用户名: 密码: 验证码:
带水平加强层的高层混合结构抗震性能分析及振动台试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高层混合结构是由钢框架(或型钢混凝土框架、钢管混凝土框架)与钢筋混凝土筒体(或型钢混凝土筒体)组合而成,随着建筑高度的增加,需设置水平加强层(一般为伸臂桁架),这种结构体系在高层及超高层建筑中应用越来越多,但是关于该种结构体系在地震作用下的反应研究并不够深入,存在理论落后于实践的问题。本文以兰州红楼时代广场(典型的框架-核心筒-伸臂桁架加强层结构体系)为研究背景,对该种结构体系的抗震性能及振动台试验进行了研究,完成的工作和取得的主要成果如下:
     (1)系统总结了国内外关于型钢混凝土剪力墙试验的结果,将型钢混凝土剪力墙的破坏划分为三个阶段,理论推导的同时加以试验数据的回归修正,得到了型钢混凝土剪力墙的骨架曲线,最后结合试验结果提出了四折线考虑刚度退化的定点指向型恢复力模型。该恢复力模型计算参数物理意义明确,便于计算机的程序化,可以为钢骨混凝土剪力墙结构的弹塑性动力分析提供一定的参考。采用OpenSEES中的纤维单元,并考虑剪切作用的影响,对型钢混凝土剪力墙进行了水平往复荷载作用下的滞回性能分析。将本文的滞回模型、纤维模型计算值与试验数据进行比较,三者吻合较好,表明本文提出的恢复力模型的可靠性。
     (2)从方钢管混凝土柱的截面层次出发,结合试验结果,将构件的破坏分为了两个阶段,理论推导了构件的骨架曲线,得出了方钢管混凝土柱的三折线滞回模型。最后利用OpenSEES软件中的纤维梁柱单元,对方钢管混凝土柱进行了水平往复荷载作用下的滞回性能分析。将本文的滞回模型、纤维模型计算值与试验数据进行比较,三者吻合较好,表明本文提出的恢复力模型的可靠性。
     (3)通过对伸臂桁架加强层受力机理的分析,将加强层模型简化为悬臂式格构钢柱模型,以结构顶点位移为控制指标,分析了伸臂梁的抗弯刚度、桁架腹杆的轴向刚度的变化对结构侧移的影响,提出了伸臂梁抗弯刚度与剪力墙抗弯刚度之比α、桁架腹杆轴向刚度与框架柱轴向刚度之比β的量化指标。最后通过两个工程案例,得出设置一道伸臂桁架加强层时线刚度比α的最优范围为0.25~1.0,β的最优范围为1.0~4.0;设置两道伸臂桁架加强层时线刚度比α的最优范围为0.25~1.0,β的最优范围为1.0~3.0;对于设置两道伸臂桁架加强层的结构,增加下部加强层伸臂梁抗弯刚度增加对结构抗侧移的效果明显优于增加上部加强层伸臂梁抗弯刚度的效果
     (4)通过对静力弹塑性分析及动力弹塑性分析原理及方法的研究,总结了两种分析方法目前存在的问题,并对静力弹塑性的单一模态推覆分析做了改进,推导了多模态推覆分析的方法。结合本文研究背景的工程实例,分别对其进行了静力及动力弹塑性分析。通过对该结构不同加载模式的对比分析,得出不同的加载模式,结果相差较大,建议实际工程的设计分析宜采用多种加载模式进行综合判别;多模态推覆分析考虑了高阶振型的影响结果,对于高阶振型占主要作用的结构宜采用多模态推覆分析的方法;结构动力弹塑性分析,能够得到结构在罕遇地震作用下的弹塑性变形,但受所选地震波的影响比较大,需与静力弹塑性分析相结合,对结构的抗震性能做出综合判定。
     (5)以兰州红楼时代广场为原型,进行了1:25比例缩尺模型的振动台地震模型试验,试验的加速度相似比为1.6:1,模型结构经历了相当于8度小震到8度大震的单向及双向水平地震动输入,得到了结构在各强度地震作用下的层间位移、层间加速度、层间剪力等的分布规律。通过有限元软件模拟与试验结果的对比分析,分析并总结了结构在试验时各工况下的试验现象,找出各种现象出现的原因。结合软件计算结果,综合判断了结构的薄弱部位,并给出相应的加强措施,可以为此类结构体系在高烈度区的设计和应用提供参考。
Hybrid structure is composed of steel frame (or steel reinforced concrete or concrete-filled steel tube frame) and reinforced concrete tube (or steel reinforced concrete tube), with the increase of the building height, need to set the strengthened layer (general for the outrigger truss), the structure of this system is more and more used in high-rise and super high-rise buildings, but the study of this kind structural system under the action of seismic response are not deep enough, have problems of the theory behind the practice. According to the Lanzhou Red Mansions Times Square Building as the research background (a typical Structural system of framework-core tube-outrigger trusses strengthened layer), study on the seismic performance and shaking table test of this kind of structure system, the completion of the work and the main results achieved are as follows:
     (1) Summarized the test results of steel reinforced concrete shear wall at home and abroad, the destruction of steel reinforced concrete shear wall is divided into three stages, theoretical to experimental data regression correction, get the skeleton curve of steel reinforced concrete shear walls. Finally, based on the test results proposed the restoring force model of four polyline considering stiffness degradation with designated point type.This restoring force model's calculation parameters have clearly physical meaning, easy to computer programmed, it can provide certain reference for the elastic-plastic dynamic analysis of the structure with the steel reinforced concrete shear wall. Using fiber unit in program of OpenSEES, consider the impact of shearing at the same time, the steel reinforced concrete shear walls hysteretic behavior are analyzed under horizontal reciprocating loads. This article hysteretic model, fiber model calculated value and test data are compare together, the results shows that the degree of agreement of the three is good, prove that the reliability of the restoring force model proposed in this paper.
     (2) From the level of cross-section of the steel square tubular column, combine with the test results, the destruction of steel square tubular column is divided into two stages, derivation the skeleton curve of the components, obtained three line hysteretic model of concrete-filled steel tube column. Finally, using the fiber beam-column element in OpenSEES program, the steel square tubular column hysteretic behaviors are analyzed under horizontal reciprocating loads. This article hysteretic model, fiber model calculated value and test data are compare together, the results shows that the degree of agreement of the three is good, prove that the reliability of the restoring force model proposed in this paper.
     (3) Through the stress mechanism analysis of the outrigger truss strengthened layer, take the reinforced layer model simplified as cantilevered latticed steel columns model. Take vertex displacement of the structure as the control indicators, analysis changes in bending stiffness of outrigger beam and axial stiffness of the truss web impact on lateral displacement of the structure. Proposed quantitative indicators by outrigger beam bending stiffness and shear wall bending stiffness ratio α, truss web axial stiffness and the frame column axial stiffness ratio β. Finally, through the two projects, obtains that linear stiffness ratio a of one outrigger truss strengthened layer optimum range is0.25to1.0, linear stiffness ratio β optimum range is1.0to4.0; linear stiffness ratio a of two outrigger trusses strengthened layer optimum range is0.25to1.0, linear stiffness ratio β optimum range is1.0to3.0; For the two outrigger trusses strengthened layer structure, increase the lower part of the strengthened layer outrigger beam's bending stiffness to increases the effect of resistance to lateral of the structure than increase the upper.
     (4) Through the static elastic-plastic analysis and dynamic elastic-plastic analysis principle and method of research, find out the problems of the two kinds analysis method, and static elastic-plastic analysis single modal pushover analysis to do an improved, derivation of a multi-modal pushover analysis method. Take advantage of the project of this paper's research background, respectively for the static and dynamic elastic-plastic analysis. Comparative analysis of the structure of different loading patterns, the results are quite different; Proposed that practical engineering design should adopt a variety of loading patterns to synthetic discriminant; Multi-modal pushover analysis considering the impact of higher modes, higher modes who dominant the structure should adopt a multi-modal pushover analysis method; In the structural dynamic elastoplastic analysis, can get the elastic and plastic deformation of the structure under the rare earthquake, but the influence of the selected seismic wave is relatively large, need to combined with the static elastoplastic analysis's result make a comprehensive judgment on the seismic performance.
     (5) Take Lanzhou Red Mansions Times Square as the prototype, a shaking table model test of the1:25scale models to carried out, the acceleration of the test similar ratio is1.6:1, model structure experienced a series of earthquake equivalent to8degrees of small earthquake to8degrees of large earthquake one-way and two-way earthquake ground motion input, obtained the law of interlayer displacement, acceleration, interlayer shear force distribution of the structure under the effect of the intensity of earthquake. Comparative analysis by finite element software simulation and test results, analysis and summary the phenomenon of the structure in the test, find out the reasons of the various phenomena. Combined with software calculation results, the weak parts of the structure were comprehensive judgment and give the corresponding strengthening measures at the same time, can provide a reference for the design and application of this kind of structure system in high intensity area.
引文
[1]2012中国摩天城市报告[DB/OL]. http://www.motiancity.com/2012/.
    [2]沈蒲生.高层建筑结构设计(第2版)[M].北京:中国建筑工业出版社,2011,1-5.
    [3]徐培福,傅学怡等.复杂高层建筑结构设计[M].中国建筑工业出版社,2005,1-4.
    [4]高层建筑混凝土结构技术规程(JGJ3-2010)[S].北京:中国建筑工业出版社,2010.
    [5]张正国,傅学怡,王建俊,等.带刚臂超高层结构工作性能研究[J].建筑结构学报,1996,17(4):2-9.
    [6]张建勋.带刚臂超高层结构的力学性能分析[J].山东建筑工程学院学报,1996,15(4):29-33.
    [7]杨克家,梁兴文,李波等.带加强层高层建筑中加强层刚度的合理取值[J].哈尔滨工业大学学报,2009,10:193-196.
    [8]沈蒲生.高层混合结构设计与施工[M].北京:机械工业出版社2008,27-29.
    [9]包世华,张桐生.高层建筑结构设计和计算(上册)[M].北京:清华大学出版社,2005,10-26.
    [10]沈蒲生.带加强层与错层高层结构设计与施工[M].北京:机械工业出版社,2009,1-2.
    [11]B.Stafford Smith, A.Coull. Tall Building Structures:Anslysis and Design[M]. John Wiley & Sons, Inc.1991:406-424.
    [12]B.S.Taranath. Optimum belt truss location for high-rise Structures[J]. Structural Engineer,1975,53(8):345-347.
    [13]J.W.MeNabb, B.B.Muvdi. Drift reduetion faetors for belt high-rise structures[J]. Engineering Journal 3nd Quarter,1975,88-91.
    [14]F.R.Moudarres, A.Coull. Free vibration of outrigger-braced structures[J]. Proc. Inst Civ.Engrs,1975,53(8):21-35
    [15]B.Stafford Smith, I.Salim. Parameter Study of Outrigger-Braced Tall Building Structures[J], Joural of the structure division, ASCE,1981, ASCE107(10):2001-2014.
    [16]P.C.Boggs & D.A.Gasparini:lateral stiffness of core outrigger system[J]. Engineering Journal 1983. American institute of steel construction.
    [17]A.Rutenberg & D.Tal:lateral load response of belted tall building structures[J]. Engineering structure:1987,9.
    [18]A.Coull & W.H.O.Lau:Outrigger Braced Structure Subjected to Static Seimic Load[J]. proc.4th int. conf on tall buiidings, Hong Kong and Shang Hai, Vol.1, Hong Kong,1998.
    [19]J.C.D.Hoenderkamp, H.H.Snijder. Simplified analysis of facade rigger braeed high-rise structures[J]. The Structural Design of Tall Buildings, 2000(9):309-319.
    [20]J.C.D.Hoenderkamp. Shear wall with outrigger trusses on wall and column foundations[J]. The Structural Design of Tall and Special Buildings,2004,13(2):73-87.
    [21]J.C.D.Hoenderkamp, M.C.M.Bakker. Analysis of high-rise braced frames with outriggers[J]. The Strueture Design of tall and Special Building,2003,12:335-350.
    [22]J.C.D.Hoenderkamp, H.H.Snijder. Preliminary analysis of high-rise braced frames with facade riggers[J]. Journal of Structural Engineering, 2003, ASCE129(5):640-647.
    [23]J.R.Wu, Q.S.Li. Struetural Performance of Multi-Outrigger-Brace Buildings[J]. The Structure Design of Tall and Speeial Buildings,2003, 12(2):155-176.
    [24]N.A.Zeidabadi, K.Mirtalae and B.Mobasher. Optimized use of the outrigger system to stiffen the coupled shearwall intall buildings[J]. The Strueture Design of Tall and Special Building.2004,13,9-27.
    [25]Stafford Smith B., I.O.Nwaka. Behavior of multi-outrigger braced tall building structure[J]. ACI Special Publieation,1980.515-541.
    [26]A.Griezic, W.D.Cook, D.Mitchell. Seismie behavior and retrofit of outrigger beam-colulnn frames[J]. J.Bridge Engrg.,2001,6(5): 340-348.
    [27]Bahram M. Sahrooz, Gokhon Tune. Outrigger beam-wall connections[J]. Journal of Structural Engineering,2004, ASCE130(10):262-270.
    [28]F.R.Moudarres. Outrigger-braced coupled shear walls[J]. Journal of Structural Engineering,1984, ASCE110(12):2876-2890.
    [29]B.Stafford Smith, I.Salim. Formula for optimum drift resistance of outrigger-braced tall building structures[J]. Computers and Structures, 1983,17(1):45-50.
    [30]Mehmet Celebi. Seismic response of eccentrically braced tall building[J]. J. Struct. Engrg.,1993,119(4):1188-1205.
    [31]C.S.Li, S.S.E.Lam, M.Z.Zhang, et al. Shaking table test of a 1:20 scale high-rise building with a transfer plate system[J]. J. Struct. Engrg., 2006,132(11):1732-174.
    [32]徐培福,黄吉锋,肖从真,等.带加强层的框架-核心筒结构抗震设计中的几个问题[J].建筑结构学报,1999,20(4):2-10.
    [33]杨玛莎,黎文,李绍祥.刚性加强层在超限高层建筑结构中的应用[J].建筑科学,2005,21(5):22-25.
    [34]熊军,赵喜庆.高层建筑水平加强层体系考虑加强层弯曲影响的自由振动分析[J].四川建筑科学研究,2000,26(3):5-8.
    [35]刘建新.超高层建筑结构水平加强层的最佳位置[J].工业建筑,1997,27(8):25-29.
    [36]陈勤.带加强层框架-芯筒结构自振特性分析及伸臂刚度优化[D].天津大学硕士学位论文,1999,2-3.
    [37]易方民,高小旺.水平加强层在超高层钢结构中的应用研究[J].建筑科学,2001,17(1):5-20.
    [38]张杰,张仲先,赵文光.框-筒结构截面变化对加强层力学作用的影响[J].北京工业大学学报,2007,33(9),937-942.
    [39]张杰,赵文光,张仲先.伸臂刚度对加强层设置位置的影响分析[J].建筑科学,2007,23(5):19-22.
    [40]ZhangJie, Zhang Z.X. et al. Safety analysis of optimal outriggers location in high-rise buildings structures Journal of ZhejiangUniversity SCIENCE A,78(2):264-269.
    [41]苏原.带加强层框架-核心筒体系力学性能的研究[D].华中科技大学博士学位论文,2009,89-110.
    [42]苏原,李黎,陈传尧.带加强层框-筒结构中水平伸臂最佳刚度研究[J].建筑科学,2009,25(9):66-43.
    [43]黄世敏,魏链,衣洪建.高层建筑中水平加强层最优位置的研究[J].建筑科学,2003,19(2):4-6.
    [44]陈林之,李政章.水平加强层对筒中筒结构空间受力性能的影响[J].工业建筑,2005,35(10):23-25.
    [45]余安东.用水平加强层控制高层建筑结构的侧移-水平加强层的作用及最佳位置[J].建筑结构学报,1988,6:30-38
    [46]熊军,赵喜庆.高层建筑水平加强层体系考虑加强层弯曲影响的自由振动分析[J].四川建筑科学研究,2000,26(3):5-8.
    [47]梅占馨,冯仲奇.高层与超高层框架-芯筒结构中刚性加强层的布置对侧移控制作用的研究[J].应用力学学报,1997,14(4):38-41.
    [48]黄怡,王元清.水平加强层对超高层钢框架-支撑结构的影响[J].重庆建筑大学学报,2005,27(3):49-56.
    [49]傅学怡.带刚性加强层R.C高层建筑结构设计建议[J].建筑结构,1999,10:44-47.
    [50]谭晓东,马心俐,苏杏.带水平加强层的框架-芯筒结构分析[J].广西大学学报,2005,30:132-135.
    [51]张杰,加强层对高层框-筒结构力学行为的影响研究[D].华中科技大学博士学位论文,2007.40-63.
    [52]张仲先,周春圣,夏凯.设置多道加强层的框-筒结构侧移分析方法[J].武汉理工大学学报,2006,28(4):52-55.
    [53]周春圣,张仲先,夏凯.顶部设置加强层的框-筒结构应变能分析[J].武汉理工大学学报,2006,28(3):86-88.
    [54]沈蒲生,陈宇,张明.带两道加强层变截面框架-核心筒的振动特性[J].湖南大学学报,2009,36(1):2-7.
    [55]沈蒲生,陈宇.带加强层的高层框架-变截面核心筒结构的自由振动分析[J].建筑科学与工程学报,2007,24(3):19-24.
    [56]沈朝勇,黄襄云,周福霖等.带SRC框架转换层及钢加强层建筑抗震性能研究[J].地震工程与工程振动,2004,24(6):83-88.
    [57]型钢混凝土组合结构技术规程(JGJ138-2001)[S].中国建筑工业出版社,2002.
    [58]赵鸿铁.钢与混凝土组合结构[M].北京:科学出版社,2001.
    [59]廖飞宇,陶忠,韩林海.钢-混凝土组合剪力墙抗震性能研究简述[J].地震工程与工程振动,2006,26(5):129-135.
    [60]叶列平,方鄂华.钢骨混凝土构件受力性能研究综述[J].土木工程学报,2000,33(5):1-12.
    [61]薛建阳.钢与混凝土组合结构[M].武汉:华中科技大学出版社,2006.
    [62]郭子雄,杨勇.恢复力模型研究现状及存在问题[J].世界地震工程,2004,20(4):47-51.
    [63]郭子雄,吕西林.高轴压比下RC框架柱恢复力模型试验研究[J].土木工程学报,2004,37(5):32-38.
    [64]李国强,崔大光.钢骨混凝土梁柱框支剪力墙试验与恢复力模型研 究[J].建筑结构学报,2008,29(4):73-80.
    [65]梁兴文,白亮,杨红楼等.型钢高性能混凝土剪力墙抗震性能试验研究[J].工程力学,2010,27(10):131-138.
    [66]马恺泽,梁兴文,李响等.型钢混凝土剪力墙恢复力模型研究[J].工程力学,2010,28(8):119-125.
    [67]Gan C, Lu X, Wang W. Experimental study on the steel plane reinforced concrete shear walls[C]. Proc. of 2nd International Conference on Advances in Experimental Structural Engineering. Shanghai Tongji University,2007.
    [68]Youssef Belmouen, Pierino Lestuzzi. Analytical mode for Predieting nonlinear reversed cyclic behavior of reinforced concrete struetural walls. Engineering Structures.2007,29:1263-1276.
    [69]Wallace John, Rakcal Kutay, Chelan M, Lsayre Brian. Lateral-load behavior of shear walls with structural steel boundary columns[C]. Proceedings of Sixth ASCCS Conference on Composite and Hybrid Structures. Xiao Y, Mahin S A. Los Angeles, USA:ASCCS-6 Secretariat, University of Southern California,2000:801-808.
    [70]Fumiya Esaki, Masayuki Ono. Effect of loading velocity on mechanical behavior of SRC shear walls [C]. Proceedings of Sixth ASCCS Conference on Composite and Hybrid Structures. Xiao Y,Mahin S A. Los Angeles,USA:ASCCS-6 Secretariat,University of Southern California,2000:809-816.
    [71]Soon H C, Bryce T, William D C. Structural steel boundary elements for ductile concrete walls[J]. Journal of Structural Engineering, ASCE, 2004,130(5):763-768.
    [72]王志浩,钱稼茹.钢骨混凝土剪力墙的抗弯性能[J].建筑结构,1998,28(2):13-21.
    [73]武敏刚,吕西林.钢骨联肢剪力埔抗凝性能试验研究[J].结构工程师,2004,20(5):52-56.
    [74]吕西林,董宇光,丁子文.截面中部配置型钢的混凝土剪力墙抗箴性能研究[J].地震工程与工程振动,2006,26(6):101-107.
    [75]李一松,李国强,崔大光.型钢混凝土低矮剪力墙抗震性能试验研究[J].地震工程与工程振动,2009,29(4):92-102.
    [76]刘航,蓝宗建.劲性钢筋混凝土低剪力墙抗震性能试验研究[J].工业建筑,1997,27(5):32-36.
    [77]罗英,赵世春.带SRC边框低剪力墙的抗震性能试验研究[J].西安公路交通大学学报,1999,19(2):66-69.
    [78]黄雄军,赵世春.带劲性钢筋混凝土边框低剪力墙的试验研究[J].西南交通大学学报,1999,34(5):535-539.
    [79]乔彦明,钱稼茹.钢骨混凝土剪力墙抗剪性能的试验研究[J].建筑结构,1995,25(8):3-7.
    [80]钱稼茹,吕文,方鄂华.基于位移延性的剪力墙抗震设计[J].建筑结构学报,1999,20(3):42-49.
    [81]钱稼茹,魏勇.高轴压比钢骨混凝土剪力墙的抗震性能试验研究[J].建筑结构学报,2008,29(4):43-50.
    [82]李宏男,李兵.钢筋混凝土剪力墙抗震恢复力模型及试验研究[J].建筑结构学报,2004,25(5):35-42.
    [83]吕西林.复杂高层建筑结构抗震理论与应用[M].北京:科学出版社,2007.
    [84]混凝土结构设计规范(GB50010-2010)[S].北京:中国建筑工业出版社,2010.
    [85]OpenSEES Command Manual[DB/OL]. http://opensees.berkeley.edu/ wiki/index.php/OpenSees_User.
    [86]Volcano A, Bertero V V. Analytical models for predicting the lateral response of rc shear wails:evaluation of their predicting[R]. Report No. UCB/EERC-87/19, Earthquak engineering Research Center, November 1987.
    [87]TAUCER F F, SPACONE E, FILIPPOU F C. A fiber beam-column element for seismic response analysis of reinforcedconcrete structures[R]. EERC Report No.91/17, California:College of Engineering, University of California Berkeley,1991.
    [88]韩林海,钢管混凝土结构一理论与实践[M],北京:科学出版社,2004.
    [89]蔡绍怀,现代铜管混凝土结构[M],北京:人民交通出版社,2003.
    [90]钟善桐,钢管混凝土结构[M],哈尔滨:黑龙江科学技术出版社,1995.
    [91]周绪红,刘界鹏.钢管约束混凝土柱的性能与设计[M],北京:科学出版社,2010.
    [92]P.K.Neogi, H.K.San, J.C.Chapman. Concrete filled tubular steel columns under eccentrical loading[J]. Joumal of Struetural Engineering, 1969,47(5):187-195.
    [93]Furlong R W. Strength of steel-encased concrete bean-columns, Journal of structural division ASCE,1967,93(ST5),113-124.
    [94]Bradford M A. Design strength of slender concrete filled rectangular steel tubes[J]. ACI Structural Journal,1996,93(2):229-235.
    [95]Hajjar J F, Gourley B C. Represent ation of concrete-filled tubes[J], Journal of Structural Engineering. ASCE,1996,123(6):745-754.
    [96]Kang C H, Moon T S, Behavior of concrete-filled steel tubular beam-column under combined axial and lateral forces. Proeeedings of the Fifth Pacific Structural Steel Conferenee, Seoul, Korea,1998, 961-966.
    [97]Lakshmi B, Shanmugam N E. Nonlinear analysis of in-filled steel-concrete composite columns[J]. Journal of Structural Engineering. ASCE,2002,128(7):922-933.
    [98]Lu Y Q, Kennedy D J L. The flexural behaviour of concrete-filled hollow struetural sections[J]. Canadian Joumal of Civil Engineering, 1994,21(1):111-130.
    [99]S.P.Sehneider. Asially Loaded Concrete-Filled Steel Tubes[J], Journal of Struetural Engineering. ASCE,1998,124(10):1125-1138.
    [100]张正国,方钢管混凝土偏压短柱基本性能研究[J].建筑结构学报,1989,10(9):10-20.
    [101]李四平,霍达,王菁等.偏心受压方钢管混凝土柱极限承载力的计算[J].建筑结构学报,1998,19(1):41-51.
    [102]吕西林,余勇,陈以一等.轴心受压方钢管混凝土短柱的性能研究[J].建筑结构,1999,(10),41-43.
    [103]陶忠,韩林海.方钢管混凝土压弯构件滞回性能的试验研究[J],地震工程与工程振动,2001,21(1):74-78.
    [104]李学平,吕西林,郭少春.反复荷载下矩形钢管混凝土柱的抗震性能:Ⅰ试验研究[J].地震工程与工程振动,2005,25(5):95-103.
    [105]李学平,吕西林,郭少春.反复荷载下矩形钢管混凝土柱的抗震性能:11分析研究[J].地震工程与工程振动,2005,25(5):104-111.
    [106]钟善桐,屠永清.钢管混凝土构件荷载-位移滞回性能的分析[J].哈尔滨建筑大学学报,1995,28(5):13-26.
    [107]张素梅,张大旭.钢管混凝土柱与梁节点荷载-位移滞回曲线理论分析[J].哈尔滨建筑大学学报,2001,34(4):1-6.
    [108]孙修礼,梁书亭.钢管混凝土框架骨架曲线研究[J].地震工程与工 程振动,2007,27(1):99-103.
    [109]杜喜凯.往复荷载作用下钢管混凝土柱性能试验及理论分析[D].天津大学博士学位论文,2010.
    [110]赵西安.高层建筑结构实用设计方法(第二版)[M].上海:同济大学出版社,1992.
    [111]袁兴隆.高层建筑加强层的研究与应用分析.贵州工学院学报,1995(2):25-30.
    [112]徐培福,黄吉锋,肖从真,等.带加强层的框架-核心筒结构抗震设计中的几个问题.建筑结构学报,1999(4):2-10.
    [113]阮永辉,吕西林.带水平加强层的超高层结构的力学性能分析[J].结构分析,2000,12(4):12-16.
    [114]张正国,傅学怡,王建俊,等.带刚臂超高层结构工作性能研究[J].建筑结构学报,1996,17(4):2-9.
    [115]张建勋.带刚臂超高层结构的力学性能分析[J].山东建筑工程学院学报,1996,15(4):29-33.
    [116]张杰,赵文光,张仲先.伸臂刚度对加强层设置位置的影响分析[J].建筑科学,2007,6:19-22.
    [117]苏原,李黎,陈传尧.带加强层框-筒结构中水平伸臂最佳刚度研究[J].建筑科学,2009,9:66-70.
    [118]Staffofd Smith B, Salim I. Parameter Study Of Outrigger-braced Tall Builing Structures [J]. Journal of Structural Dibision, ASCE 1981,107(10):2001-2013.
    [119]J.C.D.Hoenderkamp and M.C.M.Bakker. Analysis Of High-Rise Braced Frames With Outriggers[J]. The Structural Design Of Tall And Special Buildings,2003,12(8):335-350.
    [120]Marie-Jose Nollet and Bryan Stafford Smith. Stiffened-story Wall-frame Tall Building Structure[J]. Computers & Structures,1998, (66):225-240.
    [121]贺国京,阎奇武,袁锦根.工程结构弹塑性地震反应[M].中国铁道出版社,2005.101-112.
    [122]Anil K. Chopra, "Dynamics of Structures, Theory and Applications to Earthquake Engineering" (Second Edition)[M].谢礼立,吕大刚等译:结构动力学理论及其在地震工程中的应用(第2版)[M].高等教育出版社,2005,377-383.
    [123]容柏生,李志山:高层建筑结构在罕遇地震作用下的弹塑性时程分 析研究[C].第十九届全国高层建筑学术会议论文,2006,586-598.
    [124]陈朝晖,何建,明伟:高层建筑考虑空间协同作用的弹塑性时程分析[J].工程力学(增刊),1999,928-933.
    [125]R.克拉夫,J.彭津(王光远等译):结构动力学(第二版)[M].高等教育出版社,2006,252-258.
    [126]杨溥,李英民,王亚勇,等.结构静力弹塑性分析(Push- over)方法的改进[J].建筑结构学报,2000,21(1):44-50.
    [127]叶燎原,潘文.结构静力弹塑性分析(Push- over)的原理和计算实例[J].建筑结构学报,2000,21(1):37-43.
    [128]张马俊,梅占馨,傅学怡,等.刚臂-芯筒高层建筑结构的弹塑性动力分析[J].西安建筑科技大学学报,1996,28(4):12
    [129]沈蒲生,龚胡广.多模态静力推覆分析及其在高层混合结构体系抗震评估中的应用[J].工程力学,2006,23(8):69-73.
    [130]Chopra A K, Goel A K. A modal pushover analysis procedure to estimate seismic demands for buildings:theory and preliminary evaluation [R]. Report No. Peer-2001/03, Pacific Earthquake Engineering Research Center, University of California, Berkeley, 1999.
    [131]Gupta B, Kunnath S K. Adaptive spectra-based pushover procedure for seismic evaluation of structures [J]. Earthquake Spectra,2000, 16(2):367-391.
    [132]Krawinkler H, Seneviratna G D P K. Pros and cons of a pushover analysis of seismic performance evaluation [J]. Engineering Structure, 1998,20:452-464.
    [133]李刚,刘永:不同加载模式下不对称结构静力弹塑性分析[J].大连理工大学学报,2004,44(5),350-355.
    [134]熊向阳,戚震华:侧向荷载分布方式对静力弹塑性分析结果的影响[J].建筑科学,2001,17(5),8-13.
    [135]叶献国,李康宁Push-over方法与循环往复加载分析的研究[J].合肥工业大学学报,2001,24(6),1019-1027.
    [136]袁波:基于位移的结构弹塑性地震反应简化分析方法的研究[D].福州大学博士学位论文,2004,40-45.
    [137]Veletsos A S, Newmark N M, Chepalati C V. Deformation spectra for elastic and elastoplastic systems subjected to ground shock and earthquake motion [C]. In:Proceedings of the 3rd World Conf. on Earthq. Engrg., New Zealand:Wellington,1965,2:663-682.
    [138]Veletsos A S, Vann W P. Response of ground-excited elastoplastic systems[J]. Journal of Structural Engineering Division, ASCE,1971, 97(4):1257-1281.
    [139]Miranda E. Inelastic displacement ratios for structures on firm sites [J]. Journal of Structural Engineering, ASCE,2000,126(10): 1150-1159.
    [140]韦承基.弹塑性结构的位移比谱[J].建筑结构学报,1986,4(1):40-48.
    [141]肖明葵,王耀伟,严涛,等.抗震结构的弹塑性位移谱[J].重庆建筑大学学报,2000,22(5):34-40.
    [142]Miranda E, Bertero V. Evaluation of strength reduction factors for earthquake resistant design [J]. Earthquake Spectra,1994,10(2): 357-379.
    [143]Federal Emergency Management Agency(FEMA). NEHRP Commentary on theGuidelines for the Seismic Rehabilitation of Buildings[R]. FEMA report 273,1997
    [144]Building Seismic Safety Council(BSSC). NEHRP Guidelines for the Seismic Rehabilitation of Buildings[R]. FEMA273/274. Developed for the Federal Emergency Management Agency,Washington DC, 1997.
    [145]ATC. Seismic Evaluation and Retrofit of Concrete Building(ATC-40)[R]. Applied Technology Council, Red Wood City, California,1996.
    [146]B.Gupta, Sashi K.Kunnath. Adaptive spectra-based pushover procedure for seismic evaluation of structures[J]. Earthquake Spetra, 2000,16(2):367-391.
    [147]M.Siidi, M.A.Sozen. Simple nonlinear seismic analysis of R/C structures [J]. Journal of Structural Division(ASCE),1981,107(8): 937-952.
    [148]安东亚,李承铭.高层结构动力弹塑性时程分析的方法研究[C].第二十届全国高层建筑结构学术会议论文,2008,706-711.
    [149]容柏生,李志山.高层建筑结构在罕遇地震作用下的弹塑性时程分析研究[C].第十九届全国高层建筑学术会议论文,2006,586-598.
    [150]崔京浩.高层建筑结构地震响应的时程分析方法[M].北京:中国 水利水电出版社,2006.
    [151]姚振刚,刘祖华.建筑结构抗震试验[M],上海:同济大学出版社,1996.
    [152]JGJ3-2010.高层建筑混凝土结构技术规程[S].北京:中国建筑工业出版社,2010.
    [153]GB50011-2010.建筑抗震设计规范[S].北京:中国建筑工业出版社2010.
    [154]建筑抗震试验方法规程[S].北京:中国建筑工业出版社,1997.
    [155]邹昀,吕西林,钱江.上海环球金融中心大厦结构抗震性能研究[J].建筑结构学报.2006,27(6):74-80.
    [156]Xilin Lu, Qiang Zhou. Dynamic analysis method of a combined energy dissipation system and its experimental verification[J]. Earthquake Engineering and Structural Dynamics,2002,31(6):1251-1265.
    [157]Lu Xilin, Zou Yun, LuWensheng, et al. Shaking table model test on Shanghai World Financial Center Tower[J]. Earthquake Engineering & Structural Dynamics,2007,36(4):439-457.
    [158]徐培福,薛彦涛,肖从真,等.高层型钢混凝土框筒混合结构抗震性能试验研究[J].建筑结构.2005,35(5):3-8.
    [159]张宏,黄小坤,左江,等.南京德基广场二期塔楼整体模型振动台试验研究[J].建筑结构学报(增刊1),2008,104-109.
    [160]江磊,王秀丽,田春雨,等.带水平加强层的框架-筒体混合结构振动台试验研究[J].建筑结构学报.(已录用).
    [161]中国建筑科学研究院科技股份有限公司.兰州红楼时代广场项目模拟地震振动台模型试验报告[R].北京:中国建筑科学研究院,2012.
    [162]唐兴荣,王恒光,王燕,等.带叠层桁架转换层高层建筑结构整体模型振动台试验研究[J].建筑结构学报.2011,32(6):18-26.
    [163]卢文胜,韩建平,吕西林,等.法门寺合十舍利塔结构整体模型振动台试验研究[J].建筑结构学报.2011,32(3):90-98.
    [164]黄襄云,周福霖,金建敏,等.广州新电视塔结构模型振动台试验研究[J].土木工程学报.2010,43(8):21-29.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700