazmy A S, Abdel-Ghaffar A M. Effects of ground motion spatial variability onthe Response of cable-stayed bridges[J]. Earthquake Engineering and StructuralDynamics,1992,21:1-20.
    [28]范立础,胡世德,叶爱军.大跨度桥梁抗震设计[M].北京:人民交通出版社,2001.
    [29] Dumanoglu A A, Browjohn J M W, Severn R T. Seismic analysis of the faithsultan mehmet suspension bridge[J]. Earthquake Engineering and StructuralDynamies,1992,21:81-906.
    [30]刘春城,郭丽波,李福军.非一致激励下自锚式悬索桥的非线性地震反应分析[J].武汉理工大学学报,2007,31(5):864-867.
    [31]胡世德,范立础.江阴长江公路大桥纵向地震反应分析,同济大学学报,22(4),1994:434-438
    [32]吴玉华,楼文娟.大跨拱桥三维多点随机地震响应分析[J].振动与冲击,2009,28(6):183-187.
    [33]李正英,李正良.空间地震动作用下大跨度拱桥地震响应分析[J].重庆大学学报,2009,32(8):920-924.
    [34]吴玉华.大跨度钢管混凝土拱桥抗震性能及动力稳定研究[D].浙江:浙江大学博士学位论文,2009.
    [35]张笈玮.考虑地震空间效应的大跨度空间结构抗震分析与设计方法[D].天津:天津大学博士学位论文,2009.
    [36]李忠献,林伟,丁阳.行波效应对大跨度空间网格结构地震响应的影响[J].天津大学学报.2007,40(1):1-8.
    [37]孙建梅.多点输入下大跨空间结构抗震性能和分析方法的研究[D].南京:东南大学博士学位论文,2005.
    [38]潘旦光,楼梦麟,范立础.多点输入下大跨度结构地震反应分析研究现状[J].同济大学学报,2001,29(10):1213-1219.
    [39] Yamamura N, Tanaka H. Response analysis of flexible MDOF systems formultiple-support seismic excitation[J]. Earthquake Engineering and StructuralDynamics,1992,19:345-357.
    [40] Berrah M, Kausel E. Response spectrum analysis of strueturessubjected tospatially varying motions[J]. Earthquake Engineering and Structural Dynamics,1992,21:461-470.
    [41] Berrah M, Kausel E. A modal combination rule for spatially varying seismicmotions[J]. Earthquake Engineering and Structural Dynamics,1993,22:791-800.
    [42] Kiureghian A D, Neuenhofer A. Response spectrum method of multi-supportseismic exeitations[J]. Earthquake Engineering and Structural Dynamics,1992,21:713-740.
    [43] Loh C H,Ku B D. An effieient analysis of structural response formultiple-support seismic exeitations[J]. Engineering Structures,1995,17(1):15-25.
    [44] Kahan M, Gibert R. Influence of seismic waves spatial variability on bridges: aSensitivity analysis[J].Earthquake Engineering and Structural Dynamics,1996,25:795-814.
    [45] Allam S M,Datta T K. Analysis of cable-stayed bridges under multi-componentrandom ground motion by response spectrum method[J]. Engineering Struetures,2000,22:1367-1377.
    [46] Heredia-Zavoni E, Vanunarake E H.Seismic random vibration analysis of multi-support structural systems[J]. Journal of Engineering Mechanics,1994,120(5):1107-1128.
    [47]刘洪兵.大跨度桥梁考虑多点激励及地形效应的地震响应分析[D].北京:北方交通大学,2000.
    [48]刘先明,叶继红,李爱群.多点输入反应谱法的理论研究[J].土木工程学报,2005,38(3):17-22.
    [49]孙建梅.多点输入下大跨空间结构抗震性能和分析方法的研究[D].南京:东南大学,2005.
    [50]王君杰.多点多维地震动随机模型及结构的反应谱分析[D].哈尔滨:国家地震局工程力学研究所,1992
    [51]王淑波.大型桥梁抗震反应谱分析理论及应用研究[D].上海:同济大学,1998.
    [52]夏友柏,王年桥.多点地震激励下基于改进振型位移法的反应谱方法[J].世界地震工程,2003,19(1):164-169.
    [53]李杰,李建华.多点激励下结构随机地震反应分析的反应谱方法[J].地震工程与工程振动,2004,24(3):21-29.
    [54]苏亮.大跨空间结构的多点反应谱法和多点地震反应性状的研究[博士后研究工作报告].浙江:浙江大学,2007.
    [55] Soylu K K, Dumanoglu A A, Tuna M E. Random vibration and deterministicanalysis of cable-stayed bridges to asynchronous ground motion[J]. StructuralEngineering and Mechanics,2004,18(2):231-246.
    [56] Abdel-Ghaffar A M. Suspension bridge response to multiple-supportexcitations[J]. Journal of the Engineering Mechanics Division, ASCE,1982,108(2):417-435.
    [57]李忠献,黄健,丁阳.不同地震激励下大跨度斜拉桥的地震反应分析[J].中国公路学报,2005,18(3):48-53.
    [58]柳国环,李宏男,田利.九江长江大桥在多点多维地震激励下的反应分析[J].振动与冲击,2009,28(9):204-209.
    [59]刘春城,张哲,石磊.多支承激励下自锚式悬索桥空间地震反应分析[J].哈尔滨工业大学学报,2004,36(11):1568-1570.
    [60] Roufaiel MSL, Meyer C. Analytical modeling of hysteretic behavior of RCframes[J].Journal of Structural Engineering,1987,113(3):429-444
    [61]吕杨,徐龙河,李忠献等.应用纤维单元模型的钢筋混凝土框架结构损伤与失效分析[J].天津大学学报,2011,44(10):925-929.
    [62] Yamada Y, Iemura H, Kawano k, et al. Seismic response of offshore structures inrandom seas[J]. Earthquake Engineering and Structural Dynamics,1989,18(7):965-981.
    [63] Gao Y, Yuan W C, Jin X G. Soil-structure-water interaction of a cable-stayedbridge under seismic excitation[C]. Proceeding of14th World conference onearthquake engineering, beijing. China,2008.
    [64] Wu B J, Zheng Y H, You Y C, et al. On diffraction and radiation problem fortwo cylinders in water of finite depth[J]. Ocean Engineering,2006,33(5-6):679-704.
    [65] Yanchao SHI, Hong HAO, Zhong-Xian LI. Numerical derivation ofpressure-impulse diagrams for prediction of RC column damage to blast loads[J].International Journal of Impact Engineering,2008,35(11):1213-1227
    [66] Yanchao SHI, Zhong-Xian LI, Hong HAO. A New Method for ProgressiveCollapse Analysis of RC Frames under Blast Loading[J]. Engineering Structures,2010,32(6):1691-1703
    [67]王克海.桥梁抗震研究[M].北京:中国铁道出版社,2007年.
    [68] Chopra A.K.著,谢礼立,吕大刚等译.结构动力学一理论及其在地震工程中的应用[M].北京:高等教育出版社,2007.
    [69]爱德华.L.维尔逊著.结构静力与动力分析一强调地震工程学的物理方法[M].北京金土木软件技术有限公司,中国建筑标准设计研究院译.北京:中国建筑工业出版社,2006.
    [70]李吉涛,杨庆山.地震波基线漂移的处理方法[J].北京交通大学学报(自然科学版),2010,(1):95-99.
    [71]于海英,江汶乡,解全才,等.近场数字强震仪记录误差分析与零线校正方法[J].地震工程与工程振动,2009,(6):1-12.
    [72] Lee M, Penzien J. Stochastic analysis of structures and piping systems subjectedto stationary multiple support excitations[J]. Earthquake Engineering andStructural Dynamics,1983,11(1):91-110.
    [73] Kiureghian A D. Structural response to stationary exeitation[J]. Journal ofEngineering Mechanics,1980,106(6):1195-1213.
    [74] Hao H. Arch responses to correlated multiple exeitations[J]. EarthquakeEngineering and Structural Dynamics,1993,22:389-404.
    [75] Hao H. Ground motion spatial variation effects on circular arch responses[J].Journal of Engineering Meehanic,1994,120(11):2326-2341.
    [76] Hao H., Oliveira C.S., Penzien J. Multiple-station ground motion processing andSimulation based on SMART-1array data[J]. Nuclear Engineering andDesign,1989,111:293-310.
    [77] Harichandran R S,Wang W. Effects of spatially varying earthquake exeitationonsurface lifelines[C]. Proceedings of Fourth U.S. National Conference onEarthquake Engineering, Palm Springs,1990.Vol.1:885-894.
    [78] Hariehandran R S,Wang W. Response of indeterminate tw-span beam to spatiallyvarying seismic motion[J]. Earthquake Engineering and Structural Dynamics,1990,19:173-187.
    [79] Hariehandran R S, Hawwari A,Sweidan B N. Response of long-span bridges tospatially varying ground motion[J]. Journal of Structural Engineering,1996,122(5):476-484.
    [80]林家浩,张亚辉.随机振动的虚拟激励法[M].北京:科学出版社,2004.
    [81]林家浩.非平稳随机地震响应的精确高效算法[J].地震工程与工程振动,1993,13(1):24-29.
    [82]林家浩,钟万勰,张亚辉.大跨度结构抗震计算的随机振动方法[J].建筑结构学报,2000,21(1):29-36.
    [83]林家浩,李建俊,张文首.结构受多点非平稳随机地震激励的响应[J].力学学报,1995,27(5):567-576.
    [84]李建俊,林家浩,张文首.大跨度结构受多点随机地震激励的响应[J].计算结构力学及其应用,1995,12(4):445-451.
    [85]梁爱虎,杜修力,陈厚群.基于非平稳随机地震动场的拱坝随机地震反应分析方法[J].水利学报,1999,6:21-25.
    [86]赵灿晖,周志祥.多维非平稳随机地震响应分析的快速算法[J].振动与冲击,2006,25(5):62-64.
    [87]李忠献,林伟,丁阳.大跨度空间网格结构多维多点随机地震反应分析[J].地震工程与工程振动,2006,26(1):56-63.
    [88]丁阳,林伟,李忠献.大跨度空间结构多维多点非平稳随机地震反应分析[J].工程力学,2007,24(3):97-103.
    [89]李宏男.结构多维抗震理论[M].北京:科学出版社,2006.
    [90]薛素铎,王雪生,曹资.空间网格结构多维多点随机地震响应分析的高效算法[J].世界地震工程,2004,20(3):43-49.
    [91]王虎栓,汪近仁.高层建筑随机地震反应分析[J].地震工程与工程振动,1988,8(3):86-96.
    [92]曹资,薛素铎.空间结构抗震理论与设计[M].北京:科学出版社,2005.
    [93]赵灿晖,周志祥.大跨度钢管混凝土拱桥在多维多点地震激励作用下的平稳随机响应[J].世界地震工程,2007,23(4):66-71.
    [94] Oliveira C S, Hao H, Penzien J.Ground motion modeling for multiple-inputstructural analysis[J]. Structural Safety,1991,10:79-93.
    [95] Manohar C S, Sarkar A. Critical earthquake input power spectral density functionmodels for engineering structures[J]. Earthquake Engineering and StructuralDynamics,1995,24:1549-1566.
    [96]林皋.土—结构相互作用对高层建筑非线性地震反应的影响[J].土木工程学报,1993,26(4):1-13.
    [97] Wolf J P. Soil-structure interaction analysis in time domain[J]. NuclearEngineering and Design,1989,111(3):381-393.
    [98] Jean W Y, Lin T W, Penzien J. System parameters of soil foundations for timedomain dynamic analysis[J]. Earthquake Engineering and Structural Dynamics,1990,19(4):541-553.
    [99] Penzien J, Scheffey C F, Parmelee R A, et al. Seismic analysis of bridges on longpiles[J]. Journal of the Engineering Mechanics Division,1964,90(EM3):223-254.
    [100]王有为,王开顺.建筑物—桩—土相互作用地震反应分析的研究[J].建筑结构学报,1985,6(5):64-73.
    [101]李永梅,孙国富,王松涛等.桩—土—杆系结构动力相互作用[J].建筑结构学报,2002,23(l):75-81.
    [102]杜修力,赵建锋,韩强.精度可控地基阻抗力的一种时域差分计算方法[J].力学学报,2008,40(l):59-66.
    [103]赵建锋,杜修力.地基阻抗力时域递归参数计算方法及其程序实现[J].岩土工程学报,2008,30(l):34-40.
    [104]杜修力,赵建锋.考虑土—结构相互作用效应的结构地震响应时域子结构分析法[J].北京工业大学学报,2007,33(5):517-523.
    [105] Sextos A G, Pitilakis K D, Kappos A J. Inelastic dynamic analysis of RC bridgesaccounting for spatial variability of ground motion, site effects andSoil-structure interaction phenomena. Part l: Methodology and analyticaltools[J]. Earthquake Engineering and Structura1Dynamics,2003,32:607-627.[106] Sextos A G, Pitilakis K D, Kappos A J.Inelastic dynamic analysis of RC bridgesaccounting for spatial variability of ground motion, site effects andSoil-structure interaction phenomena. Part2: Parametric study[J]. EarthquakeEngineering and Struetura1dynamics,2003,32:629-652.
    [107] Murat Dicleli, Semih Erhan. Effects of soil-bridge interaction on the magnitudeof internal force in integral abutment bridge components due to live loadeffects[J]. Engineering Structures,2010,32:129-145.
    [108] M.Moghaddasi, M.Cubrinovski, J.G. Chase, et al. Effects of soil-foundation-structure interaction on seismic structural response via robust Monte Carlosimulation[J]. Engineering Structures,2011,33:1338-1347.
    [109] Edward H.Stehmeyer, Dimitris C.Rizos. Considering dynamic soil structureinteraction effects on seismic isolation retrofit efficiency and the important ofnatural frequency ratio[J]. Soil Dynamics and Earthquake Engineering,2008,28:468-479
    [110] N.P.Tongaonkar, R.S. Jangid. Seismic response of isolated bridges withsoil-structure interaction[J].Soil Dynamics and Earthquake Engineering,2003,23:287-302.
    [111]李振宝,唐贞云,纪金豹,李晓亮,周大兴,闫维明.基于多振动台的土-结相互作用动力子结构试验方法研究[J].结构工程师,2011,27:76-81.
    [112]周颖,吕西林.建筑结构振动台模型试验方法与技术[M].北京:科学出版社,2012.
    [113] Chen Y, Feng M Q, Soyoz S.Large-scale shake table test verification of bridgecondition assessment methods [J]. Journal of Structural Engineering,2008,134(7):1235-1245.
    [114] Mahmoud Mohamad Hachem. Seismic performance of circular reinforcedconcrete bridge columns under bidirectional earthquake loading [D]. Universityof California, Berkeley,2002
    [115] Junichi Sakai, Shigeki Unjoh. Shake table experiment on circular reinforcedconcrete bridge column under multidirectional seismic excitation.2007ASCE,Structural Engineering Research Frontiers.
    [116]叶爱君,袁万城,胡世德.高墩振动台试验研究[J].同济大学学报,1996,24(6):606-611.
    [117]艾庆华,李宏男,王东升,等.基于位移设计的钢筋混凝土桥墩抗震性能试验(Ⅱ):振动台试验[J].地震工程与工程振动.2008,28(3):39-46.
    [118]艾庆华,王东升,李宏男,等.钢筋混凝土桥墩地震破坏振动台试验研究[J].大连理工大学学报载.2008,45(5):733-739.
    [119]李加武,卢斌,刘健新.连续梁减震性能的振动台试验研究[J].桥梁建设,2002,(6):20~22.
    [120]李忠献,张勇,岳福青.地震作用下隔震简支梁桥碰撞反应的振动台试验[J].地震工程与工程振动,2007,27(2):152-157.
    [121]樊珂,李振宝,阎维明.拱桥多点动力响应振动台模型试验与理论分析[J].铁道科学与工程学报,2007,4(6):19~24.
    [122]瞿伟廉,孙五一,周强.万州长江大桥欠质量模型振动台试验研究[J].武汉理工大学学报,2005,27(8):45~48.
    [123]张俊平,周福霖,廖蜀樵.桥梁隔震体系振动台试验研究(III)——测试结果分析[J].地震工程与工程振动,2002,22(2):136~142.
    [124]高文军,牛松山,兰海燕.单索面独塔斜拉桥振动台模型试验研究[J].公路交通技术,2010,(2):45~48.
    [125]唐光武,郑万山,郑罡等.重庆朝天门长江大桥动力模型试验研究[J].公路,2009,(5):146-150.
    [126]韦晓,范立础,王君杰.考虑桩—土—桥梁结构相互作用振动台试验研究[J].土木工程学报,2002,35(4):91-97.
    [127]徐鹏举,凌贤长,唐亮等.可液化场地桩基桥梁结构地震响应振动台试验[J].哈尔滨工业大学学报,2010,42(8):1189-1193.
    [128]宋波,张国明,李悦.桥墩与水相互作用的振动台试验[J].北京科技大学学报,2010,32(3):403-408.
    [129]黄信.水—桥墩动力相互作用机理及深水桥梁非线性地震响应研究[D].天津:天津大学博士学位论文,2012
    [130] Johnson N, Saiidi M, Sanders D. Performance of a Large Scale Two-SpanBridge Model under Design Earthquake Motions.2007, Long Beach, California,United States, Structural Engineering Research Frontiers.
    [131] Nathan Johnson, Richard T Ranf, M. Saiid Saiidi, et al. Seismic Testing of aTwo-Span Reinforced Concrete Bridge[J]. Journal of Bridge Engineering.ASCE,2008,2:173-182.
    [132] Weiming Yan, Yong Li, Yanjiang Chen. Seismic Testing of a Long-spanConcrete Filled Steel Tubular Arch Bridge[C]. Key Engineering Materials,2011,456:99-112.
    [133]李勇.非一致地震激励下高架连续梁桥动力响应与控制研究[D].北京:北京工业大学博士学位论文,2012
    [134]周大兴.考虑土—结构相互作用大跨径连续梁桥抗震性能研究[D].北京:北京工业大学博士学位论文,2012
    [135]王利辉.连续刚构桥振动台台阵试验研究[D].北京:北京工业大学,2011,31-45.
    [136]王蕾.大跨度刚构桥地震响应分析及振动台试验研究[D].北京:北京交通大学,2010,100-150.
    [137] Han Q, Du XL, Liu JB, et al. Seismic Damage of Highway Bridges during the2008Wenchuan Earthquake[J]. Earthquake Engineering and EngineeringVibration,2009,8(2):263-273.
    [138]周颖,吕西林.建筑结构振动台模型试验方法与技术[M].北京:科学出版社,2012年
    [139]李忠献.工程结构试验理论与技术[M].天津:天津大学出版社,2004年.
    [140]章关永.桥梁结构试验[M].北京:人民交通出版社,2002年.
    [141]屈铁军,王君杰,王前信.空间变化的地震动功率谱的实用模型[J].地震学报,1996,18(1):55-62.
    [142] Tzanetos N, Elnashai A S, Hamdan F H, et al. Inelastie dynamic response of RCbridges subjected to spatial non-synchronous earthquake motion[J]. Advancesin Structural Engineering,2000,3(3):191-214.
    [143] Kim S H, Feng M Q. Fragility analysis of bridges under ground motion withspatial variation[J]. Journal of Nonlinear Mechanics,2003,38:705-721.
    [144]汪强,王进廷,金峰,张楚汉.结构—地基动力相互作用的实时耦联动力试验[J].工程力学,2011,28(2):94-100.
    [145]汪强,王进廷,金峰,张楚汉.基于振动台的RTDHT试验及其在双层刚架结构上的应用[J].工程力学,2010,27(10):57-64.
    [146] Sun K, Pires J A. Simplified approach for pile and foundation interactionanalysis[J]. Journal of Geotechnical Engineering,1993,119(9):1462-1479
    [147] Nogami T,Novak M.Soil-pile interaction in vertical vibration[J].EarthquakeEngineering and Structure Dynamics,1976,4(3):277-293
    [148] Sen R, Davies T G, Banerjee P K.Dynamic analysis of piles and pile groupsembedded in homogeneous soils[J]. Earthquake Engineering and StructureDynamics,1985,13(1):53-65
    [149]日本建筑学会.建物と地盤の動的相互作用を考慮した応答解析と耐震設計[M].东京:日本建筑学会,2006.
    [150]霍俊荣,胡聿贤,冯启民.地面运动时程强度包络函数的研究[J].地震工程和工程震动,1991,11(1):1-12
    [151]屈铁军,王君杰,王前信.局部场地上地震动的强度包络函数的特性研究[J].地震工程与工程振动,1994,14(3):68-80.
    [152] Masayoshi Nakashima, Hiroto Kato, Eiji Takaoka. Development of Real-timePseudo dynamic Testing[J], Earthquake Engineering and Structural Dynamics.1992,21(1):79-92
    [153]范立础.桥梁抗震[M].上海:同济大学出版社,1997.
    [154] Saadeghvaziri M A, Yazdani-Motlagh A R, Rashidi S. Effect of soil-structureinteraction on longitudinal seismic response of MSSS bridges[J]. Journal ofSoil Dynamics and Earthquake Engineering.2000,20(1-4):231-242
    [155]杨林德,季倩倩,郑永来.地铁车站结构振动台试验中模型箱设计的研究[J].岩土工程学报,2004,26(1):75-78.
    [156]陈跃庆,吕西林,李培振等.不同土性的地基-结构动力相互作用振动台模型试验对比研究[J].土木工程学报,2006,39(5):57-64.
    [157]陈国兴,左熹,王志华等.可液化场地地铁车站结构地震破坏特性振动台试验研究[J].建筑结构学报,2012,33(1):128-136
    [158]陈国兴,左熹,王志华等.近远场地震作用下液化地基上地铁车站结构动力损伤特性的振动台试验[J].土木工程学报,2010,43(12):120-126.
    [159]张之颖,赵钟斗,吕西林等. SSI体系阻尼特性振动台模型试验研究[J].土木工程学报,2010,43(2):100-104.
    [160] Kobayashi H, Tamura K, Tanimoto S. Hybrid vibration experiments with abridge foundation system model[J]. Soil Dynamics and Earthquake Engineering,2002,22:1135-1141.
    [161]邱法维.采用隐式积分方法和子结构技术的拟动力实验[J].土木工程学报,1997,30(2):27-33.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700