用户名: 密码: 验证码:
汶川地震反应谱研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
20世纪30年代M. A. Biot提出反应谱理论,至20世纪50年代G. W. Housner给出第一条抗震设计反应谱。从此,反应谱方法在世界范围内被广泛接受,这也标志着地震工程学的发展进入了反应谱理论阶段,工程界对反应谱的研究也一直持续到今天。目前,世界上多数国家均采用抗震设计反应谱作为抗震设计中确定地震动输入的主要依据。通常,归一化的抗震设计反应谱其形状由几个特征参数确定,其中最重要的是反应谱平台值和特征周期,反应谱的研究中大量的工作是如何科学地确定这两个特征参数。场地条件是影响反应谱特征参数的重要因素,但我国抗震设计规范只考虑了场地条件对反应谱特征周期的影响而没有考虑场地条件对反应谱平台值的影响,其重要原因之一是缺少有场地条件的强震记录。
     2008年5月12日14时28分,我国四川省汶川县附近发生了里氏8.0级特大地震,此次地震是新中国成立以来破坏性最强、波及范围最广、救灾难度最大的一次地震灾害,给我国人民带来了巨大的灾难。“十五”期间,中国地震局在南北地震带上布设了大量的强震台,这些强震台网在汶川特大地震中获得了丰富的高质量强震记录,并且很多强震记录具有详细的场地条件资料,这为我们研究反应谱和场地条件对反应谱特征参数的影响提供了重要的基础资料。本文全面系统地归纳、总结和评述了当前本领域的前沿成果和相关文献,在系统整理汶川地震强震资料的基础上,对汶川特大地震的加速度反应谱及其特征参数进行统计分析,深入研究了抗震设计反应谱的标定方法,探索反应谱特征参数与场地条件等因素之间的关系,开展了如下研究工作:
     (1)全面收集和整理了汶川特大地震的强震记录,收集了川、陕、甘三省的158个非基岩台站和16个基岩台站的强震记录、台址场地条件和地理位置等详细资料。对强震记录进行了整理,计算了每条强震记录的峰值加速度和修正后的峰值速度。
     (2)研究并提出了反应谱新的标定方法。反应谱的标定方法直接关系到反应谱特征参数的确定,本文在综述各种反应谱标定方法的基础上,提出了基于坐标变换的最小二乘法分段拟合方法,并通过对比不同反应谱标定方法,指出最小二乘法分段拟合方法是简便且合理的反应谱标定方法,采用此方法对汶川特大地震强震记录的反应谱进行了标定并获取了每条反应谱的特征参数。
     (3)研究了场地条件和断层距对反应谱特征参数的影响。加速度反应谱平台值表征了地震动的强度特性,该参数与多种影响因素有关。本文统计分析了不同场地条件和断层距区间内的加速度反应谱平台值,指出场地条件对加速度反应谱平台值有较大影响,随着场地变软,加速度反应谱平台值增大,并采用不同的分组方法计算了加速度反应谱平台值的场地影响系数。
     (4)研究了汶川地震强地震动的频谱特征。反应谱特征周期表征了地震动的频谱特性,本文通过对反应谱特征周期、加速度反应谱卓越周期和平滑化加速度反应谱卓越周期与场地类别、断层距离之间关系的统计分析,得到这三种频谱周期均随场地变软而增大,随着断层距离增加而增大。本文还拟合了加速度反应谱卓越周期和平滑化卓越周期与加速度反应谱特征周期之间的经验关系。
     (5)研究了汶川地震竖向地震动反应谱。计算近场和远场的竖向与水平(V/H)加速度反应谱比,对其表现出的不同特点和影响因素进行分析,指出近场V/H加速度反应谱比值明显受到上盘效应的影响,短周期上盘V/H反应谱比值大于下盘V/H反应谱比值,长周期下盘V/H反应谱比值大于上盘V/H谱比值。远场短周期段和长周期段的V/H反应谱比值均随着场地变软而减小,也随着断层距离增加而减小。
     (6)研究了场地条件和断层距离对竖向加速度反应谱平台值和特征周期的影响。研究得出,相同条件的竖向加速度反应谱平台值小于水平加速度反应谱平台值。计算了竖向加速度反应谱平台值的场地影响系数。研究结果表明,近场竖向加速度反应谱特征周期略小于水平加速度反应谱特征周期,远场竖向加速度反应谱特征周期略大于水平加速度反应谱特征周期。
     世界上的任何灾难无不以人类社会的进步为补偿,汶川特大地震给我们带来了巨大的灾难,灾区人民蒙受了巨大的经济损失。但是汶川特大地震也为我们提供了极为丰富的地震资料,为我们研究地震灾害提供了平台。总结和研究汶川特大地震的震害,深入研究强地震动的特征,对提高抗震能力具有重要的意义。本文的结论只来源于对汶川特大地震强震资料的详细研究,有些结果可能与我们通常的认知不一致。科学是一种探索,探索就会有失误,不足之处请批评指正。
M. A. Biot presented response spectrum theory at the third decade of 20th century, and until the fifth decade of 20th century, G. W. Housner developed the first seismic design response spectrum. From then on, response spectrum method is widly accepted internationally, which indicate that the development of earthquake engineering come into response spectrum theory phases, and research on response spectra continues to today. At present, most countries of the world use seismic design response spectra calculating earthquake action on building structures. Usually, the form of smooth seismic design response spectrum is calibrated by several characteristic parameters, among which the most important are the peak platform value and characteristic period of response spectrum. In the study of response spectra, a lot of work is how to scientifically determine the two characteristic parameters. Site condition is an important factor effecting response spectrum characteristic parameters, but the code for seismic design of our country just consider site condition effects to the response spectrum characteristic period but not the peak platform value of response spectrum. One of the most important reasons is short of ground motion records with site condition.
     On May 12, 2008, at 14:28 PM local time, a great earthquake of Richter magnitude 8.0 occered near Wenchuan town in Sichuan province, and this earthquake was the most devastating, the most widely spread and the most difficult relief earthquake disaster, since the founding of New China, and it resulted in great tragedy for Chinese. In the“Tenth Five”plan of China, China Earthquake Administration set a great deal of strong motion instruments on the North-South earquake zone. These strong motion instruments net got abundant high quality digital ground motion records. Many of these ground motion records had detailed site condition, and this provides us abundant basic information for our research on spectra and site condition effect on parameters of resonse spectra. This dissertation comprehensively and systemically summarized the results of the current forefront of the field and related literature. Based on collatting strong motion records information of Wenchuan earthquake, it analyzed response spectrum of Wenchuan earthquake and its characteristic parameters statistically, did in-depth reseatch on methods of calibrating seismic design response spectrum, explored the relationship between the response spectrum parameters and site conditions and other factors. The investigation of this work includes:
     (1) Comprehensively collected and collated strong motion records of Wenchuan earthquake. Collected strong motion records, site condition of stations and station coordinates of 158 soil stations and 16 bedrock stations in Sichuan, Shanxi and Gansu province. Caculated peak ground acceleration and peak ground velocity of each strong motion record.
     (2) Researched and advanced a new method of calibrating seismic design response spectrum. Methods of calibrating seismic design response spectrum correlate with determination of redponse spectrum characteristic parameters. Based on summarizing many methods of calibrating seismic design response spectrum, this dissertation advanced least square fitting method based on coordinate transformation, and by comparing different calibrating methods, pointed out that least square fitting method is simple and logical calibrating method. Using this method, this dissertation caculated the characteristic parameters of Wenchuan earthquake strong motion records.
     (3) Researched the effects of site condition and distance from the fault to response spectrum characteristic parameters. Peak platform value of response spectrum denotes the strength characteristic of ground motion, and this parameter relates with a variety of factors. This paper statistically analyzed the peak platform value of response spectrum in different site condition and different distance from the fault subarea. It pointed out that site conditions have a great impact on the peak platform value of acceleration response spectrum. With the soft site, the peak platform value of acceleration response spectrum increases. It caculated the coefficients of site effects of the peak platform value of acceleration response spectrum on different site conditions with different grouping method.
     (4) Researched the spectrum characteristic of Wenchuan earthquake strong motion. Characteristic period of response spectrum reflects strong motion’s characteristic. By statistically analyzing the relationship between the characteristic period and the predominant spectral period and the smoothed spectral predominant period with site conditions and distance from the fault, this paper pointed out that these three kinds of period increase with the soft site, and increase with the incease of the distance from the fault. It also fit the empirical relationship between the characteristic period and the predominant spectral period and the smoothed spectral predominant period.
     (5) Reasearched the vertical response spectrum of Wenchuan earthquake strong motion. Caculated the ratio of vertical response spectrum to horizontal response spectrum near fault and far fault, and analyzed its different characteristices and factors. Point out that near fault the ratio of vertical response spectrum to horizontal response spectrum obviously affected by“hanging wall”effect. On short periods the ratio of vertical response spectrum to horizontal response spectrum on the hanging wall are bigger than the foot wall, and on the long periods the ratio of vertical response spectrum to horizontal response spectrum on the hanging are smaller than the foot wall. Far fault, on short periods and long periods the ratio of vertical response spectrum to horizontal response spectrum minish with the soft site, and minish with the far distance from the fault.
     (6) Researched the effects of site condition and distance from the fault to the peak platform value of vertical response spectrum and vertical response spectrum characteristic period. Research found that the peak platform value of vertical response spectrum is smaller than the peak platform value of horizental response spectrum with the same conditions. Caculated the coefficients of site effects of the peak platform value of vertical acceleration response spectrum on different site conditions. The results show that vertical response spectrum characteristic period is smaller than horizental response spectrum near fault, and vertical response spectrum characteristic period is larger than horizental response spectrum far fault.
     Any disaster of the world compensate to the prograss of the human socity. Wenchuan earthquake brought us great disaster, and people in disaster area suffered huge economic losses, but it provided us with abundant seismic information, and gave us a great chance to research earthquake disaster. Sum-up and study of the damage in Wenchuan great earthquake, depth researth of strong motion’s characteristics, have great significance to improve the seismic capacity. The conclutions of this paper are only come from research on Wenchuan earthquake strong motion data, and some results may be inconsistent with our usual understanding. Science is an exploration, and exploration will make mistake, please point out the inadequacies.
引文
[1]薄景山.场地分类和设计反应谱调整方法研究.中国地震局工程力学研究所博士后研究工作报告. 1998
    [2]薄景山,李秀领,李山有.场地条件对地震动影响研究的若干进展[J].世界地震工程. 2003, 19(2): 11-15
    [3]薄景山,李秀领,刘红帅.土层结构对地表加速度峰值的影响[J].地震工程与工程振动. 2003, 23(3): 35-41
    [4]薄景山,李秀领,刘德东,刘红帅.土层结构对反应谱平台值的影响[J].地震工程与工程振动. 2003, 23(4): 22-27
    [5]薄景山,李秀领,刘红帅.土层结构对反应谱特征周期的影响[J].地震工程与工程振动. 2003, 23(5): 42-45
    [6]薄景山,吴兆营,翟庆生等.三种土层结构反应谱平台值的统计分析[J].地震工程与工程振动. 2004, 24(2): 23-29
    [7]薄景山,翟庆生,吴兆营等.三种土层结构反应谱特征周期的统计分析.地震工程与工程振动. 2004, 24(3): 124-130
    [8]薄景山,翟庆生,刘红帅等.场地分类及其在我国的演变[J].自然灾害学报. 2004, 13(3): 44-50
    [9]薄景山,翟庆生,吴兆营等.基于土层结构的场地分类方法[J].地震工程与工程振动. 2004, 24(4): 46-50
    [10]陈达生.关于地面运动最大加速度与加速度反应谱的若干资料.中国科学院工程力学研究所地震工程研究报告集,第二集,北京:科学出版社. 1965: 60-67
    [11]陈达生,卢荣俭,谢礼立.抗震建筑的设计反应谱.中国科学院工程力学研究所地震工程研究报告集,第三集,北京:科学出版社. 1977: 78-89
    [12]陈运泰,许力生,张勇等. 2008年5月12日汶川特大地震震源特性分析报告. 2008
    [13]陈鹏,刘文锋,付兴潘.关于场地卓越周期和特征周期的若干讨论[J].青岛理工大学学报. 2009, 30(6): 30-39
    [14]陈勇,陈鲲,俞言祥.用集集主震记录研究近断层强震记录的基线校正方法[J].地震工程与工程振动. 2007, 27(4): 1-8
    [15]大崎顺彦著,吕敏申,谢礼立译.地震动的谱分析入门[M].地震出版社, 1980: 187-236
    [16]董娣,周锡元,徐国栋等. 9.21台湾集集地震中场地类别对地震动若干特性的影响.地震研究. 2005, 28(4): 365-373
    [17]董娣,周锡元,徐国栋等.集集地震中场地条件对地震动特性的影响[J].地震地质. 2006, 28(1): 22-36
    [18]董娣,周锡元,闫维明等.地震动不确定性及其影响因素的初步分析[J].地震研究. 2006, 29(2): 167-176
    [19]付丽艳,赵艳,郭明珠等.分析美国规范中场地条件对设计反应谱的影响[J].世界地震工程. 2009, 25(1): 107-110
    [20]高杰.竖向地震动加速度反应谱研究[D].华中科技大学硕士学位论文. 2009
    [21]高孟潭,周本刚,潘华. 5-12汶川大地震在后特点及其防灾启示. 2008
    [22]高小旺,龚思礼,苏经宇,易方民.建筑抗震设计规范理解与应用[M].北京:中国建筑工业出版社. 2002: 23-40
    [23]耿淑伟.抗震设计规范中地震作用的规定[D].中国地震局工程力学研究所博士学位论文. 2005
    [24]郭恩,郭永刚.场地类别划分与抗震设计反应谱的研究[J].山西建筑. 2007, 33(32): 16-17
    [25]郭晓云.地震动双规准速度反应谱研究[D].哈尔滨工业大学硕士学位论文. 2007
    [26]郭晓云,翟长海,谢礼立.地震动双规准速度反应谱研究[J].地震工程与工程振动. 2009, 29(3): 9-15
    [27]郭晓云,薄景山,张宇东等.抗震设计反应谱的标定方法[J].世界地震工程. 2011, 27(1): 191-196
    [28]贺秋梅,闫维明,董娣.震源机制和场地条件对近场强震地面运动特性的影响[J].地震研究. 2006, 29(3): 256-264
    [29]贺秋梅.近场竖向地震动随机特性研究[D].北京工业大学硕士学位论文. 2006
    [30]胡聿贤.地震工程学[M].北京:地震出版社. 2006
    [31]贾俊峰,欧进萍.近断层竖向地震动峰值特征[J].地震工程与工程振动. 2009, 29(1): 44-49
    [32]贾俊峰,欧进萍.近断层竖向与水平向加速度反应谱比值特征[J].地震学报. 2010, 32(1): 41-51
    [33]蒋维强,欧阳立胜.场地卓越周期与设计特征周期的关系研究[J].工程抗震. 2004, 4(2):46-50
    [34]兰景岩,薄景山,吕悦军.剪切波速对设计反应谱的影响研究[J].震灾防御技术. 2007, 2(1): 19-24
    [35]兰景岩,薄景山.土动力学参数对设计反应谱的影响[J].地震工程与工程振动. 2008, 28(3): 184-188
    [36]李广军,赵艳,王文仲等.场地条件对设计反应谱最大值的影响[J].工程抗震与加固改造. 2009, 31(1): 114-118
    [37]李春锋,赵金宝,唐晖等.台湾集集大地震及其余震的长周期地震动特性[J].地震学报. 2006, 28(4): 417-430
    [38]李恒,秦小军.竖向与水平向地震动加速度反应谱比特性分析[J].地震工程与工程振动. 2010, 30(1): 8-17
    [39]李恒,李井冈,王墩等.竖向与水平向地震动加速度峰值比统计特征分析[J].地震研究. 2010, 33(2): 195-201
    [40]李杰,李建华.地震动反应谱变异系数分析[J].地震工程与工程振动. 2004, 24(2): 36-42
    [41]李明,谢礼立,翟长海等.近断层地震动区域的划分[J].地震工程与工程振动. 2009, 29(5): 20-25
    [42]李勇,黄润秋, A.L.Densmore.龙门山彭县-灌县断裂的活动构造与地表破裂[J].第四纪研究. 2009, 29(3): 403-420
    [43]李勇,黄润秋,周荣军.龙门山地震带的地质背景与汶川地震的地表破裂[J].工程地质学报. 2009, 17(1): 3-23
    [44]李小军,彭青.不同类别场地地震动参数的计算分析[J].地震工程与工程振动. 2001, 21(1): 29-37
    [45]李小军,彭青,刘文忠.设计地震动参数确定中的场地影响考虑[J].世界地震工程. 2001, 17(4): 34-42
    [46]李小军,周正华,于海英,温瑞智.汶川8.0级地震强振动观察及记录初步分析. 2008
    [47]李秀领.土层结构对地表地震动参数影响的研究[D].中国地震局工程力学研究所硕士学位论文. 2003
    [48]廖振鹏,李大华.地震小区划——理论与实践[M].北京:地震出版社, 1989
    [49]林淋.竖向地震动特征分析[D].中国地震局工程力学研究所硕士学位论文. 2005
    [50]刘红帅,薄景山,吴兆营等.土体参数对地表加速度峰值和反应谱的影响[J].地震研究. 2005, 28(2): 167-151
    [51]刘红帅.基于小生境遗传算法的设计地震动反应谱标定方法[J].岩土工程学报. 2009, 31(6): 975-979
    [52]刘峥,沈建文,石树中等.软土对基岩峰值加速度的放大作用[J].同济大学学报(自然科学版). 2009, 37(5): 607-612
    [53]刘文锋,付兴潘,于振兴等.反应谱特征周期的统计分析[J].青岛理工大学学报. 2009, 30(5): 1-7
    [54]吕红山,赵凤新.适用于中国场地分类的地震动反应谱放大系数[J].地震学报. 2007, 29(1): 67-81
    [55]吕悦军,彭艳菊,兰景岩等.场地条件对地震动参数影响的关键问题[J].震灾防御技术. 2008, 3(2): 126-136
    [56]马东辉,李虹,苏经宇,周锡元.阻尼比对设计反应谱的影响分析[J].工程抗震. 1995, 4: 35-40
    [57]马宁,徐龙军,谢礼立.集集地震地震动频谱参数研究[J].地震工程与工程振动. 2008, 28(1): 11-17
    [58]荣棉水,李小军,吕悦军等.平台地形对地震地面运动特征周期值得影响[J].中国地震. 2009, 25(2): 178-186
    [59]石树中,沈建文,楼梦麟.基岩场地强敌们运动加速度反应谱统计特征[J].同济大学学报. 2002, 30(11): 1300-1304
    [60]沈聚敏,周锡元,高小旺,刘晶波.抗震工程学[M].北京:中国建筑工业出版社. 2000
    [61]陶正如,陶夏新.美国NEHRP规范中地震作用的比较研究[J].工程抗震与加固改造. 2006, 27: 17-21
    [62]田勤俭,刁桂苓,郝平等.汶川8.0级地震及余震破裂的地震构造特征[J].地震. 2009, 29(1): 141-152
    [63]王国新,陶夏新,姜海燕.反应谱特征参数的提取及其变化规律研究[J].世界地震工程. 2001, 17(2): 73-79
    [64]王国新,李宏男,赵真等.结构动力反应分析中的地震动输入问题研究[J].沈阳建筑大学学报. 2008, 24(6): 993-998
    [65]王国权. 921台湾集集地震近断层地面运动特征[D].中国地震局地质研究所博士学位论文. 2001
    [66]王国权,周锡元,马宗晋等. 921台湾地震近断层强地面运动的周期和幅值特性[J].工程抗震. 2001, 3(1): 30-38
    [67]王国权,周锡元. 921台湾集集地震近断层强震记录的基线校正[J].地震地质. 2004, 26(1): 1-16
    [68]王海云,谢礼立.近断层强地震动的特点[J].哈尔滨工业大学学报. 2006,38(12): 2070-2075
    [69]王海云,谢礼立.自贡市西山公园地形对地震动的影响[J].地球物理学报. 2010, 53(7): 1631-1638
    [70]王卫民,赵连锋,李娟,姚振兴.四川汶川8.0级地震震源过程[J].地球物理学报. 2008, 51(5): 1403-1410
    [71]王亚勇,王理,刘小弟.不同阻尼比长周期抗震设计反应谱研究[J].工程抗震. 1990, 1: 38-41
    [72]吴健,高孟潭.场地相关设计反应谱特征周期的统计分析[J].中国地震. 2004, 20(3): 263-369
    [73]吴健,吕红山,刘爱文.汶川地震烈度分布与震源过程相关性的初步研究[J].震灾防御技术. 2008, 3(3):224-229
    [74]夏江,陈清军.基于遗传算法的设计地震反应谱标定方法[J].力学季刊. 2006, 27(2): 317-323
    [75]谢礼立,于双久.强震观测与分析原理[M].北京:地震出版社. 1982: 214-227
    [76]谢礼立,马玉宏.现代抗震设计理论的发展过程[J].国际地震动态. 2003, 10: 1-8
    [77]谢礼立.地震工程研究的基本任务及其传统与与非传统的研究领域. 2005年国家自然科学基金委工程与材料学部十一五战略研究研讨会报告. 2005
    [78]谢俊举,温增平,高孟潭等. 2008年汶川地震近断层竖向与水平向地震动特征[J].地球物理学报. 2010, 53(8): 1796-1808
    [79]徐国栋,周锡元,闫维明.强震地面运动超随机特性的几点注记[J].地震工程与工程振动. 2007, 27(1): 7-17
    [80]徐龙军,谢礼立.双规准化地震动加速度反应谱研究[J].地震工程与工程振动. 2004, 24(2): 1-7
    [81]徐龙军,谢礼立.场地相关双规准化地震动加速度反应谱[J].哈尔滨工业大学学报. 2004, 36(8): 1061-1064
    [82]徐龙军,谢礼立.集集地震地震动反应谱统一特性[J].哈尔滨工业大学学报. 2005, 37(S): 225-228
    [83]徐龙军,谢礼立.近断层地区抗震设计谱研究[J].东南大学学报. 2005, 35(SI): 105-108
    [84]徐龙军,谢礼立.集集地震近断层地震动频谱特征[J].地震学报. 2005, 27(6): 656-665
    [85]徐龙军,谢礼立,郝敏.简谐波地震动反应谱研究[J].工程力学. 2005, 22(5): 7-14
    [86]徐龙军.统一抗震设计谱理论及其应用[D].哈尔滨工业大学博士学位论文. 2006
    [87]徐龙军,谢礼立.基于双规准反应谱的抗震设计谱[J].哈尔滨工业大学学报. 2007, 39(12): 1859-1863
    [88]徐龙军,谢礼立,胡进军.抗震设计谱的发展及相关问题综述[J].世界地震工程. 2007, 23(2): 46-57
    [89]徐龙军.谢礼立.近断层地震动双规准伪速度谱及其应用[J].地震学报. 2007, 29(5): 512-520
    [90]徐龙军,谢礼立.竖向地震动加速度反应谱特性[J].地震工程与工程振动. 2007, 27(6): 17-23
    [91]徐龙军,于海英,曹文海等.汶川地震远场地震动场地相关性与分析方法评价[J].地震学报. 2010, 32(2): 175-183
    [92]徐平. 1999年台湾集集地震竖向地面运动研究[D].北京工业大学硕士学位论文. 2006
    [93]徐扬,赵晋泉,李小军等.基于汶川地震远场强振动记录的厚覆盖土层对长周期地震动影响分析[J]. 2008, 3(4): 345-351
    [94]徐扬,赵向佳,高树义等.四川汶川8.0级地震山西数字强震动记录特征与分析[J].地震地磁观测与研究. 2009, 30(2): 100-106
    [95]徐扬,罗词建,李小军等.汶川8.0级地震陕西省数字强震动记录分析[J].震灾防御技术. 2009, 4(4): 363-374
    [96]薛素铎,赵均,高向宇编著.建筑抗震设计[M].北京:科学出版社. 2003: 1~76
    [97]杨俊芬,顾强.抗震设计中的结构影响系数及其研究进展[J].地震工程与工程振动. 2008, 28(4): 58-63
    [98]杨向东.设计地震反应谱的双参数标定方法及其应用[J].地震研究. 1993, 16(2): 178-187
    [99]于海英,周雍年. SMART-1台阵记录的长周期反应谱特性[J].地震工程与工程振动. 2002, 22(6): 8-11
    [100]于海英.力平衡式加速度计仪器响应误差的校正方法[J].地震工程与工程振动. 2006, 26(6): 200-204
    [101]于海英,王栋,杨永强等.汶川8.0级地震强振动特征初步分析[J].震灾防御技术. 2008, 3(4): 321-337
    [102]于海英,王栋,杨永强等.汶川8.0级地震强震动加速度记录的初步分析[J].地震工程与工程振动. 2009, 29(1): 1-15
    [103]于海英,江汶乡,解全才等.近场数字强震仪记录误差分析与零线校正方法[J].地震工程与工程振动. 2009, 29(6): 1-13
    [104]余湛,石树中,沈建文等.从中国、美国、欧洲抗震设计规范的比较探讨我国的抗震设计反应谱[J].震灾防御技术. 2008, 3(2): 136-145
    [105]翟庆生.基于土层结构的场地分类方法的研究[D].中国地震局工程力学研究所硕士学位论文. 2003
    [106]张晓志,谢礼立,于海英.地震动反应谱的数值计算精度和相关问题[J].地震工程与工程振动. 2004, 24(6): 15~21
    [107]张之颖,张景绘.卓越周期对反应谱最大值的影响[J].强度与环境. 1999, 2: 1~6
    [108]章在墉,居荣初.关于规准加速度反应谱问题[R].中国科学院土木建筑研究所地震工程报告集,第一集,北京:科学出版社. 1965: 17-25
    [109]赵艳,郭明珠,李化明等.对比分析中国有关场地条件对设计反应谱最大值的影响[J].地震地质. 2009, 31(1): 186-197
    [110]赵艳,郭明珠,吴焕娟等.关于改进我国抗震设计反应谱的探讨[J].地震工程与工程振动. 2006, 26(3): 47-51
    [111]郑水明,周宝峰,温瑞智等.强震动加速度记录基线校正问题探讨[J].大地测量与地球动力学. 2010, 30(3): 47-51
    [112]郑柱坚.场地卓越周期的测定及其在建筑抗震设计中的应用[J].工程抗震. 2000, 3: 36-40
    [113]中华人民共和国国家标准,建筑抗震设计规范(GB 50011-2010)[S].北京:中国建筑工业出版社, 2010
    [114]中华人民共和国冶金工业部,构筑物抗震设计规范(GB 50191-93)[S].北京:中国计划出版社, 1993
    [115]中华人民共和国国家标准,铁路工程抗震设计规范(GB 50111-2006)[S].北京:中国计划出版社, 2006
    [116]中华人民共和国行业标准,水工建筑物抗震设计规范(DL 5073-2000)[S].北京:中国水利水电出版社, 2000
    [117]中华人民共和国交通部标准,公路工程抗震设计规范(JTJ 004-89)[S].北京:人民交通出版社, 1990
    [118]中华人民共和国国家标准,室外给水排水和燃气热力工程抗震设计规范(GB 50032-2003)[S].北京:中国建筑工业出版社, 2003
    [119]中国地震局地球物理研究所等.中国地震动参数区划图编制报告[R]. 2001
    [120]周雍年.震级、震中距和场地条件对地面运动反应谱的影响[J].地震工程与工程振动. 1984, 4(4): 14-21
    [121]周锡元.土质条件对建筑物所受地震荷载的影响.中国科学院工程力学研究所地震工程研究报告集,第二集,北京:科学出版社. 1965: 27-43
    [122]周锡元,王广军,苏经宇.场地分类和平均反应谱[J].岩土工程学报. 1984(5): 59-68
    [123]周锡元等.场地·地基·设计地震[M].北京:地震出版社. 1990.1: 133-141
    [124]周锡元,樊水荣,苏经宇.场地分类和设计反应谱的特征周期[J].工程抗震. 1999, 12: 3-9
    [125]周锡元,齐辉,徐平等.震级、震中距和场地条件对反应谱特性影响的统计分析[J].北京工业大学学报. 2006, 32(2): 97-102
    [126]周锡元,徐平,王国权等. 1999年台湾集集地震近断层竖向与水平反应谱比值的研究[J].地震地质. 2006, 28(3): 325-339
    [127]周荣军,黄润秋,雷建成等.四川汶川8.0级地震地表破裂与震害特点[J].岩石力学与工程学报. 2008, 27(11): 2173-2187
    [128]周正华,周雍年,卢滔等.竖向地震动特征研究[J].地震工程与工程振动. 2003, 23(3): 25-29
    [129]朱庆杰,代兆立,周云章等.结构抗震设计中最大地震影响系数的计算[J].华中科技大学学报. 2008, 25(3): 42-45
    [130] Akkar S., Ozen O., Effect of peak ground velocity on deformation demands for SDOF systems. Earthquake Engineering and Structural Dynamics [J]. 2005, 34: 1551~1557
    [131] Ambraseys N. N., The prediction of earthquake peak ground acceleration in Europe [J]. Earthquake Engineering and Structural Dynamics, 1995, 24(4), 467-490.
    [132] Ambraseys N. N., Simpson K. A. Prediction of vertical response spectra in Europe [J]. Earthquake Engineering and Structural Dynamics, 1996, 25:401-490
    [133] Abrahamson, N. A. and Silva, W. J. Empirical response spectral attenuation relations for shallow crustal earthquakes [J]. Seismological Research Letter, 1997, 68: 94-127.
    [134] Anil K. Chopra. Elastic response spectrum: A historical note [J]. Earthquake Engineering and Structural Dynamics. 2007; 36: 3~12
    [135] Anil K. Chopra. Dynamics of Structures: Theory and application to Earthquake Engineering [M]. 2005: 198~245
    [136] Boit MA. A Mechanical Analyzer for Predition of Earthquake Stress [J]. Bull. Seism. Soc. Am. 1941, 31: 151~171
    [137] Boore DM, Joyner WB, Fumal TE. Equations for Estimating Horizontal ResponseSpectra and Peak Acceleration from Western North American Earthquakes: A Summary of Recent Work [J]. Seismological Research Letters, 1997, 68: 128~153
    [138] Bozorgnia Y., Niazi M. and Campbell K. W. Characteristics of free-field vertical ground motion in the 1994 Northridge Earthquake [J]. Earthquake Spectra, 1995, 11(4): 515-525
    [139] Campbell, K. W., Empirical near-source attenuation relationships for horizontal and vertical components of peak ground acceleration, peak ground velocity, and pseudo-absolute acceleration response spectra [J]. Seismological Research Letters 68 (1), January/February, 1997.
    [140] Crouse CB, McGuire JW. Site Response Studies for Purpose of Revising NEHRP Seismic Provisions. Earthquake Spectra [J], 1996, 12(2): 407~439
    [141] Elnashai, A. S. and Papazoglou, A. J. Procedure and spectra for analysis of RC structures subjected to strong vertical earthquake loads [J]. Journal of Earthquake Engineering 1997, 1(1): 121-155.
    [142] Ezio Faccioli, Roberto Paolucci, and Vera Pessina. Engineering assessment of seismic hazard and long period ground motions at the Bolu Viaduct Site following the November 1999 earthquake [J]. Journal of Seismology. 2002, 6: 307~327
    [143] Giaralis A., Spanos P. D. Wavelet-based response spectrum compatible synthesis of accelerograms—Eurocode application (EC8) [J]. Soil Dynamics and Earthquake Engineering, 2009, 29: 219-235
    [144] Housner GW. Behavior of Structures during Earthquakes [J]. ASCE, 1959, 85(EM4): 109~129
    [145] Hudson D. E. and Udwadia F. E., Local distribution of strong earthquake ground motion [C], 5WCEE, 1973
    [146] Iwan W D, Moser M A, Peng C Y. Some observations on strong motion earthquake measurement using a digital accelerograph [J]. Bull Seis Soc Am, 75: 1225-1246
    [147] Jack W. Baker, and C.Allin Cornell. Spectral shape, epsilon and record selection [J]. Earthquake Engineering and Structural Dynamics. 2006
    [148] Joyner WB, Boore DM. Prediction of Earthquake Response Spectra [J]. US Geol. Surv. Open File Report 82-977, 1982
    [149] Julien Rey, Ezio Faccioli & Julian J. Bommer. Derivation of design soil coefficients (S) and response spectral shapes for Eurocode 8 using the European Strong-Motion Database [J]. Journal of Seismology. 2002, (6): 547~555
    [150] Kramer, S. L. Geotechnical Earthquake Engineering [M], Prentice-Hall, Inc.
    [151] Lam N.T.K., Chandler A.M., Wilson J.L., Hutchinson G.L. Response spectrum predictions for potential near-field and far-field earthquake affecting Hong Kong: rock sites [J]. Soil Dynamics and Earthquake Engineering. 2002, 22: 47~72
    [152] Minimum Design Loads for Buildings and Other Structures[S]. ASCE Standard. 2006
    [153] Nelson Lam, John Wilson, Adrian Chandler, and Graham Hutchinson. Response spectrum modeling for rock sites in low and moderate seismicity regions combining velocity, displacement and acceleration predictions [J]. Earthquake Engineering and Structural Dynamics. 2000, 29: 1491~1525
    [154] Newmark NM, Blume JA, Kapur KK. Seismic Design Criteria for Nuclear Power Plants [J]. J. Power Div., ASCE, 1973, 99(PO2): 287~303
    [155] Praveen K. Malhotra. Response spectrum of incompatible acceleration, velocity and displacement histories [J]. Earthquake Engineering and Structural Dynamics. 2001, 30: 279~286
    [156] Praveen K. Malhotra. Cyclic-demand spectrum [J]. Earthquake Engineering and Structural Dynamics. 2002, 31: 1441~1457
    [157] Rathje E. M., Abrahamson N. A., Bray J. D. Simplifide Frequency Content Estimates of Earthquake Ground Motions [J]. Journal of Geotechnical and Geoenvironmental Engineering/February, 1998: 150-159
    [158] Rathje E. M., Eeri M., Empirical Relationships for Frequency Content Parameters of Earthquake Ground Motions [J]. Earthquake Spactra, 2004, 20(1): 119-144
    [159] Reyes D. K., Rodriguez-Marek A., Lizcano A. A hypoplastic model for site response analysis [J]. Soil Dynamics and Earthquake Engineering, 2009, 31: 173-184
    [160] Tieleman H.W. Universality of velocity spactra [J]. Journal of Wind Engineering and Industrial Aerodynamics. 1995, 56: 55~69
    [161] Trifunac M. D. and Udwadia F. E., Wariations of strong earthquake ground shaking in the Los Angeles Area [J]. BSSA, Vol. 64, No.5, 1974
    [162] William TH. The 1997 NEHRP Recommended Provisions for Seismic Regulations for New Buildings and Other Strutures [J]. Earthquake Spectra, 2000, 16: 101~114
    [163] Xie Lili, Xu Longjun, Adrian Rodrguez-Marek. Representation of near-fault pulse-type ground motion [J]. Earthquake Engineering and Engineering Vibration, 2005, 4(2): 191-199
    [164] Xu Longjun, Xie Lili. Bi-normalized response spectral characteristics of the 1999 Chi-Chi earthquake [J]. Earthquake Engineering and Engineering Vibration, 2004, 3(2): 147-155
    [165] Xu Longjun, Xie Lili. Characteristics of frequency content of near-fault ground motion during the Chi-Chi earthquake [J]. ACTA Seismologica Sinica, 2005, 18(6): 707-716
    [166] Xu Longjun, Adrian Rodriguez-Marek, Xie Lili. Design spectra including effect of rupture directivity in neer-fault region [J]. Earthquake Engineering and Engineering Vibration, 2006, 5(2): 159-160
    [167] Xu Longjun, Xie Lili. Near-fault ground motion bi-normalized pseudo-velocity spectra and its applications [J]. ACTA Seismologica Sinica, 2007, 20(5): 544-552
    [168] Xu Longjun, Xie Lili. Bi-normalized response spectra and scalar periods for developing uniform seismic desing spectra [J]. Journal of Southeast University, 2007, 23(2): 266-271

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700