用户名: 密码: 验证码:
汶川地震断裂带科学钻探地下流体气体组分异常与余震的关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地震前后存在地下流体异常已被众多震例所证实。探讨流体地球化学与地震的关系,有利于认识地震发生机制,提高地震监测、预报和预警能力。
     汶川地震断裂带科学钻探(WFSD)为开展深部流体地球化学研究提供了研究平台。WFSD-1打通了汶川地震主断裂面,完整的记录了2008年11月至2009年7月的余震数据及随钻时流体监测数据,具有一定的科研意义。
     本文将以WFSD-1孔中180-1201m深度地下流体气体组分的浓度资料为基础,收集WFSD-1打钻期间断裂带范围内3.5级以上余震目录资料,来研究地下流体气体组分异常与余震的关系。
     本文建立了地震断裂带钻孔中Ar、CO2、CH4、H2、He、N2、O2等流体地球化学剖面。发现孔内180-1205m深度出现多处来自地下流体的气体异常。
     对WFSD-1孔中流体气体组分资料进行因子分析、浓度时间关系及比值分析、差分分析等统计学处理。在因子分析过程中,因子得分异常变化指示余震的准确性为75%。由统计学分析得出地下流体气体组分异常与区内地震活动可能存在对应关系。异常一般在震前数天出现,并且震后持续多天,不同气体组分所呈现的异常规律并不相同,且异常数量随着震中距的增加而明显减少。其中He、CH4和CO2浓度变化的映震效果明显好于Ar、N2、O2组分浓度变化的映震能力。He/Ar和N2/O2比值多为正异常,Ar/N2和O2/Ar则表现出相反的状态。表明地壳流体的活动与地震活动实际上是伴生的关系。
     将地震时地下流体所有气体组分组合的异常特征分为3类:流体气体群体异常,表现为地震前后CO2、H2、He群体性正异常,O2、Ar、CH4负异常;多峰值异常,表现为CO2、H2、CH4、He正异常,O2、Ar负异常;单峰值异常,表现为CO2、H2、CH4、He正异常,O2、Ar负异常。
     研究表明,地下流体与构造活动关系密切。出现显著地下流体异常处,在岩石中存在裂隙、破裂面、断层。地下流体来源多种多样。从N2/Ar比值及相关资料得知,研究区内的地下流体大多为大气降水,可能有部分深源成因。
It has been confirmed by a number of earthquake cases that there is ground water after the earthquake. Exploring the relationship between fluid geochemistry and earthquake is beneficial for recognizing the earthquake mechanism and improving the capability of earthquake monitoring, forecasting and early warning.
     Wenchuan Earthquake faults Scientific Drilling (WFSD) provides a research platform to carry out deep fluid geochemistry. WFSD-1 completly recorded the aftershock data and drilling fluid data from November 2008 to July 2009 and got through the main earthquake fault plane. It has some scientific significance.
     The article was based on the 180-1201m deep underground fluid concentration of gas components, collected WFSD-1 drilled within the fault zone during the aftershocks of 3.5 or above directory information, to study the relationship between the gas composition of subsurface fluid anomalies and aftershocks.
     In this article, Ar, CO2, CH4, H2, He, N2, O2 and other fluid geochemical profiles was found within the drilling hole of the earthquake fault zone. In 180-1205m deep hole there were many gas abnormalities from underground fluid.
     To conduct the analysis of the gas composition data flow, the concentration by time and Differential analysis in WFSD-1 hole statistically. In the process of the factors analysis, the accuracy of the factor scores of the of abnormalities indicating aftershocks is 75%. Derived from the statistical analysis, there may exist correspondence between the gas composition of subsurface fluid anomaly and seismic activity in the region. Anomalies generally occur a few days before the earthquake, and continued days after the earthquake, presented in different gas components are not the same exception rule, and the number of abnormal increases with epicentral distance decreased. The change of He, CH4, and CO2 concentration on earthquake component capacity were obviously better than the change of Ar, N2, O2 concentration. He / Ar ratio and N2/O2 mostly showed positive anomalies, Ar/N2 and O2/Ar was opposite to the state. It showed that the relationship of the crustal fluid movement and earthquake activity is actually associated.
     The anomalies of all the gas components of subsurface fluid in an earthquake was divided into three categories: Abnormal fluid gas group is showed before and after the earthquake CO2, H2, He mass is abnormal, O2, Ar, CH4 negative anomaly; more abnormal peaks is showed CO2, H2, CH4, He is abnormal, O2, Ar negative anomaly; Single peak anomaly is showed CO2, H2, CH4, He is abnormal, O2, Ar negative anomaly.
     The results showed the relationship between underground fluid and tectonic activity is closed. There are fissures, fracture surfaces, faults in rocks in the place of Ground water significantly in office. The sources of underground fluid is variety. Ratio and related information from N2/Ar that, in the study area are mostly underground fluid precipitation, there may be some of the causes of deep sources. From the ratio of N2/Ar and related information, in the study area are mostly underground fluid precipitation, there may be some of the causes of deep sources.
引文
Bethke C.M.,Reed J.D.,Oltz D.F. Long–Range Petroleum Migration in the Illinois Basin.AAPG,1991,74(5):309-335.
    Brodsky E E,Kanamori H.Elas to 2hydrodynamic lubrication of faults[J].J Geophys Res,2001,106:16357216374.
    Hubber M.K.,Entrapment of petroleum under hydrodynamic condition. AAPG,Bulletin,1953,37(8):1954-2026.
    Leonardo Seeber,A Fluid Injection Triggered Earthquake Sequence in Ashtabula, Ohio:Implications for Seismogenesis in Stable Continental Regions Bulletin of the Seismological Society of America,Vol.94,No.1,pp.76–87,February 2004.
    Monitoring and Prediction Department,CEA(ZHANG Guo2min ed).1999.Zhangbei Earthquake in 1998[M].Seismological Press,Beijing.99—131.
    Scott D.Davis,The 9 April 1993 Earthquake in South-Central Texas: Was It Induced by Fluid Withdrawal? Bulletin of the Seismological Society of America, Vol.85,No.6, pp.1888-1895,December 1995
    Tadokoro K,Ando M.Induced earthquakes accompanying the water injection experiment at the Nojima fault zone.Japan:Seismicity and its migration[J].J Geophys Res,2000,105(B3):608926104.
    Whitcomb J H,Garmony J D.Earthquake prediction :Variation of seismic velocities before the San Fernando earthquake[J].Science,1973,180:6322642.
    СоболевГА,ПономаревАВ.Физиказемлетрясенийипредвестники.Наука,2003:150.
    ТяньШаня.АбдуллаевАУ.Флюидныйрежимземнойкорыкакотражениесовременныхгеодинамическихпроцессовнапримере.Алматы:Эверо,2002.
    http://www.csi.ac.cn/sichuan/index080512.htm中国地震信息网512专题
    http://www.csndmc.ac.cn中国地震台网中心
    http://www.wfsd.org汶川地震断裂带科研钻探工程首页
    百度贴吧——地震吧.
    车用太.地下流体典型异常的调查与研究.气象出版社.
    车用太.汶川Ms8.0地震的地下流体与宏观异常及地震预测问题的思考.地震地质,2008,4:828-838.
    杜方.昆仑山口西8.1级地震远场异常.高原地震,2004,1:52-60.
    杜建国.2003年呼和浩特城区流体异常特征及其地震地质意义.地震,2004,1:27-33.
    范雪芳.汶川8.0级地震前典型流体中期前兆异常的初步研究.地震,2008,1:132-140.
    冯绚敏.地下流体短临地震信息的特殊意义.华南地震,1998,1:111-115.
    耿杰.1983年山东菏泽5.9级地震地下流体前兆异常识别与检验性预测.防灾减灾工程学报,2003,3:45-50.
    国家地震局分析预报中心三室编.地下流体预报地震论文集.地震出版社
    胡可以.川东地区复杂地层分层方法.天然气工业,2007,11:16-19.
    华卫.汶川8.0级地震触发与余震活动空间分布研究.地震,2008,1:33-38.
    简春林.中国大陆地震地下流体异常特征研究.地震,2004,24:42-49.
    李民.地下流体对地震前兆作用的综述.华北地震科学,2007,2:24-28.
    李延兴.2008年汶川8.0级地震孕育发生的机制与驱动力.天津:中国地震局第一监测中心,2008.
    刘耀炜.汶川8.0级地震氡观测值震后效应特征初步分析.地震,2008,1:121-131.
    罗立强.中国大陆科学钻探主孔0-2000米流体剖面及流体地球化学研究.岩石学报,2004,20:185-191.
    四川省地方志编纂委员会.四川省志——地质志.四川科学技术出版社,1999.
    孙青.中国大陆科学钻探工程主孔地下流体特征及与地震活动的关系初步研究.地震,2005,1:15-21.
    孙青.中国大陆科学钻探主孔0-2000米的N2、Ar和He流体地球化学.岩石学报,2004,20:179-184.
    唐力君等.中国大陆科学钻探工程现场实验室采样及样品处理方法探讨.中国地质.2006,33:1174-1179.
    汶川地震对地应力的影响.国际地震动态,2009,2.
    徐珏.大陆科学钻探工程CCSD主孔中发现的大量流体交代脉体.地球科学-中国地质大学学报,2006,4:551-556.
    杨文采.中国大陆科学钻探孔区三维地震资料的初步解释.岩石学报,2004,20:127-138.
    杨文采.中国大陆科学钻探孔区地震反射的标定.地球物理学报,2006,6:1682-1692.
    杨竹转.中国大陆井水位与水温动态对汶川MS8.0地震的同震响应特征分析.地震地质,2008,4:896-905.
    叶秀薇.地下流体地震前兆多层次跟踪法短期预测在粤闽交界和珠江三角洲地区的应用.华南地震,2001,2:42-47.
    张国民.汶川8.0级地震构造动力成因分析.地震,2008,1:164-173.
    张艳玲.汶川地震区地质灾害易发性快速区划与制图.2009.
    张岳桥.青藏高原东缘新构造及其对汶川地震的控制作用.地质学报,2008,12:1668-1678.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700