用户名: 密码: 验证码:
基于材料应变的RC梁、柱及剪力墙构件抗震性能指标限值研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于性能的抗震设计方法不仅可以提出承载力要求,还可以根据业主需求设定预期的结构和构件变形值,从而控制结构在地震作用下所造成的损失大小,因此成为各国制定抗震规范的方向。基于性能的抗震设计关键在于以下两点:其一,结构弹塑性分析;其二,合理的结构性能指标选取。其中,结构性能指标分为整体性能指标和局部性能指标。整体性能指标可由层间位移角来衡量。现行《建筑抗震设计规范》(GB50011—2010)在旧规范“三水准,两阶段”设计方法的基础上,初步引入了基于性能的抗震设计思想,提出了4个性能目标等级、3个地震水准、7个性能水准,详细定义了每种性能水准计算对应的宏观损坏程度、内力组合和材料强度的取值,并有相应的层间位移角参考指标,但缺少构件变形限值规定。目前我国规范对结构构件在地震作用下的变形需求主要由相关的构造措施来保证,尚未能给出各结构构件在一定结构构造条件下变形性能的量化指标,因此无法给出结构构件层次的损伤状况。本文对工程中最常用的梁、柱及剪力墙构件在不同地震水准下的变形性能指标限值进行研究,内容包括以下几个方面:
     (1)基于一批钢筋混凝土梁、柱及剪力墙构件的试验结果,采用ABAQUS进行模拟,将模拟得出的荷载-位移曲线和破坏形态与试验结果进行对比,计算结果与试验结果吻合较好,表明在混凝土本构采用损伤塑性模型,钢筋本构采用理想弹塑性模型的情况下,有限元法可以很好地模拟分析RC梁、柱及剪力墙构件的受力状态、破坏形态及变形性能。
     (2)将构件抗震性能和裂缝宽度、材料应变、修复方法联系起来,结合中国抗震设计规范对构件破坏程度的描述,将构件抗震性能状态划分为5个阶段:完好、轻微损坏、轻中等破坏、中等破坏、严重破坏。在此基础上,提出了一种新的基于材料应变的RC结构构件性能指标确定方法,该方法确定的性能指标量化了结构构件在一定构造条件下的变形能力。
     (3)对框架梁、柱的破坏形态划分方法进行探讨。将收集到的50根框架梁试验数据进行整理分析,结合数值模拟结果,提出以剪跨比、弯剪比、名义剪应力水平为参数来划分RC框架梁的破坏形态,给出相应的划分标准;将收集到的111个柱子试验数据,通过Fisher和Bayesian判别法则分析了弯剪比、剪跨比、箍筋间距等参数与RC柱破坏形态的关系,提出以剪跨比和弯剪比两个参数作为控制条件来划分RC柱的破坏形态,并得出了具体的划分标准。
     (4)在验证了有限元方法合理性和可靠性的基础上,通过变化剪跨比、配箍率、'纵筋配筋率和K值(K f y (AS AS)
     f c bh0)、相对受压区高度、名义剪应力水平等参数,设b计了468根RC梁试件,分析了上述参数对RC梁变形能力影响,提出了不同参数下RC梁构件的变形限值。
     (5)通过变化剪跨比、配箍率、纵筋配筋率、弯剪比和轴压比设计值、名义剪应力水平等参数,设计了380根RC柱试件。通过Spearman相关分析,给出了各参数与所提出的5个性能水准的相关关系,提出了不同破坏类型情况下RC柱构件的变形限值,采用逐步回归分析法给出了相应的计算公式。回归分析的相关性系数表明,所给出的计算公式具有较高的可靠性。
     (6)通过变化高宽比、轴压比设计值、实际配筋弯剪比、暗柱配箍特征值等参数,设计了524个矩形截面整体剪力墙构件,在对有限元分析结果进行归纳统计的基础上,通过Spearman相关分析,给出了各参数与所提出的5个性能水准的相关关系,提出了不同破坏类型情况下RC剪力墙的变形限值,采用逐步回归分析法给出了相应的计算公式,回归分析的相关性系数表明,所给出的计算公式具有较高的可靠性。
     本文给出了梁、柱和剪力墙构件层次的变形性能指标限值。该性能指标限值弥补了现行《建筑抗震设计规范》(GB50011-2010)用构件的承载力和宏观变形状态描述结构性能的不足。将构造措施保证的结构变形能力进一步量化,为构件层次的基于性能的抗震设计和评估提供了理论依据。
The concept of performance-based design is to provide the owners and engineers theability to select a desired level of structural performance for several different levels of groundmotion. The most important things for the estimation of the structural performance level arethe structural analysis technique and adequate selection of damage parameters. An importantstep towards reaching these goals is to define an adequate measure of building performancewith global and local response parameters. In the performance-based design, overall buildingperformance during an earthquake is measured by the inter-story drift. For example, on thebasis of "three seismic fortification levels and two-stage design methods" proposed in oldCodes, the performance-based seismic design idea was preliminarily introduced in the current
     Seismic Design Code"(GB50011-2010).4performance objectives,3seismic levels,7performance levels were carried out, including a detailed definition of macroscopic damagedegree, combination of internal forces, the strength value of the material, and inter-story driftcorresponding to each performance level. But the local components deformation parameterswere not mentioned. The ductile demands of components are ensured by correspondingstructural measures. The quantitative criteria of the deformation properties for structuralcomponents are not given in current Chinese codes. Therefore, the performance states ofstructural components under earthquake cannot be evaluated properly. This paper mainlystudies the seismic performance and the deformation performance index limits of5limitstates. The main contents include following aspects:
     (1) Gather a patch of experimental data of RC beams, columns and shear walls. Thenusing ABAQUS to simulate the specimens. The damage-plasticity model of concrete and theideal elastoplastic model of reinforcement are adopted. The simulated load-displacementcurve and the failure modes are in good agreement with the experimental results, whichindicates that in conditions of reasonable material constitution and FEA parameters,simulation of the stress state and failure mode of RC components is feasible.
     (2) With reference to the latest research at home and abroad, this paper considers the seismic performance of structural components, crack width, material strain and repairmethods to classify the performance state of RC components into5performance states: intact,slightly broken, light medium broken, medium broken, severe broken. Thus a new type ofcomponent performance index based on material strain is carried out, which quantifies thedeformation ability of components under certain structural conditions.
     (3) Discuss the classification of the failure modes of RC components. Collecting andanalyze the experimental data of50beams, bring up to use shear-span ratio, flexural shearratio, nominal shear stress as parameters to classify the failure modes of RC beams; collectthe experimental data of111columns from references, analyze the relationship betweenfactors as flexural shear ratio, shear span ratio, stirrup spacing and the failure modes of RCcolumns, using Fisher's and Bayesian discriminants, bring up to use shear-span ratio andflexural shear ratio as parameters to classify the failure modes of RC columns, and providedetailed classification.
     (4) On the basis of verification of the rationality and reliability of FEA method, bychanging parameters as shear span ratio, stirrup ratio, reinforcement ratio, K value, relativeheight of compression zone and nominal shear stress etc,468RC beam specimens aredesigned, which had been numerically simulated by ABAQUS to analyze the influence of theabove parameters on the elastoplastic deformation ability of RC beams. Then deformationlimit values of RC beams in different failure state are given.
     (5) By changing shear span ratio, stirrup ratio, reinforcement ratio, flexural shear ratioand design value of axial compression etc,380RC column specimens are designed andnumerically simulated by ABAQUS. By the correlation analysis of Spearman, therelationships of the above parameters and the5performance states mentioned above arecarried out. Then deformation limit values of RC column in different failure state are given.And the corresponding calculation equations have been given by stepwise regression analysis,which have been examined to possess high reliability according to the correlation coefficient.
     (6) By changing aspect ratio, design value of reinforcement ratio, actual reinforcementflexural shear ratio, the stirrup characteristic value of concealed columns,524RC shear wall specimens are designed and numerically simulated by ABAQUS. By the correlation analysisof Spearman, the relationships of the above parameters and the5performance statesmentioned above are carried out. And the corresponding calculation equations have beengiven by stepwise regression analysis, which have been examined to possess high reliabilityaccording to the correlation coefficient.
     This paper carries out the deformation performance index limits of beams, columns andshear walls on component level. Compensate for the inadequacy of the insufficientquantitative description of bearing capacity and deformation state of components in theexisting Seismic Design Code"(GB50011-2010). Achieve the transfer from ensuring thedeformation demands mainly by relative structural conditions to the quantitative measurementof the deformation demands. This provide a theoretical basis of performance-based seismicdesign and evaluation on component level.
引文
[1]马宏旺,吕西林.建筑结构基于性能抗震设计的几个问题[J].同济大学学报:自然科学版,2002,30(012):1429-1434.
    [2]建抗字第337号通知,建筑地震破坏等级划分标准[S].北京:中华人民共和国建设部,1990.
    [3] SEAOC Vision2000. A Framework for Performance-based Engineering[S].US:Structural Engineering Association of California,1995.
    [4] Otani S. Development of Performance-Based Design Methodology in Japan[R]. SeismicDesign Methodologies for the Next Generation of Codes (Fajfar, P. and Krawinkler, H.editors), A.A.Balkema,1997.
    [5] Priestley MJN, Calvi GM, Kowalsky MJ. Displacement-Based Seismic Design ofStructures[J]. Earthquake Spectra,2008,24:555-564.
    [6] Priestley MJN. Performance based seismic design[J]. Bulletin of the New ZealandSociety for Earthquake Engineering,2000,33(3):325-346.
    [7] Kawashima K. The1996Japanese Seismic Design Specifications of Highway Bridgesand the Performance Based Design[R]. Workshop on Seismic Design Methodologies forthe Next Generation of Codes (Fajfar, P. and Krawinkler, H. editors), Balkema, A. A.,Rotterdam,1997.
    [8] Poland CD, Derrick BH. Opportunities and pitfalls of performance based seismicengineering[R]. Seismic Design Methodologies for the Next Generation of Codes (Fajfar,P. and Krawinkler, H. editors). Rotterdam:AA Balkema,1997.
    [9] FEMA-273, Guidelines for the seismic rehabilitation of buildings[S]. Washington DC:Federal Emergency Management Agency,1997.
    [10] FEMA-356, Prestandard and commentary for the seismic rehabilitation of buildings[S].Washington DC: Federal Emergency Management Agency,2000.
    [11] Seismic Rehabilitation of Existing Buildings (ASCE/SEI41-06)[S]. American Society ofCivil Engineers, Reston,2007.
    [12]马宏旺,吕西林,陈晓宝.建筑结构抗震设防等级个数的研究[J].土木工程学报,2006,39(6):52-56.
    [13] GBJ11-89,建筑抗震设计规范[S].北京:中国建筑工业出版社,1989.
    [14] Park R, Paulay T. Reinforced concrete structures[M]. John Wiley&Sons inc,1975.
    [15] CECS160:2004.建筑工程抗震性态设计通则[S].中国计划出版社,2004.
    [16] ATC-40,Seismic evaluation and retrofit of concrete buildings [S]. US:California SeismicSafety Commission,1996.
    [17] FEMA-274, NEHRP commentary on the guidelines for the seismic rehabilitation ofbuildings[S]. Washington DC: Federal Emergency Management Agency.1996.
    [18] FEMA-349. Action Plan for Performance Based Seismic Design[S]. Washington DC:Federal Emergency Management Agency.2000.
    [19] ABAQUS INC. ABAQUS Analysis User's Manual,Version6.10[M].2010.
    [20] Update to ASCE/SEI41Concrete Provisions[S]. US:Federal emergency managementagency,2007.
    [21]罗文斌,钱稼茹. RC框架弹塑性位移的解构规则与构件的目标侧移角[J].工程力学,2003,20(5):32-36.
    [22] Lynn AC, Moehle JP, Mahin S.A., et al. Seismic evaluation of existing reinforcedconcrete building columns[J]. Earthquake Spectra,1996,12(4):715-739.
    [23] Priestley MJN, Calvi GM. Concepts and procedures for direct displacement-based designand assessment[J]. Seismic Design Methodologies for the Next Generation of Codes,1997:171-182.
    [24] Priestley MJN, Kowalsky MJ. Aspects of drift and ductility capacity of rectangularcantilever structural walls[J]. Bulletin of the New Zealand National Society forEarthquake Engineering,1998,31(2):73-85.
    [25]刁现伟.不规则框架结构抗震性能研究及基于性能的抗震设计[D]:同济大学,2006.
    [26]程斌.高性能混凝土框架抗震及性能设计研究[D]:上海:同济大学土木工程学院,2003.
    [27]王亚勇.我国2000年抗震设计模式规范展望[J].建筑结构,1999,(6):32-36.
    [28]李应斌,刘伯权.基于结构性能的抗震设计理论研究与展望[J].地震工程与工程振动,2001,21(004):73-79.
    [29]白晓红,白国良.基于性能的抗震设计理论的研究现状及展望[J].河南科技大学学报:自然科学版,2006,26(6):74-77.
    [30]吴波,熊焱.一种直接基于位移的结构抗震设计方法[J].地震工程与工程振动,2005,25(002):62-67.
    [31]郭磊,李建中,范立础.直接基于位移的结构抗震设计理论研究进展[J].世界地震工程,2005,21(004):157-164.
    [32]雷磊,韩小雷,郑宜.直接基于位移的抗震设计方法的研究[J].华南地震,2007,27(2):26-32.
    [33]韩小雷,戴金华,何伟球.广州花园酒店“白金五星级酒店”结构改造基于性能的可行性研究[J].地震工程与工程振动,2007,27(005):88-94.
    [34]韩小雷,郑宜,季静.美国基于性能的高层建筑结构抗震设计规范[J].地震工程与工程振动,2008,28(1):64-70.
    [35]吴继伟.建筑结构性能设计方法与常规设计方法的比较[J].工程抗震与加固改造,2009,31(005):70-73.
    [36]戴金华,韩小雷,林生逸.基于性能的钢筋混凝土建筑结构抗震设计方法[J].土木工程学报,2011,44(5):1-5.
    [37]周定松,吕西林,蒋欢军.钢筋混凝土框架梁的变形能力及基于性能的抗震设计方法[J].地震工程与工程振动,2005,25(004):60-66.
    [38]冷巧娟,钱江,张熠.既有钢筋混凝土梁抗震性能试验研究[J].建筑结构,2011,41(8):26-28.
    [39]蒋欢军,白努特,陈林之.钢筋混凝土梁柱构件的地震损伤性能试验[J].结构工程师,2011,27(2):102-107.
    [40]蒋欢军,王斌,吕西林.钢筋混凝土梁和柱性能界限状态及其变形限值[J].建筑结构,2010,(001):10-14.
    [41]钱稼茹,罗文斌.高强混凝土受弯构件延性的截面宽度效应[J].工业建筑,2001,31(003):45-47.
    [42]钱稼茹,徐福江.钢筋混凝土梁基于位移的变形能力设计方法[J].四川建筑科学研究,2007,33(2):1-3.
    [43] Thomsen IV JH, Wallace J.W. Displacement-Based Design of Slender ReinforcedConcrete Structural Walls Experimental Verification[J]. Journal of Structural Engineering,2004,130:618-629.
    [44]钱稼茹,程丽荣.普通箍筋约束混凝土柱的中心受压性能[J].清华大学学报:自然科学版,2002,42(010):1369-1373.
    [45] TJ11-78,工业与民用建筑抗震设计规范[S].北京:中国建筑工业出版社,1979.
    [46]方鄂华,翁义军,沈聚敏.轴压比和含箍率对框架柱延性的影响[J].建筑结构,1983,(03):26-31.
    [47]徐贱云,吴健生.多次循环荷载作用下钢筋混凝土柱的性能[J].土木工程学报,1991,24(3):57-70.
    [48]黄志华,吕西林,周颖.钢筋混凝土连梁的变形能力及基于性能的抗震设计[J].结构工程师,2009,10(005):13-18.
    [49]梁启智,韩小雷.低周反复荷载作用下刚性连梁及普通连梁性能[J].华南理工大学学报:自然科学版,1995,23(001):27-33.
    [50]朱志达,沈参璜.钢筋混凝土框架梁端的抗震强度和变形研究[J].建筑结构学报,1990,11(003):10-22.
    [51]钱稼茹,徐福江.钢筋混凝土柱基于位移的变形能力设计方法[J].建筑结构,2007,37(12):30-32.
    [52]蒋欢军,吕西林.钢筋混凝土柱对应于各地震损伤状态的侧向变形计算[J].地震工程与工程振动,2008,28(002):44-50.
    [53]王福明,曾建民.钢筋混凝土压弯构件塑性铰的试验研究[J].太原工业大学学报,1989,20(004):20-29.
    [54] Matamoros A, Matchulat L. Axial Load Failure of Shear Critical Columns Subjected toHigh Levels of Axial Load[C]. Beijing, China: Proceedings of14thWorld Conference ofEarthquake Earthquake Engineering,2008.
    [55] Lynn AC. Seismic evaluation of existing reinforced concrete building columns[D]:University of California, Berkeley,2001.
    [56] Sezen H. Shear deformation model for reinforced concrete columns[J]. StructuralEngineering and Mechanics,2008,28(1):39-52.
    [57] Elwood KJ, Moehle JP. Shake table tests and analytical studies on the gravity loadcollapse of reinforced concrete frames[M]. Pacific Earthquake Engineering ResearchCenter, College of Engineering, University of California,2003.
    [58] Nakamura T, Yoshimura M. Gravity load collapse of reinforced concrete columns withbrittle failure modes[J]. Journal of Asian Architecture and Building Engineering,2002,1(1):21-27.
    [59] Ousalem H, Kabeyasawa T, Tasai A. Evaluation of Ultimate Deformation Capacity atAxial Load Collapse of Reinforced Concrete Columns[C]. Vancouver, canada:Proceedings of13thWorld Conference of Earthquake Earthquake Engineering,2004.
    [60] Pujol S, Sozen MA, Ramirez J.A. Displacement History Effects on Drift Capacity ofReinforced Concrete Columns[J]. ACI Structural Journal,2006,103(2):253-262.
    [61] Shin YB. Dynamic response of ductile and non-ductile reinforced concrete columns[M].ProQuest LLC,2007.
    [62] Ghannoum WM, Experimental and analytical dynamic collapse study of a reinforcedconcrete frame with light transverse reinforcement[D]. University of California, Berkeley,2007.
    [63]周定松,吕西林,蒋欢军.钢筋混凝土框架结构基于性能的抗震设计方法[J].四川建筑科学研究,2006,31(6):122-127.
    [64]钟益村,任富栋,田家骅.二层双跨钢筋混凝土框架弹塑性性能试验研究[J].建筑结构学报,1981,2(3):34-41.
    [65]刘林,白国良,李晓文.钢筋混凝土框架结构基于位移的抗震设计[J].工业建筑,2009,(005):1-5.
    [66]张国军,刘伯权.钢筋混凝土框架柱在高轴压比下的抗震性能试验[J].长安大学学报:自然科学版,2002,22(6):53-57.
    [67]程斌,薛伟辰.基于性能的框架结构抗震设计研究[J].地震工程与工程振动,2003,23(4):50-55.
    [68]李斌,任利民,石小燕.矩形钢管混凝土框架结构受力性能试验研究[J].工程力学,2009,26(2):103-107.
    [69]徐云扉,胡庆昌,陈玉峰.低周反复荷载下两跨三层钢筋混凝土框架受力性能的试验研究[J].建筑结构学报,1986,7(2):1-15.
    [70]邹翾,周德源.三层钢筋混凝土框架结构反复加载试验分析[J].四川建筑科学研究,2005,31(002):7-11.
    [71]康洪震,江见鲸.不同加载路径下钢筋混凝土框架柱抗震性能的试验研究[J].土木工程学报,2003,36(5):71-75.
    [72]杜宏彪.双向压弯钢筋混凝土柱的抗震性能[J].哈尔滨建筑大学学报,1999,32(4):47-52.
    [73]王震宇,林少书.香港地区钢筋混凝土框架柱的抗震性能试验研究[J].哈尔滨建筑大学学报,2001,34(2):6-11.
    [74]李瑞锋,王挺叶.高强混凝土框架柱受力变形的试验研究[J].中州煤炭,2001,(001):4-5.
    [75]熊朝晖,潘德恩.钢筋混凝土框架柱侧向变形能力的研究[J].地震工程与工程振动,2001,21(002):103-108.
    [76]周小真,姜维山.高轴压作用下钢筋混凝土短柱抗震性能的试验研究[J].西安冶金建筑学院学报,1985,47(2):103-119.
    [77]钱国芳,童岳生,白国良.配置不同形式箍筋的钢筋混凝土短柱抗震性能试验研究[J].西安建筑科技大学学报(自然科学版),1991,23(3):248-256.
    [78]姜维山,白国良.配复合箍,螺旋箍, X形筋钢筋砼短柱的抗震性能及抗震设计[J].建筑结构学报,1994,15(1):2-16.
    [79] Azizinamini A, Kuska SSB, Brungardt P. Seismic behavior of square high-strengthconcrete columns[J]. ACI structural journal,1994,91(3):336-345.
    [80] Sheikh SA, Shah DV, Khoury S.S. Confnement of High-Strength Concrete Columns[J].ACI Structural Journal,1994,91(1):100-111.
    [81]郭子雄,吕西林.高轴压比框架柱恢复力模型试验研究[J].土木工程学报,2004,37(5):32-38.
    [82]汪训流,陆新征,叶列平.变轴力下钢筋混凝土柱的抗震性能分析[J].工业建筑,2007,37(12):71-75.
    [83]唐红元,孟少平,贾益纲.钢筋混凝土柱在长期荷载下的配筋率研究[J].工业建筑,2005,35(z1):81-84.
    [84]孙宪春,邱法维,万力.钢筋混凝土柱在弯剪扭耦合作用下的试验研究[J].工程抗震与加固改造,2008,30(3):88-92.
    [85] Majewski T, Bobinski J, Tejchman J. FEM Analysis of Failure Behaviour of ReinforcedConcrete Columns Under Eccentric Compression[J]. Engineering Structures,2008,30(2):300-317.
    [86]王海波,陈伯望,沈蒲生.双向压弯钢筋混凝土柱的非线性分析[J].计算力学学报,2006,23(004):502-507.
    [87]罗佑新,刁波,李淑春. RC异形柱框架反复加载试验及数值模拟[J].工业建筑,2008,38(8):46-49.
    [88]吕文,钱稼茹,方鄂华.钢筋混凝土剪力墙延性的试验和计算[J].清华大学学报(自然科学版),1999,39(04):88-91.
    [89]钱稼茹,吕文,方鄂华.基于位移延性的剪力墙抗震设计[J].建筑结构学报,1999,20(03):42-48.
    [90]钱稼茹,徐福江.钢筋混凝土剪力墙基于位移的变形能力设计方法[J].清华大学学报(自然科学版),2007,(03):305-308.
    [91]陈勤,钱稼茹,李耕勤.剪力墙受力性能的宏模型静力弹塑性分析[J].土木工程学报,2004,(03):35-43.
    [92]赵军,钱稼茹. RC剪力墙宏单元模型中抗剪弹簧的处理方法[J].工程抗震,2003,(002):13-19.
    [93]邓明科,梁兴文,刘清山.横向约束钢筋新配筋方案高性能混凝土剪力墙抗震性能的试验研究[J].西安建筑科技大学学报(自然科学版),2006,(04):538-543.
    [94]梁兴文,邓明科,张兴虎.高性能混凝土剪力墙性能设计理论的试验研究[J].建筑结构学报,2007,(05):80-88.
    [95]梁兴文,杨鹏辉,崔晓玲.带端柱高强混凝土剪力墙抗震性能试验研究[J].建筑结构学报,2010,(01):23-32.
    [96]白亮,梁兴文.边缘约束构件配箍特征值对剪力墙轴压比限值影响的分析[J].工业建筑,2009,(04):44-48.
    [97]梁兴文,杨鹏辉,邓明科.无约束边缘构件混凝土剪力墙的轴压比限值研究[J].工业建筑,2009,(09):67-70.
    [98]辛力,梁兴文,邓明科.基于塑性铰转角需求的剪力墙边缘构件设计方法[J].工业建筑,2009,(06):50-54.
    [99]马恺泽,梁兴文,邓明科.基于性能的钢筋混凝土剪力墙变形能力分析研究[J].西安建筑科技大学学报(自然科学版),2010,(02):241-245.
    [100]邓明科,梁兴文,辛力.剪力墙结构基于性能抗震设计的目标层间位移确定方法[J].工程力学,2008,25(11):141-148.
    [101]龚治国,吕西林,姬守中.不同边缘构件约束剪力墙抗震性能试验研究[J].结构工程师,2006,(01):56-61.
    [102]章红梅,吕西林,鲁亮.边缘约束构件对钢筋混凝土剪力墙抗震性能的影响[J].地震工程与工程振动,2007,(01):92-98.
    [103]章红梅,吕西林,杨雪平.边缘构件配箍对钢筋混凝土剪力墙抗震性能的影响[J].结构工程师,2008,(05):100-104.
    [104]龚治国,吕西林,姬守中.不同边缘构件约束的剪力墙抗震性能[J].武汉大学学报(工学版),2007,(02):92-98.
    [105]黄志华,吕西林,周颖.钢筋混凝土剪力墙的变形能力及基于性能的抗震设计[J].地震工程与工程振动,2009,29(5):86-93.
    [106]张松,吕西林,章红梅.钢筋混凝土剪力墙构件极限位移的计算方法及试验研究[J].土木工程学报,2009,(04):10-16.
    [107]张松,吕西林,章红梅.钢筋混凝土剪力墙配箍参数设计方法试验研究[J].结构工程师,2009,(01):83-89.
    [108]曹万林,孙天兵,杨兴民.双向单排配筋混凝土高剪力墙抗震性能试验研究[J].世界地震工程,2008,(03):14-19.
    [109]曹万林,吴定燕,杨兴民.双向单排配筋混凝土低矮剪力墙抗震性能试验研究[J].世界地震工程,2008,(04):19-24.
    [110]曹万林,殷伟帅,杨兴民.双向单排配筋中高剪力墙抗震性能试验研究[J].地震工程与工程振动,2009,(01):103-108.
    [111]孙超.双向单排配筋带洞口混凝土剪力墙抗震性能试验与分析[D]:北京工业大学,2008.
    [112]李宏男,李兵.钢筋混凝土剪力墙抗震恢复力模型及试验研究[J].建筑结构学报,2004,(05):35-42.
    [113]李兵,李宏男,曹敬党.钢筋混凝土高剪力墙拟静力试验[J].沈阳建筑大学学报:自然科学版,2009,25(002):230-234.
    [114]季静,李首方,韩小雷.无边缘约束构件剪力墙的对比试验研究[J].建筑科学,2007,23(11):41-45.
    [115]季静,雷磊,杨志强.基于性能的抗震设计方法在剪力墙结构中的应用[J].地震工程与工程振动,2006,26(3):60-62.
    [116]司林军,李国强,孙飞飞.钢筋混凝土剪力墙的延性计算方法[J].河北工程大学学报:自然科学版,2010,27(001):7-11.
    [117]周广强,孙恒军,周德源.钢筋混凝土剪力墙抗震性能试验研究[J].山东建筑大学学报,2010,25(001):41-45.
    [118]委旭,史庆轩.钢筋混凝土双肢剪力墙非线性静力有限元分析[J].建筑科学与工程学报,2008,25(4):53-57.
    [119]马志林,史庆轩,王伟.钢筋混凝土联肢剪力墙弹塑性分析[J].建筑科学与工程学报,2010,27(001):60-64.
    [120] Vallenas JM, Bertero VV, Popov EP, et al. Hysteretic behavior of reinforced concretestructural walls[M]. University of California,1979.
    [121] Thomsen JH. Displacement based design of reinforced concrete structural walls: anexperimental investigation of walls with rectangular and t-shaped cross-sections: adissertation[D]: Clarkson University,1995.
    [122] Thomsen, Wallace JW. Displacement-Based Design of Slender Reinforced ConcreteStructural Walls Experimental Verification[J]. Journal of Structural Engineering,2004,130:618-629.
    [123] Ghobarah A, Youssef M. Modelling of reinforced concrete structural walls[J].Engineering Structures,1999,21(10):912-923.
    [124] Tasnimi AA. Strength and deformation of mid-rise shear walls under load reversal[J].Engineering Structures,2000,22(Compendex):311-322.
    [125] Lopes MS. Experimental shear-dominated response of RC walls: Part I: Objectives,methodology and results[J]. Engineering Structures,2001,23(3):229-239.
    [126] Salonikios TN. Shear strength and deformation patterns of R/C walls with aspectratio1.0and1.5designed to Eurocode8(EC8)[J]. Engineering Structures,2002,24(1):39-49.
    [127] Kwan AKH, HE XG. Finite element analysis of effect of concrete confinement onbehavior of shear walls[J]. Computers&Structures,2001,79(19):1799-1810.
    [128] Cho SH, Tupper B, Cook WD. Structural steel boundary elements for ductileconcrete walls[J]. Journal of Structural Engineering,2004,130:762-774.
    [129] SU RKL, Wong SM. Seismic behaviour of slender reinforced concrete shear wallsunder high axial load ratio[J]. Engineering Structures,2007,29(8):1957-1965.
    [130] Belmouden Y, Lestuzzi P. Analytical model for predicting nonlinear reversed cyclicbehaviour of reinforced concrete structural walls[J]. Engineering Structures,2007,29(7):1263-1276.
    [131] Brueggen B, Waugh J, Aaleti S, et al. Tests of Structural Walls to DetermineDeformation Contributions of interest for Performance‐Based Design[M]. ASCE,2007.
    [132] Dazio A, Beyer K, Bachmann H. Quasi-static cyclic tests and plastic hinge analysisof RC structural walls[J]. Engineering Structures,2009,31(7):1556-1571.
    [133] Riva P, Meda A, Giuriani E. Cyclic behaviour of a full scale RC structural wall[J].Engineering Structures,2003,25(6):835-845.
    [134] Kotronis P, Mazars J, Nguyen XH, et al. the Seismic Behavior of ReinforcedConcrete Structural Walls: Experiments and Modeling[J]. the1755Lisbon Earthquake:Revisited,2009:363-376.
    [135]江见鲸.钢筋混凝土结构非线性有限元分析[M].陕西科学技术出版社,1994.
    [136]戚永乐,彭刚,柏巍.基于CT技术的混凝土三维有限元模型构建[J].混凝土,2008,(5):26-29.
    [137]江见鲸,陆新征,叶列平.混凝土结构有限元分析[M].北京:清华大学出版社,2005.
    [138] Hibbitt K. ABAQUS: User's Manual[M]. Hibbitt, Karlsson and Sorenson,2004.
    [139]王金昌,陈页开. ABAQUS在土木工程中的应用[M].浙江大学出版社,2006.
    [140] Lubliner J, Oliver J, Oller S, et al. A plastic-damage model for concrete[J].international Journal of Solids and Structures,1989,25(3):299-326.
    [141] Lee J. Plastic-damage model for cyclic loading of concrete structures[J]. Journal ofengineering mechanics,1998,124:892.
    [142] Hibbitt, Karlsson, Sorensen. ABAQUS theory manual[M]. Hibbitt, Karlsson&Sorensen,1998.
    [143]过镇海,时旭东.钢筋混凝土原理和分析[M].北京:清华大学出版社,2003.
    [144]韩小雷,戚永乐,杨程. CRB550级箍筋混凝土梁的抗震性能对比试验[J].华中科技大学学报(自然科学版),2012,4(40):118-122.
    [145] Bayrak O, Sheikh SA. High-strength concrete columns under simulated earthquakeloading[J]. ACI structural journal,1997,94:708-722.
    [146] Arakawa T, Arai Y, Mizoguchi M, et al. Shear resisting behavior of short reinforcedconcrete columns under biaxial bending-shear[J]. Transactions of the Japan Concreteinstitute,1989,11:317-324.
    [147]曹万林,刘强,张建伟.再生混凝土低矮剪力墙抗震性能试验研究[J].世界地震工程,2009,(01):1-5.
    [148]张建伟,曹万林,朱珩.再生混凝土中高剪力墙的抗震性能研究[J].工程力学,2010,(S1):270-274.
    [149]曹万林,徐泰光,刘强.再生混凝土高剪力墙抗震性能试验研究[J].世界地震工程,2009,(02):18-23.
    [150]王勖成.有限单元法[M].清华大学出版社,2003.
    [151]刘加富,孟剑锋,任怀伟.切削仿真中的沙漏控制[J].现代制造工程,2006,(3):34-36.
    [152] GB50010-2010,混凝土结构设计规范[S].北京:中国建筑工业出版社,2010.
    [153]张艇,刘立新,徐有邻. HRB500级钢筋混凝土构件受力性能的试验研究[D].郑州大学,2004.
    [154]陆亦庄.混凝土强度对钢筋混凝土梁延性影响的分析[J].华东交通大学学报,1995,12(004):18-25.
    [155]常莹莹.钢筋混凝土受弯构件的延性分析[D].大连理工大学,2011.
    [156] Priestley MJN, Calvi GM, Kowalsky MJ. Displacement-based seismic design ofstructures[M]. Iuss Press Pavia, Italy,2007.
    [157]孙军华,干钢.高强约束混凝土梁截面的延性计算[J].工业建筑,2001,31(012):43-45.
    [158]余志武,罗小勇.水平低周反复荷载作用下无粘结部分预应力混凝土框架的抗震性能研究[J].建筑结构学报,1996,17(002):30-36.
    [159]朱志达,沈参璜.在低周反复循环荷载作用下钢筋混凝土框架梁端抗震性能的试验研究[J].北京工业大学学报,1985,11(1):17-38.
    [160]孙晓燕,黄承逵.循环加载对钢筋混凝土梁抗剪性能影响研究[J].大连理工大学学报,2006,46(001):69-74.
    [161]陈廷国,杨国贤.钢筋混凝土简支深破坏形态的试验研究[J].大连理工大学学报,1990,30(002):185-192.
    [162]柳锦春,方秦.爆炸荷载作用下钢筋混凝土梁的动力响应及破坏形态分析[J].爆炸与冲击,2003,23(001):25-30.
    [163]易伟建,吕艳梅.高强箍筋高强混凝土梁受剪试验研究[J].建筑结构学报,2009,(004):94-101.
    [164] Xie YL, Ahmad SH. Shear ductility of reinforced concrete beams of normal andhigh-strength concrete [J]. ACI Struct J,1994,91(2):140-149.
    [165]李娟. HRB500级箍筋混凝土梁斜截面受力性能试验研究[D].湖南大学,2007.
    [166] Kowalsky MJ. Deformation limit states for circular reinforced concrete bridgecolumns[J]. Journal of Structural Engineering,2000,126(8):869-878.
    [167] Mander JB, Priestley MJN. Theoretical Stress‐Strain Model for ConfinedConcrete[J]. Journal of Structural Engineering,1988,114:1804-1812.
    [168] GB1499.2-2007,钢筋混凝土用钢第2部分:热轧带肋钢筋[S].北京:中国标准出版社,2007.
    [169]吕西林,周定松,蒋欢军.钢筋混凝土框架柱的变形能力及基于性能的抗震设计方法[J].地震工程与工程振动,2006,25(6):53-61.
    [170] Berry M, Parrish M, Eberhard M. PEER Structural Performance Database User’sManual (Version1.0)[R]. University of California: Berkeley,2004.
    [171] Sezen H, Moehle JP. Shear strength model for lightly reinforced concrete columns[J].Journal of Structural Engineering,2004,130(11):1692-1703.
    [172] Du Zhi-min, Jin Xin-qiao. Multiple faults diagnosis for sensors in air handling unitusing Fisher discriminant analysis[J].Energy Conversion and Management,2008,49(12):3654-3665.
    [173] Tan Chao, Chen Hui, Wu Tong.Classification Models for Detection of Lung CancerBased on Nine Element Distribution of Urine Samples[J].Biological trace elementresearch.2011,142(1):18-28.
    [174]何晓群.多元统计分析[M].中国人民大学出版社,2004.
    [175]赵国藩.高等钢筋混凝土结构学[M].机械工业出版社,2005.
    [176]张川,白绍良,钱觉时.美国房屋建筑混凝土结构规范(ACI318-05)及条文说明(ACI318R-05)[M].重庆大学出版社,2007.
    [177] Park R, Priestley MJN, Gill WD. Ductility of square confined concrete columns[J].Journal of the Structural Division ASCE,1982,108(4):929-950.
    [178] Davey Be. Reinforced Concrete Bridge Piers Under Seismic Loading[J].Transportation Research Board of the National Academies,1977,6:18-19.
    [179] Munro Irm. Seismic Behaviour of Reinforced Concrete Bridge Piers[R]. Universityof Canterbury, New Zealand,1976.
    [180] Ng KH, Priestley MJN, Park R. Seismic Behaviour of Circular Reinforced ConcreteBridge Piers[J]. ME Report, University of Canterbury, Dept of Civil Eng Res Rept,1978:78-14.
    [181] Angholas CJ. Ductility of Reinforced Concrete Bridge Piers Under SeismicLoading[R]. University of Canterbury,1981.
    [182] Mander JB, Priestley MJN, Park R. Seismic Design of Bridge Piers.[R] University ofCanterbury, New Zealand,1984.
    [183] Bayrak O. Seismic Performance of Rectilinearly Confined High Strength ConcreteColumns[D]. University of Toronto,1999.
    [184]陈希孺.高等数理统计学[M].中国科学技术大学出版社,2009.
    [185]张红兵,贾来喜,李潞. SPSS宝典[M].电子工业出版社,2007.
    [186] Norusis M. SPSS16.0Guide to Data Analysis[M]. Prentice Hall Press,2008.
    [187]刘伯权,钱国芳,童岳生.高层剪力墙的强度及变形性能的研究[J].西安建筑科技大学学报(自然科学版),1989,1(21):10-17.
    [188]劳晓春. RC矩形截面剪力墙构件的抗震性能及其性能指标限值研究[D].华南理工大学,2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700