用户名: 密码: 验证码:
若尔盖盆地与西秦岭造山带岩石圈结构与地球动力学过程
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
松潘地块北缘的若尔盖盆地位于青藏高原的东北缘,其岩石圈结构变化及其与边缘造山带的构造关系记录着高原向东和东北发展演化的深部信息。若尔盖盆地又处于中国大陆东西及南北构造结合部位,特殊的构造环境使其成为研究中国大陆南北对接及东西转折演化之大陆动力学过程的天然实验室,倍受国际注目。由于松潘地块是我国石油资源开发重新认识的重要新区,作为松潘地块主体部分的若尔盖盆地是研究的重点,急需揭示它的岩石圈内部结构、构造属性,从深部发现资源潜力评价的重要依据。岩石圈的精细结构记录着造山带与盆地的形成过程,其内部的构造几何样式和组合形式反映了构造运动学的发展与演变。因此,要研究盆山构造关系、追踪造山带和盆地的变形过程及动力学,必须揭示岩石圈结构,深地震反射剖面技术是研究岩石圈精细结构最有效的方法。国际地学界公认该技术在揭示一些典型的构造现象方面扮演了其它方法所不可替代的角色。
     由于国内外没有专门的队伍开展深部地质调查工作,长期以来,深地震反射技术依赖于常规地震勘探处理技术的发展和应用。因而在很大程度上受制于以水平地层和简单地形条件下的地震波传播理论的假设条件。事实上由于深地震反射方法的研究区多集中在山区,地形起伏大,地表地质条件复杂、反射资料信噪比低,地下构造倾角大,常规的地震数据处理方法有很大的局限性。针对深地震反射数据资料的特点,如何建立一种实用的技术及处理流程,处理出高质量的反射图像已成为当前深地震反射实际应用中体现效果的重要环节。本论文认真分析常规处理中存在的问题,针对问题实现了地表基准的动校正和改进的速度分析方法,并根据总结野外监控处理流程和分析对比影响单炮记录的品质因素,经方法和参数的测试工作,最终确定了适合于本工区的处理方法和流程。
     利用加入新实现的地表基准的动校正方法和改进速度分析方法的处理流程对RH04-1-2深地震反射数据进行处理,得到较真实可信深地震反射时间剖面,为揭示若尔盖盆地与西秦岭造山带岩石圈结构,研究盆山构造关系、盆地周边造山带形成的地球动力学机制、造山作用方式和运动学过程等提供了可靠的地震学证据。
     本论文的研究内容分为三大部分,第一部分是方法研究。针对深地震数据和深部复杂地质构造的特点,本人分析了常规地震勘探处理技术存在的问题,即动、静校正问题和复杂地表地质和深部构造条件下的速度估计问题。针对所存在的问题实现了适合山区的地表基准的动校正和速度分析方法,并利用理论模型和实例数据证明了改进的方法的有效性和可行性。第二部分是深地震反射数据资料的准备部分和处理。首先了解松潘地块地质与地球物理概况,再根据试验工作确定施工参数和施工方案以保证能采集到高质量的深地震反射数据。并通过野外监控处理和分析对比影响单炮质量的品质因素,了解影响单炮质量的因素为各数据处理环节中处理方法和参数的选择提供依据。最后利用加入改进的动校正方法和改进速度分析方法的处理流程对RH04-1-2测线进行处理,得到深地震反射叠加时间剖面。第三部分是深地震反射资料的地质解释。根据处理得到的深地震剖面显示的反射特征,结合其它地球物理资料(重磁和折射资料)及地质资料,对若尔盖盆地和西秦岭的盆山构造关系及盆山形成的动力学过程进行了探讨。最后简明扼要地给出了本次研究所得到的结论以及存在的问题。
     通过分析深地震反射叠加时间剖面的反射特征并结合已有地质资料得出以下几点结论:
     (1)若尔盖地块和西秦岭造山带的深部分界线应该在大水弧形构造的南部边界,CDP约为3790左右(对应的野外桩号为4923.5),位于地表分界线南约7.65km。
     (2)在RH04-1-2时间剖面上双程走时约为2.5s位置出现的一组似层状的反射震相,为三叠系的底界面,按照2.5s以上的地壳的平均速度小于6.0km/s估算,该界面埋深约为7.0km。根据反射特征认为若尔盖盆地和西秦岭造山带基底为同一属性。
     (3)在深地震反射剖面上西秦岭和若尔盖盆地的基底、上地壳、下地壳及Moho面具有相似的反射特征,表明西秦岭造山带和若尔盖盆地在地质历史上曾经历同一块体的演变过程。
     (4)盆山构造关系和动力学过程
     松潘地块于晚三叠世随着昆仑南缘洋盆闭合,拼接到欧亚大陆南缘,成为其大陆边缘。若尔盖盆地作为其前锋与欧亚大陆发生碰撞。深地震反射时间剖面显示的下地壳明显北倾的反射为若尔盖盆地和西秦岭造山带发生俯冲碰撞提供了可靠的地震学证据。
     喜山期以来,由于印度板块对欧亚板块的强烈挤压作用,伴随青藏高原的隆起,位于青藏高原东北缘的西秦岭-松潘地块向北运动,同时向东逃逸。在向东运移中产生由北西向南东方向的挤压推覆和走向滑动,形成了上地壳的隆起构造。由于地壳内部深度约18~21km存在一个构造滑脱层,使得地壳变形主要发生在上地壳,而下地壳仍保留着印支期构造运动形成的俯冲和逆冲叠覆关系。
The Zoigêbasin situated in the northern margin of the Songpan block is located in the northeastern margin of the Qinghai-Tibet plateau, whose lithosphere structure and relationship to the nearby orogenic belts reveal the evolvement process trending eastward and northeastward of the Qinghai-Tibet Plateau. And it also lies in the joint of the China continental east-west and south-north structures. Owing to its special geological location, the Zoigêbasin has been considered as an important sit to study the geodynamic process of the south-north conjunction and the east-west transformation. As a main body of the Songpan block, the Zoigêbasin is researched principally on account of the Songpan block being a virginal area for oil and gas exploration. The inner lithosphere structures and their attributes may reveal the structure relationship of mountain and basin, trail the geodynamic process of orogens and basins, and inform the existing of oil and gas basins, so it is necessary to disclose lithosphere structure. Deep seismic reflection is a most valid method in studying fine lithosphere structure and revealing some typical structure.
     A deep seismic profile across the Zoigêbasin and the whole the west Qinling orogen was carried out in the winter of 2004. Because of the complicated surface geological conditions and the unusual reflection with high dips and lateral variation in velocities, the data is characterized by the lower S/N and the anormally higher statics. The data processing is far more difficult and the interpretation of the imagines is also hard. Geoscientists face to the work how to process and imagine the data,reveal the geological deformation and the structure relationship of basin and mountain, and tell the evolution stories.
     The main work in the paper is to develop new techniques to process the data and do the interpretation of the data imagines. In the paper, the problem in the normal seismic process theory has been pointed out and the new algorithms to solve the problem have been developed. The ameliorated methods of normal movement and velocity analysis that were given in the paper, have been tested. The very good imaging results have been obtained in the processing of the deep seismic reflection data. Furthermore, the geological interpretation of the data has also been done in the paper. The paper gives partly the evolution process of the Zoigêbasin and the west Qinling oregen, and recovers partly the tectonic and structural formation of the Block.
     The paper is composed with three parts of the research work, the deep seismic data processing algorithm, the data preprocessing and processing work, and the imaging interpretation for the structure evolution and the structure relationship of the basin and the orogen.
     In the first part, the problems of using normal seismic data processing techniques in the deep seismic data have been analyzed. The new algorithms for NMO and velocity analysis based on topography are described and the effectiveness of the algorithms in the processing is proved with the synthetic models and the deep seismic data. In the second part, the processing flow and procedure are clarified. The processing data includes the synthetic models and the deep seismic data( line RH04-1-2)which acquired in the field. In the third part, the interpretation of the data is described for the geological structures formations and the evolutions of the Zoigêbasin and the west Qinling orogen. The structure relationship and the geodynamic process of formation of the Zoigêbasin and the west Qinling orogen are discussed in the paper based on the seismic stack data and some other geophysical data(such as the gravity data, the magnetic data, and the refraction data) and the geological data. Upon the interpretation of seismic imagines and some other studies, the paper gives some research conclusions as follows.
     (1)The boundary in depth between the Zoigêbasin and the west Qinling orogen is found on the south edge of Dashui Arc like structure, the exact location is in the CDP No.3790(receiver location No.4923.5). It goes to 7.65km south of the surface boundary.
     (2)The bottom of Triassic layer is found to be at 2.5s(TWT) on the seismic stack section. It is estimated to be 7.0km in depth with an average velocity of 6.0km/s. The basements of the Zoigêbasin and the west Qinling orogen belong to the same basement according to the analysis of seismic data reflection characteristics.
     (3)It looks similar for the reflection features of the basement, the upper crust, the lower crust and the Moho in the Zoigêbasin and the west Qinling orogen. This reveals that two geological units ever underwent the same evolution process in the geological stage.
     (4) The deep seismic reflection section show that there are some strong north-dipping reflections which afford reliable seismic evidences for the collision between the Zoigêbasin and the west Qingling orogen.
     The west Qinling orogen and the Songpan-Ganzi block moved northward and escaped eastward owing to the strong extrusion of Indian plate and Eurasian plate and the uplifting of the Qinghai-Tibet plateau. Movement eastward brought out thrust-pressure and strike-slip movement from northwest to southeast that resulted in the upwarp structure in the upper crust. Layer deformation occured mainly in the upper crust on account of the structural detachment layer at a depth of 18~21km in the crust, and the lower crust keep the trail of the thrust and subduction in Indiosinian Period.
引文
Allmendinger R W,Nelson K D,Potter C J,et al.Deep seismic reflection characteristics of the continental crust [J].Geology,1987,15:304~310.
    Allmendinger.R..et al.,Overview of the COCORP 40°N transect west United States:the fabric of an orogenic belt.Geological Society of American Bulletin.1987,98(3):308~319.
    Ross A.R., Brown L.D.,Passakorn Pananont, et al. Deep reflection surveying in central Tibet: lower-crustal layering and crustal flow[J].Geophys.J.Int.2004,156:115~128.
    BABEL Working Group.1991.Reflectivity of a Proterozoic shield:examples from BABEL seismic profiles across Fennoscandia.In:R.Meissner,L.Brown,H-J.Durbaum,W.Franke,K. Fuchs and F.Seifert(Editors),Continental Lithosphere:Deep Seismic Reflections.Am.Geophys, Union, Geodyn.Ser., 22:77~86.
    Bally.AW,SnelsonS.Realms of subsidence[A].Canadian Society of Petrolem Geologists Memoir6[C].1980.9~94.
    Beaumont Christopher,Philippe Fullsack,Hamilton Juliet.Erosional control of active compressional orogens[A].McClay.Thrust Tectonics[M].London:Chapman&Hall, 1992.1~18.
    Boyer Steven E.Sendimentary basin taper as a factor controlling the geometryand advance of thrust belts[J].American Journal of Science,1995, 295:1220~1254.
    Bois C.Geological significance of seismic reflections in collision belts.Geophys. J.Int., 1991,105:55~69.
    Brown L,Barazangi M,Kaufman S,Olicer J. The first decade of COCORP:1974-1984[J], In:Reflection seismology,A Global perspective,eds.M.Barazangi and L.D.Brown,Geodyn Ser.,1986,13:107~120.
    Brown L D,WILLE D M,ZHENG L,et al.COCORP:New perspectives on the deep crust[J]. Geophys J.R.AstrSoc,1987,89:47~54.
    Brown L D Lower continental crust:Variations mapped by COCORP deep profiling,Annal. Geophy.,1987,5:325~332.
    Brown,R.L.Carr,S.D.,Johnson,B.J.,Coleman.The Monashee decollement of the southern Canadian Cordillera:a crustal scale shear zone linking the Rocky Mountain foreland to the lower crust beneath accreted terranes[J]. Thrust Tectonics.Geol.Soc.London,Spec.Publ., 1992,357~364.
    Burchfield BC,Chen Z,Liu Y,Royden LH.1995. Tectonics of the Longmen Shan and adjacent regions,central China. Int. Geol. Rev.37:661~735.
    Burchfield B.C.,King R.W.,Royden L.H.and Z.Chen,2003,Geological,geodetic,and geophy -sical study of southwest China: A test of Cenozoic tectonic models for Eurasia.
    Castle R.J.A theory of normal moveout[J].Geophysics,1994,59(6):983~999.
    Clowes R.M. LITHOPROBE:An integroted approach to studies of crustal evolution.Geotimes. 1992,2~14.
    Clowes,R.M.Calvert,A.J.,Eaton,D.W.,Hajnal.,Z.,Hall,J.and Ross,G.M.1996.LITHOPROB Ereflection studies of Archean and Proterozoic crust in Canada[J].Tectonophysies, 264:65~88.
    Cook,F.A. The reflection Moho beneath the southern Canadian Cordillera[J].Can.J. Earth Sci.1995,32:1520~1530.
    Cook,F.A.,Varsek,J.L.,Clowes,R.M.,Kanasewich,E.R.,Spencer,C.S.,Parrish,R.R., Brown. Lithoprobe crustal reflection cross section of the southern Canada,Cordillera,l, Foreland thrust and fold belt to Fraser River Fault[J].Tectonics. 1992,11:12~35.
    Cheadle M J,czuchra B L,Ando CJ,et al.Geometries of deep crustal faults:evidence from the COCORP Mijave survey,In:Reflection seismology:the continental custal,eds.M.Barazangi and L.D.Brown,Am[J].Geophys.Uinon,Geodyn,Ser.,1986,14:305~312.
    Davis Dan,Suppe John,Dahlen F A.Mechanics of fold-and-thrust belts and accretionary wedges[J].Journal of Geophysical Research,1983,88(B2):1153~1172.
    Dewey J,Kempton M,Kidd W,et al.Shortening of continental lithosphere:the neotectonics of Eastern Analolia-a young collision zone[J].In:Collision tectonics,eds.M.Coward and A.Ries,1986:3~36.
    Dewey.Extensional collapse orogens[J].Tectonics,1988,7(6):1123~1139.
    Durrheim,R.J. and Mooney,W.D.,1991.Archean and Proterozoic crustal evolution: Evidence from crustal seismology.Geology,19:606~609.
    Feng R,McErilly T V.Interpretation of seismic reflection profiling data for the structure of the San Andreas Fault zone[J].Bull.Seis.Soc.Am.,1983,73:1701~1720.
    Fowler P.Velocity independent imaging of seismic reflectors[J].Presented at the 54th Annual SEG Meeting,Atlanta,1984.
    GAO Rui,HUANG Dong-ding,LU Deyuan,et al.Deep seismic reflection profiles across contact zone of West Kunlun and Tarim basin along the Xinjiang geotransect in NW Chin[J].Terra Nostra,1999,2(99):49~50.
    GAO Rui, HUANG Dong-ding,LU Deyuan,et al.Deep seismic reflection profiles across juncture zone between Tarim basin and west Kunlun Mountain[J].Chinese Science Bulletin,2000,45(17):1874~1849.
    GAO Rui,LI Pengwu,LI Qiusheng, et.al.Deep process of the collision and deforma -tion on the northern margin of the Tibetan Plateau:Revelation from investigation of the deep seismic profiles.Science in China.2001,44:71~78.
    GAO Rui,Ma Yongsheng, Zhu Xuan,et.al. Lithospheric structure of the Songpan block in the northeastern Tibetan plateau revelation from investigation of the deep seismic profile.2005,20HKT.
    Garcia-Duenas.V.Banda. V.Banda.E.,Torne.M.Cordoba.D.ESCI Beticas Working Group.A deep seismic reflection survey across the Betic Chain(southern Spain) [J].Geology. 1994,11:413~417.
    Geoltrain and Brac.Can we image complex structrue with first-arrival traveltime? [J]. Geophysics.1993,58:564~575.
    Hale L D,Thompson S A.The seismic reflection character of the continental Mohorovicic discontinuity. [J]. Geophys.Res. 1982,87:4625~4635.
    Hauser E C,Oliver Je.A new era in understanding the continental basements:the impact of seismic reflection profiling,In:Composition,structure and dynamics of the lithosphere asthenosphere systems,eds.K.Fuchs and C.Froidevaux[J].Geodyn.Ser. 1987,16:1~32.
    Hauser E.C.,Lundy J.COCORP DEEP REFLECTIONS:Moho at 50km(16s)beneath the COLORADO plateau.Journal of Geophysical Research.1989,94(86):7071~7081.
    Hammer P T C,CLOWES R T.Moho reflectivity patterns-A comparison of Canadian LITHOPROBE Transects[J].Tectonophysics.1997,269:179~198.
    Jiangping Liu.Combining elevation and NMO corrections to shallow seismic reflection data on rugged topography[J]. SEG.2003,3: 1259~1262.
    Key S C and Smithson S B.New approach to seismic reflection event detection and velocity determination[J].Geophysics,1990,55(10):1057~1069.
    Klemperer,S.L.,Hauge,T.A.,Oliver.J.and Potter,C.J. The Moho in northern Basin and Range province.Nevada.along the COCORP 40 N Seismic reflection trasect.Geol.Soc. Am.Bull. 1986, 97:603~813.
    Klemperer.S.L.,Hobbs,and Freeman.B. Dating the source of lower crustal reflectivity using BIRPS deep seismic profiles across the Iapetus suture.Tectonophysics[J].1990,173: 445~454.
    Levin F K. Apparent velocity from dipping interfaces[J].Geophysics.1971,36(4): 510~516.
    Manfred Stiller,Charlotte M.,Krawcayk,Onno Onchen. The project DEKORP-15 years of deep reflection seismics helping to understand geodynamic processes.2004.,www.gfz- potsdam. de/ stiller.html.
    Meissner R.Rupture,creep,lamellae and crocodiles happenings in the continental crust[J]. Tera nova.1989,1:17~28.
    Meissner R,Wever Th,Sadowiak P.Continental collisions and seismic signature[J]. Geophy.J.Int,1991,105:15~23.
    Meissner R,Wever Th. Nature and development of the crust according to deep reflection data from the German Variscides[C],In:Reflection seismology:A Global perspective ,eds.M.Barazangi and L.D.Brown.Geodyn.Ser.,1986,13:31~42.
    McBride.J.H.and Nelson.K.D.,1991.Deep seismic reflection constraints on Palaeozoic crustal structure and definition of the Moho in the buried southern Appalachian orogen.In:R.Meissner. L.Brown.H.J.Durbaum.W.Franke,K.Fuchs and R.Seifert(Editors). Cont -inental Lithosphere:Deep Seismic Reflections.Am.Geophys.Union.Geodyn.Ser.,22: 213~224.
    Molnar P.Tapponnier P.Cenozoic tectonics of Asia,effects of a continental collision[J]. Science,1975,189:419~426.
    Molnar P.Continental tectonics in the after math of plate tectonics[J]. Nature, 1988,335:131~137.
    Mooney,W.D.and Meissner.R. Multi-genetic origin of crustal reflectivity:a review of seismic reflection profiling of the continental lower crust and Moho[J].In:D.M.Fountain, R.Arculus and R.W.Kay(Editors),Continental Lower Crust.Elsevier,Amsterdam,pp.1992, 45~79.
    Mortimer N.,Davey F.J.,Yu J. et.al. Geological interpretation of a deep seismic reflection profile across the Eastern Province and Median Batholith,New Zealand:crustal architecture of an extended Phanerozoic convergent orogen[J].New Zealand Journal of Geology & Geophysics.2002,45:349~363.
    Nelson KD.A Unfied view of craton evolution motivated by recent deep seismic reflection and refraction results,Geophy.J.Int,1991,105:25~35.
    P.T.C.Hammer,R.M.Clowes.Moho reflectivity patterns-a comparison of Canadian Litho -probe transects.Tectonophysics.1997,269:179~198.
    Reston T J The structure of the crust and uppermost mantle offshore Britain:Deep seismic reflection profiling and crustal cross-sections:In:Exposed cross-section of the continental crust, eds.M.H. Salisbury and D.M.Fountain,1990:603~621.
    Sadowiak P,et al.Seismic reflectivity patterns:Comparative investigation of Europe and North America,In:Continental lithosphere:deep seismic reflections,eds.K.Meissner.,et al. Geodyn Ser.,1991,22:363~369.
    Sadowiak P,Wever Rh,Meissner R.Deep seismic reflectivity patterns in specific tectonic units of western and central Europe.Geophy.J.Int.,1991,105:45~54.
    Schlunegger F.Controls of surface erosion on the evolution of the Alps: Constrainsts from the straigraphies of the adjacent forelanc basins[J]. International Journal of Earth Science,1999,88:285~304.
    Schlunegger F,Simpson Guy.Possible erosional control on lateral growth of the European Central Alps[J].Geology,2002,30(10):907~910.
    Sengor AMC.1984. The Cimmeride orogenic system and the tectonics of Eurasia. Geol. Soc. Am. Spec.Pap.195:1~82.
    Smithson S.B.and Johnson.R.A.,1989.Crustal structure of the western U.S.based on reflection seismology.In:L.C.Pakiser and W.D.Mooney(Editors) .Geophysical Framework of the Continental United States.Geol.Soc.Am.Mem.,172:577~612.
    Taner M T and Koehler F.Velocity spectra-digital computer derivation and application of velocity functions.Geophsics,1969,34(5):859~881.
    Weng S.,Chen,H.,Zhou,X.,Cui,Z.Deep seismic probing of continental crust in the Lower Yangtze region,eastern China.Tectonophysics.1990,173:299~305.
    Zhao.W.J.,Nelson,K.D.,Project Team,Deep seismic reflection evidence for continental underthrusting beneath southern Tibet. Nature.1993,366:557~559.
    Yin A., Rumelhart P.E., Butler R., et al., 2002b, Tectonic history of the Altyn Tagh fault system in northern Tibet inferred from Cenozoic sedimentation[J]. GSA Bulletin, 114(10): 1257~1295.
    YUAN X C,KLEMPERPER S L,TENG W B,et al.Crustal structure and exhumation of the Dabie Shan ultrahigh-pressure orogen,eastern China,from seismic reflection profiling[A]. Proce -edings for International UHPM Workshop[C].Beijing,2002,13.
    YUAN X C,KLEMPERPER S L,TENG W B,et al.Crustal structure and exhumation of the Dabie Shan ultrahigh-pressure orogen,eastern China,from seismic reflection profiling[J]. Geology,2003,31:435~438.
    蔡立国 刘和甫. 四川前陆褶皱-冲断带构造样式与特征.石油实验地质.1997,19(2):115~120.
    蔡学林. 中国陆内造山带造山过程地球动力学分析[J]. 矿物岩石.1998,18(增):1~7.
    崔作舟 卢德源 陈纪平等.攀西地区的深部地壳结构与构造[J].地球物理学报.1987, 30(6):566~580.
    崔作舟 李秋生 吴朝东等.格尔木-额济纳旗地学断面的地壳结构与深部构造[J].地球物理学报.1995,38(增刊):15~28.
    崔作舟 陈纪平 吴苓.阿尔泰-台湾岩石圈地学断面综合研究:花石峡-邵阳深部地壳的结构和构造[M].北京:地质出版社.1996,49~168.
    陈彩花 欧继红 高晨刚等.山地地震资料处理方法研究[J].河南石油.2002,16(1):14~19.
    陈宝孚 李貅. 迭代逼近科学方法在速度估算中的作用[J].西安工程学院学报.2000,22(2): 67~91.
    陈沪生.下扬子地区 HQ-13 线的综合地球物理调查及其地质意义[J].石油与天然气地质.1988,9(3):211~223.
    陈维生 文沛然 长绍华 姜期常. 区域地质志. 四川省地质矿产局.1984.
    陈学波 吴跃强 杜平山等.龙门山构造带两侧地壳速度结构特征[A].见:国家地震局科技监测司编.中国深部构造的研究与进展[C].北京:地震出版社,1988,97~113.
    崔盛芹. 论全球性中-新生代陆内造山作用与造山带[J]. 地学前缘.1999,6(4):283~293.
    邓起东.中国构造应力场特征及其与板块构造的关系[J].地震地质,1979,1(1):11~22.
    杜德勋 罗建宁 惠兰.巴颜喀拉三叠纪沉积盆地岩相与古地理-以阿坝-若尔盖盆地为例[J].岩相古地理.1998,18(1):1~18.
    丁道桂,刘伟新,崔可锐,等.造山带与盆地构造耦合关系研究——以塔里木盆地为例[A].见:马宗晋.构造地质学—岩石圈动力学研究进展[M].北京:地震出版社,1999.364~372.
    杜子图 吴淦国 杨恒书.西秦岭陆内弧形造山带构造新认识[J].甘肃地质学报.1997,6(2): 65~68.
    杜子图 吴淦国 吕古贤等.西秦岭及周边地区构造体系划分与构造演化[J].地质力学学报.1998,4(2):41~49.
    冯益民 曹宣铎 张二朋等.西秦岭造山带的演化、构造格局和性质[J].西北地质.2003,36 (1):1~10.
    傅旦丹. DMO 后的速度分析问题[J].中国海上油气(地质).2001,15(5):365~367.
    傅维洲 杨宝俊 刘财.中国满洲里-绥芬河地学断面地震学研究[J].长春科技大学学报.1998,28(2):206~212.
    高锐 吴功建.青藏高原亚东-格尔木地学断面地球物理综合解释模型与现今地球物理动力学过程[J].长春地质学院学报.1995,25(3):241~250.
    高锐 黄东定 卢德源等.横过西昆仑-塔里木接触带德深反射地震剖面[J].科学通报,2000,45(17):1874~1879.
    高锐 肖序常 刘训等.新疆地学断面深地震反射剖面揭示德西昆仑-塔里木结合带岩石圈细结构[J]. 地球学报,2001,22(6):547~569.
    高锐 李秋生等. 燕山造山带深地震反射剖面启动探测研究[J].地质通报,2002,21(12):905~906.
    高锐,董树文,贺日政等.莫霍面地震反射图像揭露出扬子陆块深俯冲过程[J].地学前缘,2004,11(3):43~49.
    桂志先 储冬红. 地震波速与深度之间的不确定性及消除[J].江汉石油学院学报.1999, 21(4):61~82.
    郭令智 朱文斌 马瑞士等.论构造耦合作用[J].大地构造与成矿学.2003,27(3):197~205.
    何樵登 熊纲.应用地球物理教程-地震勘探.地质出版社.1991.
    何允中. 从遥感图象看若尔盖盆地的构造特征[J]. 四川地质学报.1987, 2:25~28.
    黄东定 钱桂华 匡朝阳等.青藏高原北缘阿尔金断裂系(且末)深反射地震剖面调查研究报告. 2005.
    黄汲清等,1962.中国大地构造基本特征(内部发行),地质部地质科学院.
    姜晓玮 王江海 张会化.西秦岭断裂走滑与盆地的耦合-西秦岭-松甘块体新生代向东走滑挤出的证据[J].地学前缘.2003,10(3):201~208.
    金性春.板块构造学基础.上海:上海科学技术出版社,1984.
    金学林等. 秦岭纵观. 秦岭保护和发展共进项目.世界自然基金会(WWF).2003,2:1~10.
    匡朝阳等.ProMAX 交互处理系统的简单介绍和分析.1999.
    赖晓玲 李松林 张先康 成双喜.玛沁-兰州-靖边剖面壳幔复杂性的研究[J].地球物理学进展.2001,16(2):65~72.
    赖旭龙 杨逢清 杜远生 杨恒书.川西北若尔盖一带三叠系层序及沉积环境分析[J].中国区域地质.1997,vol17(2):193~204.
    李百祥.西秦岭地球物理场的地质解释[J].甘肃地质学报.1997,6(2):82~91.
    李春昱.用板块构造学说对中国部分地区构造发展的初步分析[J].地球物理学报,1975, 18(1):52-76.
    李宏兵.高精度速度分析[J]. 石油地球物理勘探.1994,29(4):474~483.
    李继亮等.“造山带研究”笔谈会[J].地学前缘.1999,6(3):1~19.
    李秋生 彭苏萍 高锐等. 东昆仑大地震的深部构造背景[J]. 地球学报.2004,25(1): 11~16.
    李亚东.白龙江地区的逆冲推覆构造[J].甘肃地质学报.1994,3(1):41~49.
    李亚林 张国伟.大陆造山带的研究趋势和进展[J]. 陕西地质.1999,17(1):81~88.
    李思田.沉积盆地的动力学分析—盆地研究领域的主要趋向[J].地学前缘,1995, 2(3-4):1~8.
    梁慧云 张先康.各国地壳上地幔深地震反射研究计划与进展[J].地球物理学进展.1996, 11(1):42~60.
    刘宝峰 李松林 张先康 张成科等.玛沁-靖边剖面 S 波资料研究与探讨[J].地震学报. 2003,25(1):82~88.
    陆涵行 曾融生 郭建明 林中洋. 唐山震区深反射剖面分析[J].地球物理学报.1998,31: 27~36.
    刘和甫.盆山耦合类型[J]. 地学前缘. 2000,7(4):469.
    刘和甫.盆地—山岭耦合体系与地球动力学机制[J]. 地球科学-中国地质大学学报. 2001, 26(6): 581~596.
    刘江平.地震共中心点道集的瞬时基准面静校正和动校正[J].物探与化探.1997,21(2): 15~22.
    刘江平 钱绍瑚 张素新. 地震共中心点道集的滑动基准面静校正和动校正叠加理论模型计算和分析[J].物探与化探.1998,22(1):27~33.
    刘训 傅德荣 姚培毅等. 青藏高原不同地体的地层、生物区系及沉积构造演化史.地质出版社.1992:75~78.
    刘洋.基于傅氏变换特点的一种速度分析新方法[J].石油地球物理勘探.1995,30(3): 329~336.
    陆涵行 曾融生 郭建明 林中洋.唐山震区深反射剖面分析[J].地球物理学报.1998,31: 27~36.
    陆文凯 张学工 李衍达.基于信号估计的高分辨率叠加速度分析[J].地球物理学报.2001, 44(6):871~876.
    吕景贵 刘振彪 牛滨华等. 一种叠加速度分析新方法[J]. 石油物探.200,39(3):36~42.
    吕庆田等.深地震反射剖面揭示的铜陵矿集区复杂地壳结构形态[J].中国科学.2003, 33(5):442~449.
    毛裕年等.西秦岭南亚带的前寒武系.成都:四川科学技术出版社,1990.
    牟永光. 地震勘探资料数字处理方法.北京:石油工业出版社,1981.
    裴先治 张国伟 赖绍聪等.西秦岭南缘勉略构造带主要地质特征[J].地质通报.2002, 21(8-9):486~494.
    彭聪,赵一鸣.中国东部含金矽卡岩矿床分布规律与深部地球物理背景研究[J].物探与化探.1999,23(6):415~420.
    饶荣标 徐济凡 陈永明 邹定帮.1987.青藏高原的三叠系.地质出版社.
    任纪舜等.1980.中国大地构造及其演化.北京:科学出版社.
    任纪舜 姜春发 陈炳蔚等. 中国及邻区大地构造图(1:500 万)及简要说明—从全球看中国大地构造.1999,北京:地质出版社.
    宋鸿彪.龙门山造山带地质和地球物理资料的综合解释[J].成都理工学院学报.1994,21(2): 79~88.
    腾吉文.中国地球深部地震探测研究序幕[J]. 地球物理与中国建设.1997:342~344.
    王椿镛 韩渭宾 吴建平等.松潘-甘孜造山带地壳速度结构[J].地震学报.2003,25(3): 229~242.
    王椿镛 王贵美 林中洋等.用深地震反射方法研究邢台地震区地壳细结构[J].地球物理学报.1993,36:410~415.
    王椿镛 张先康 吴庆举.冀中坳陷内深地震反射剖面揭示的滑脱构造[J].科学通报.1994, 625~628.
    王椿镛 张先康 吴庆举 祝治平.华北盆地滑脱构造的地震学证据[J]. 地球物理学报,1994, 37:613-620.
    王椿镛.中国岩石圈结构研究的回顾与展望[J]. 地球物理学报.1997,40(增刊):82~109.
    王椿镛 楼海 魏修成 吴庆举.天山北缘的地壳结构和 1906 年玛纳斯地震的地震构造.地震学报[J].2001,23(5):460~470.
    王平安 徐刚 董法先等.西秦岭白龙江复背斜两端弧形构造控矿特征初探[J].地质力学学报.1998,4(1):46~50.
    王有新.复杂地表情况的动校正方案[J].石油地球物理勘探.2002,37(2):105~109.
    王有学 W D Mooney 韩果花 袁学诚 姜枚.台湾-阿尔泰地学断面阿尔金-龙门山剖面的地壳纵波速度结构[J].地球物理学报.2005,48(1):98~106.
    王进海.关于动、静校正的思考[J].石油地球物理勘探.1999,34(增刊):18~33.
    魏修成 刘洋.等效连续速度模型在地震资料处理中的应用[J].勘探地球物理进展.2003, 26(4):259~267.
    翁世劼.地球物理调查对造山带和盆地的新认识.石油地质科技动态[J].1992, (6):1~33.
    吴福元 张世红.深反射地震调查对现代打的构造学的贡献[J].世界地质.1994,13(1): 117~127.
    吴根耀 马力.试论“盆”“山”的耦合和脱耦及其运动学[J].石油实验地质.2003,25(2): 99~1109.
    吴根耀 马力 钟大赉等.滇桂交界区印支期增生弧型造山带:兼论与造山作用耦合的盆地演化[J].石油实验地质.2001,23(1):8~118.
    吴俊元 杨生 朱春生 唐冬春等.2005 年度若尔盖—合作 MT 大剖面资料处理与解释项目中期报告.
    吴宣志 吴春玲等.利用深地震反射剖面研究北祁连—河西走廊地壳细结构[J].地球物理学报,1995,38(增刊 II):29~35.
    吴战培.炮点域动校正后 F-K 滤波[J].石油地球物理勘探.1995,30(3):422~423.
    吴战培 杜胜明等.山区低信噪比地震资料处理方法[J].石油地球物理勘探,1998,33(增刊2):10~16.
    肖序常 王军.青藏高原构造演化及隆升的简要评述[J].地质论评.1998,44(4):372~381.
    徐常练 许云 乌达巴拉.速度随炮检距变化分析[J].石油地球物理勘探.1998,33(6): 733~736.
    徐强 潘桂堂 江新胜.松潘-甘孜带:是弧前增生还是弧后消减?[J].矿物岩石.2003,23(2):27~31.
    徐明才 高景华 胡振远.深反射地震资料处理和解释的初步研究[J].物探与化探.1995, 19(5):360~368.
    徐明才 高景华.深部地震资料的处理和解释方法[J].物探化探计算技术.1999,21(2): 151~158.
    姚伯初 曾维军 陈艺中 张锡林 Hayes,D.E.,Diebold,J.,Buhl,P.,Spangler,S.南海北部陆缘东部的地壳结构[J].地球物理学报.1994,37:27~35.
    杨海生.常速叠加 DMO 速度分析[J].石油地球物理勘探. 1999,34(增刊):13~17.
    杨宝俊等.松辽盆地深部反射地震调查[J].地球物理学进展.2001,16(4):11~17.
    杨宝俊.在地学断面域内用地震学方法研究大陆地壳.地质出版社.1999.
    杨宝俊 刘财 周辉 梁铁成等.用近垂直反射地震资料研究安达-肇州-哈尔滨断面域地壳结构.见:金旭 杨宝俊主编.中国满洲里-绥芬河地学断面地球物理场及深部构造特征研究[J].背景:地震出版社.1994,100~113.
    杨志华 李勇等. 论陆内造山作用和陆内造山带[J]. 矿物岩石. 2001,21(3):169~172.
    杨宗让.川西松潘-甘孜弧前盆地的形成及演化[J].沉积与特提斯地质.2002,22(3): 53~59.
    尹安 彭聪 高锐 李朋武.2002a,喜马拉雅-青藏高原造山带地质演化—显生宙亚洲大陆生长[J].见:张友学 尹安 2002.地球的结构、演化和动力学,高等教育出版社,207-282.
    袁学诚 徐明才 唐文榜 王庆海.东秦岭陆壳反射地震剖面[J].地球物理学报.1994,37: 613~620.
    曾融生 陆涵行 丁志峰. 从地震折射和反射剖面结果讨论唐山地震成因[J].地球物理学报. 1998,31:383~398.
    张秉铭 腾吉文 万志超.横向各向同性介质中地震波速度分析及其意义[J].地球物理学进展.1997,12(1):53~60.
    张国伟等.秦岭造山带造山过程和岩石圈三维结构图丛(中、英文版).1996,科学出版社.
    张国伟 董云鹏 姚安平.关于中国大陆动力学与造山带研究的几点思考[J]. 中国地质. 2002,29(1):7~13.
    张国伟 郭安林 姚平安.中国大陆构造中的西秦岭-松潘大陆构造结[J].地学前缘.2004, 11(3):23~32.
    张进 马宗晋 任文军.对盆山耦合研究地新看法[J].石油试验地质.2004,26(2):169~175.
    张先康 王椿镛 刘国栋等.延庆-怀来地区地壳细结构-利用深地震反射剖面[J]. 地球物理学报.1996,39:350~356.
    张原庆 钱祥麟.盆山耦合概念及机制[J].中国地质.2001,28(3):39.
    赵文津,Nelson K.D.,Brown L.D.等.喜马拉雅和西藏高原深地震反射剖面(INDEPTH)概况[J].地球物理学报.1993,36,125.
    赵文津, Nelson K.D.,高锐等. 喜马拉雅和西藏高原深地震反射剖面的初步成果[J].地球物理学报.1993,36(1):125.
    赵文津 K.D.Nelson 纳尔逊.印度板块俯冲到藏南之下的深反射证据[J].地球学报.1996, 17(2):131~137.
    赵文津 K.D.Nelson 车敬凯 L.D.Brown 等 深反射地震揭示西马拉雅地区地壳上地幔的复杂结构[J].地球物理学报.1996,39(5):615~628.
    赵文津 赵逊 史大年等.西藏高原与喜马拉雅山深剖面(INDEPTH)的研究进展[J].地质学报(英文版).2004,78(4):575.
    周民都 吕太乙 张元生等.青藏高原东北缘地质构造背景及地壳结构研究[J].地震学报.2000,22(6):645~653.
    中国新星石油公司华东石油局第六物探大队编. 新疆塔里木盆地南缘深反射地震调查剖面研究报告.1999.
    中国新星石油公司华东石油局第六物探大队编.青藏高原北缘阿尔金断裂系(且末)深反射地震剖面调查研究报告. 1999.
    R.M.Clowes.金东淳 吕志成译.加拿大 LITHOPROBE 地震反射资料显示的大陆地壳结构变化性[J].世界地质.1994,13(1):136~147.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700