用户名: 密码: 验证码:
基于并行计算的混凝土坝—地基体系地震损伤破坏过程机理和定量评价准则研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
鉴于高坝大库抗震安全的重要性,本文依托中国工程院重点咨询项目“西部强震区高坝大库抗震安全研究”专题三高坝体系地震损伤破坏研究,紧密结合实际工程震例,针对在超设计地震动输入下高混凝土坝损伤破坏过程这一战略重点研究中的基础性关键问题,作出了如下主要创新之处。
     (1)基于更贴近实际的高混凝土坝地震响应非线性动力分析模型(包括坝体-地基-库水动态相互作用影响,拱坝横缝开合影响,能量向远域地基逸散的辐射阻尼影响,近域地基各类地形、地质构造影响,坝基非均匀地震动输入影响等),提出了考虑在超设计地震动输入下,坝体和地基岩体材料非线性损伤破坏过程的分析模型和求解方法。
     (2)采用基于损伤变量的损伤力学理论,提出直接依据大坝混凝土拉、压损伤应力-应变全过程试验结果给出的损伤演化本构关系求解,考虑了往复地震作用下,卸载时的残余变形影响、拉压损伤演化的本构关系差异及其在坝体实际复杂应力状态下的相互影响,避免了弹-塑性-损伤求解方法中的不确定性因素的影响和其计算过程中的复杂性。计算中还考虑了模型网格尺寸的特征长度影响。
     (3)为对分析中的建模、计算方法和结果进行检验,结合了经受1967年强震的印度柯伊那重力坝和经受了2008年汶川地震的沙牌碾压混凝土拱坝在超设计地震作用的震例,对其震情作出了分析和解释;并和采用现行多种坝体和地基模型的计算结果进行了比较,验证了采用本文提出的方法计算结果更符合实际震情。在柯伊那坝震情的验算中,采用了基于坝基实测强震记录确定其地震动输入,在沙牌拱坝震情的验算中,采用了基于汶川地震面源模型和对已有强震台站的记录进行参数校正后的随机有限断层法给出的沙牌坝址计入幅值和频率非平稳影响的超设计地震动输入;坝体混凝土强度采用了在坝体现场钻孔的试件实测动态强度。分析中考虑了地震发生时的气温、水温、水位及坝体横缝和诱导缝状况,以求尽量结合实际。验证了沙牌拱坝在汶川地震中的实际状态。
     (4)由于整个坝体-地基-库水体系的接触和材料非线性模型十分复杂,计算工作量极为庞大。目前计算的沙牌拱坝单元总数404090,节点总数425568和接触点对2112对,总自由度超过120万,加以汶川地震破裂过程导致的地震动输入持续时间长,常规的串行计算方法无法满足要求。为此,采用了并行计算技术,对整个体系采用了区域分解算法,充分利用了现有多核微机,使计算时间大为缩短,具有可在实际工程设计中推广应用的操作性。本文计算分析中应用的串、并行全部计算软件都是本文自主研发成果,为揭示高坝体系地震损伤过程提供了强有力的手段。
     (5)目前现行抗震模型中忽略了坝顶以上山体,为比较两岸坝顶以上山体的影响,初步计算了在坝体和地基作为弹性情况下,忽略坝顶山体的分析模型对体系地震响应加速度的影响。
In view of the importance of seismic safety of high dams and large reservoirs, relying on the subject on earthquake damage and failure of high dam-foundation system-part3of the key consulting project of the Chinese Academy of Engineering-seismic safety of high dams and large reservoirs in the western earthquake district, in close connection with the actual engineering earthquake cases, for the key and basic problem of strategic emphasis on damage process of high concrete dams under the input of exceeding design ground motion, the main innovation is made as follows in this paper.
     (1) Based on the nonlinear dynamic analysis model of high concrete dam seismic response that is closer to the actual situation(including dam-foundation-reservoir dynamic interaction, contraction joint opening and closing, radiation damping due to energy dissipation to the far field foundation, various types of terrain and geological structure in the near field foundation, non-uniform motion input to the foundation), under the input of exceeding design ground motion, the analysis model and solving method of considering nonlinear damage process of dam and foundation is presented.
     (2) Taking damage mechanics theory based on the damage variable as theoretical basis, a new damage model and solving method is presented that sets up the damage evolution constitutive relation directly based on the whole curve of dam concrete damage stress-strain process of tensile and compressive test results. The new method considers the unloading residual deformation, the constitutive relation difference of tensile and compressive damage evolution and the interaction of complex stress state in the actual dam under earthquake cycling load, preventing the uncertainty and complication due to the coupling of plasticity mechanics and damage mechanics. The characteristic length of model mesh size is considered to prevent mesh sensitivity of simulation results.
     (3) In order to check the model, calculation method and simulation result, the actual seismic damage of Konya gravity dam and Shapai arch dam is investigated and interpreted. Koyna gravity dam in India experienced strong earthquake in1967, and Shapai RCC arch dam experienced exceeding design earthquake in2008. Compared with simulation results of various models applied in dam body concrete and foundation rock mass, the model presented by this paper is much closer to the actual seismic damage. In the case study of Koyna seismic damage, the ground motion input is determined by the strong motion record of foundation. In the case study of Shapai arch dam seismic damage, the ground motion input which is non-stationary both in amplitude and frequency is determined by stochastic finite faults method based on area source model in Wenchuan and the parameter correction by the existing strong motion record. The dam concrete strength is determined by measuring dynamic strength of the specimen obtained from the dam body by drilling hole. In order to accord with practical situation, the situation of air temperature, water temperature, water level, contraction joints and induced joints is determined by the situation at the time of earthquake.
     (4) Since the contact and material nonlinear model is very complex in the whole dam-foundation-reservoir system, enormous computational work is needed. The Shapai arch dam contains404090elements,425568nodes,2112contact point pairs, and more than1200000degrees of freedom; what's more, the duration of ground motion input is long caused by earthquake rupture process in Wenchuan, so the conventional serial computation can not meet the engineering requirement. To this end, the introduction of parallel computing technology is necessary. The entire system is decomposed into several parts by domain decomposition method, making full use of the existing multicore computer, and the computation time is much shorter, with the operability of promotion and application in practical engineering design. The serial and parallel computing software applied in this article is independent development achievement, providing a powerful means to reveal seismic damage process of high dam system.
     (5) Current seismic calculation model ignores the mountain above dam crest. To compare the effect of two banks of mountain above dam crest, considering dam and foundation as elastic material, preliminary simulation on the impact of two banks of mountain acceleration response due to ignoring the mountain above dam crest is made.
引文
[1]陈厚群,吴胜兴,党发宁等.高拱坝抗震安全.北京:中国电力出版社,2011.
    [2]Indian COLD. Major dams in India, Koyna Dam. New Delhi:1979.
    [3]Ram P Sharma, Brain T Sasaki. Rehabilitation of Earthquake-Shaken Pacoima Arch Dam, Q51. ICOLD 16th Congress on Large Dams. Lausanne:1985.
    [4]Ram P Sharma, Harry E Jackson, Sree Kumar. Effects of the January 17,1994 Northridge Earthquake on Pacoima Arch Dam and Interim Remedial Repairs, Q75. ICOLD 20th Congress on Large Dams. Florence:1997.
    [5]陈厚群,混凝土高坝强震震例分析和启迪.水利学报,2009,40(1):10-18.
    [6]王仁坤,邵敬东.沙牌拱坝经受了超强地震的考验.水力发电学报,2009,28(5):92-96.
    [7]陈厚群,郭胜山.混凝土高坝-地基体系的地震损伤分析.水利学报,2012,43(增刊1):2-7.
    [8]陈厚群.坝址地震动输入机制探讨.水利学报,2006,37(12):1417-1423.
    [9]Chopra A K, et al. Modeling of dam-foundations interaction in analysis of arch dams. Proc.10th WCEE. Madrid,8,1992.
    [10]Dominguez J, et al. Model of the seismic analysis of arch dams including interaction effects. Proc.10th WCEE. Madrid,8,1992.
    [11]Zhang C H, Jin F, Wang G L. Seismic interaction betweeen arch dam and rock canyon. Proc.11th WCEE. Netherlands:Elsevier,1996.
    [12]涂劲.有缝界面的混凝土高坝-地基体系非线性地震波动反应分析.北京:中国水利水电科学研究院博士论文,1999.
    [13]刘晶波,吕彦东.结构-地基动力相互作用问题分析的一种直接方法.土木工程学报,1998,31(3):55-64.
    [14]张伯艳.高拱坝坝肩抗震稳定研究.西安理工大学,2005.
    [15]杜修力,赵密.基于黏弹性边界的拱坝地震反应分析方法.水利学报,2006,37(9):1063-1069.
    [16]李建波.结构-地基动力相互作用的时域数值分析方法研究.大连:大连理工大学,2005.
    [17]钟红.高拱坝地震损伤破坏的大型数值模拟.大连:大连理工大学博士论文,2008.
    [18]王海波,涂劲,李德玉.室内动力模型试验中辐射阻尼效应的模拟.水利学报,2004,(2):39-49.
    [19]Dowling M J. Nonlinear seismic analysis of arch dams, Report No.EERL-87/03. Earthquake Engineering Research Laboratory, California Institute of Technology,1987.
    [20]G L Fenves, S. Mojtahedi, R. B. Reimer. Nonlinear Earthquake Analysis of arch dam/Reservoir. Proc.10th, WCEE, Madrid,1992.
    [21]陈厚群,李德玉,胡晓,侯顺载.有横缝拱坝的非线性动力模型试验和计算分析研究.地震工程与工程振动,1995,15(4):10-26.
    [22]Liu J B, Wang D, Yao L. A contact force model in the dynamic analysis of contactable cracks. ACTA Mechanica Solid Sinica,1993,6(4).
    [23]杜成斌,赵光恒.带横缝拱坝的非线性地震响应.水利学报,1996,(5):22-28.
    [24]杜成斌,任青文.底缝对拱坝工作形态的影响.河海大学学报,1999,27(5):48-52.
    [25]陈健云,林皋.小湾拱坝考虑横缝的非线性分析.土木工程学报,1999,32(1):66-70.
    [26]杜成斌,商岩,邱颖.防止高拱坝坝踵开裂和屈服的工程措施研究.河海大学学报,2003,31(4):395-398.
    [27]陈国庆.三维弹性接触问题极小化数值解法-非线性互补模型和算法.大连理工大学,1994.
    [28]林皋,胡志强,陈健云.考虑横缝影响的拱坝动力分析.地震工程与工程振动,2004,24(6):45-52.
    [29]徐艳杰,张楚汉,王光纶,金峰.小湾拱坝模拟实际横缝间距的非线性地震反应分析.水利学报,2001,(4):68-74.
    [30]赵兰浩.考虑坝体-库水-地基相互作用的有横缝拱坝地震响应分析.南京:河海大学,2006.
    [31]赵兰浩,李同春,颜天佑.虚拟裂缝模型的接触有限元法实现.工程力学,2001,27(5):60-67.
    [32]龙渝川,周元德,张楚汉.基于两类横缝接触模型的拱坝非线性动力响应研究.水利学报,2005,36(9):1094-1099.
    [33]郭永刚,涂劲,陈厚群.高拱坝伸缩缝间布设阻尼器对坝体地震反应影响的研究.世界地震工程,2003,19(3):44-49.
    [34]李静,陈健云,周晶.考虑局部切向约束接触问题的直接刚度法.计算力学学报,2006,23(4):459-463.
    [35]张伯艳,陈厚群,涂劲.考虑动接触力法的拱坝坝肩抗震稳定有限元分析.水利学报,2004,(10):7-12.
    [36]涂劲,李德玉,陈厚群.锦屏一级水电站高拱坝整体抗震安全性研究.水力发电学报,2009,28(5):68-72.
    [37]涂劲,李德玉,陈厚群,欧阳金惠.大岗山拱坝-地基体系整体抗震安全性研究.水利学报,2011,42(2):152-159.
    [38]G L Fenves, A K. Chopra. Earthquake analysis of concrete gravity dams including reservoir bottom absorption and dam-water-foundation rock interaction. Earthquake Engineering and Structural Dynamics, Vol.72,1984.
    [39]陈厚群.高拱坝抗震设计研究进展.中国水利,2000,(9):62-68.
    [40]陈厚群,侯顺载,杨大伟.地震条件下拱坝库水相互作用的试验研究.水利学报, 1989,(7):29-39.
    [41]李德玉,张伯艳,王海波,禹莹.重力坝坝体-库水相互作用的振动台试验研究.中国水利水电科学研究院学报,2003,1(3):216-220.
    [42]傅作新,陆瑞明.水库的库底条件和挡水结构的动水压力.水利学报,1987,(5):28-34.
    [43]Medina F, Dominguez J. Boundary elements for the analysis of the seismic response of dams including dam-water-foundation interaction effects. Ⅰ. Engineering Analysis with Boundary Elements,189,6 (3):152-157.
    [44]Medina F, Dominguez J. Boundary elements for the analysis of the seismic response of dams including dam-water-foundation interaction effects. Ⅱ. Engineering Analysis with Boundary Elements,189,6 (3):158-163.
    [45]王进廷,杜修力,张楚汉.重力坝-库水-淤沙-地基系统动力分析的时域显式有限元模型.清华大学学报,2003,43(8):1112-1115.
    [46]李同春,朱寿峰,赵兰浩,胡继刚.考虑坝体与坝肩动力相互作用的坝肩稳定动接触降强算法.水力发电学报,2012,31(1):88-92.
    [47]张冲.三维模态变形体离散元方法及其拱坝-坝肩整体稳定分析.北京:清华大学,2007.
    [48]Batta V, Pekau O A. Application of boundary element analysis for multiple seimic cracking in concrete gravity dams. Earthquake Engineering and Structural Dynamics, 1996,25:15-30.
    [49]Pekau O A, CuiY Z. Failure analysis of fractured dams during earthquakes by DEM. Engineering Structures,2004,26:1483-1502.
    [50]张国新,金峰,王光纶.用基于流形元的子域奇异边界元法模拟重力坝的地震破坏.工程力学,2001,18(4):18-27.
    [51]方修君,金峰,王进廷.基于扩展有限元法的Koyna重力坝地震开裂过程模拟.清华大学学报(自然科学版),2008,48(12):2065-2069.
    [52]潘坚文,张楚汉,徐艳杰.用改进扩展有限元法研究重力坝强震断裂过程.水利学报,2012,43(2):168-174.
    [53]Wang G L, Pekau O A, Zhang C H, Wang S M. Seismic fracture analysis of concrete gravity dams based on nonlinear fractures mechanics. Engineering Fracture Mechanics,2000, 65(1):67-87.
    [54]Bhattacharjee S S. Smeared fracture analysis of concrete gravity dams for static and seismic loads. Department of Civil Engineering and Applied Mechanics, McGill University, Montreal, Canada. February,1933.
    [55]Lee J, Fenves G L. A Plastic-Damage Concrete Model for Earthquake Analysis of Dams. Journal of Earthquake Engineering And Structural Dynamics,1998,27:937-956.
    [56]潘坚文.高混凝土坝静动力非线性断裂与地基辐射阻尼模拟研究.北京:清华大学, 2010.
    [57]Kaplan M F. Crack propagation and the fracture of concrete. ACI Journal.1961,58(11): 591-610.
    [58]Ngo D, Scordelis A C. Finite element analysis of reinforced concrete beams. Journal of the American Concrete Institute,1967,64(3):152-163.
    [59]Hillebrorg A. Modeer M. Petersson P E. Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cement and Concerte Research. 1976,6(6):773-782.
    [60]Rashid Y R. Analysis of prestressed concrete pressure vessels. Nuclear Engineering and Design,1968, (7):334-344.
    [61]Rots. J. G. Computational modeling of concrete fracture. Dissertation, Department of Civil Engineering, Delft University of Technology, Delft,1988.
    [62]余天庆,钱济成.损伤理论及其应用.北京:国防工业出版社,1993.
    [63]Dougil J W. On stable Progressively Fracturing solid. ZAAMP,1976.27:432-437.
    [64]Loland, K. E. Continuous damage model for load-responds estimation of concrete. Cement and concrete research.1980,Vol.10:395-402.
    [65]Mazars J. Application de la mecanique de lendnnag emment an comportememt non lineaire de structure.These de doctorat detat Univ. Paris, ENEET, Mai1984.
    [66]Supartoko F, Sidoroff F. Anisotropic Damage Modeling for Brittle Elastic Materials. Symp. of Franco-Poland,1984.
    [67]Kajcinovic, D. Constitutive equation for damaging platerials. J. APPI. Meeh.,1983, 50:355-360.
    [68]张我华,邱战洪,余功栓.地震荷载作用下坝及其岩基的脆性动力损伤分析.岩石力学与工程学报,2004,23(8):1311-1317.
    [69]邵长江,钱永久. Koyna混凝土重力坝的塑性地震损伤响应分析.振动与冲击,2006,25(4):129-131.
    [70]程冬,张德岗,李守巨,等.地震作用下丰满重力坝的塑性损伤.岩土力学,2007,28(增):792-795,802.
    [71]杜荣强,林皋,陈士海,等.强地震作用下高拱坝的破坏分析.水利学报,2010,41(5):567-574.
    [72]杜荣强,章青,陈士海,等.大岗山和溪洛渡高拱坝强地震损伤比较分析.水力发电学报,2010,29(5):6-10,27.
    [73]唐春安,朱万成.混凝土损伤与断裂数值试验.北京:科学出版社,2003.
    [74]马怀发,陈厚群.全级配大坝混凝土动态损伤破坏机理研究及其细观力学分析方法.北京:中国水利水电出版社,2008.
    [75]张林波,迟学斌,莫则尧,李若.并行计算导论.北京:清华大学出版社.2006.
    [76]吕涛,石济民,林振宝.区域分解算法.北京:科学出版社.1992.
    [77]Winget J M, Hughes T J R.. Element-by-Element interactive strategies. Computer Methods in Applied Mechanics and. Engineering,1985,52:711-815.
    [78]陈惠发著,余天庆等译.弹性与塑性力学.北京:中国建筑工业出版社,2004.
    [79]李小军.非线性场地地震反应分析方法的研究.中国地震局工程力学研究所博士论文,1993.
    [80]杜修力,赵密,王进廷.近场波动模拟的人工应力边界条件.力学学报,2006,38(1):49-56.
    [81]刘金朝,王成国,梁国平.多弹性体接触问题的数值算法.中国铁道科学,2003,24(3):69-73.
    [82]Ortiz. M. and Popov, E. P. Accuracy and stability of integration algorithms for elastoplastic constitutive relations. International Journal for Numerical Methods in Engineering. 1985, (21):1561-1567.
    [83]Simo, J. C. and Taylor, R. L. A returning mapping algorithm for plane stress elastoplasticity. International Journal for Numerical Methods in Engineering,1986, (2):649-670.
    [84]庄茁.连续体和结构的非线性有限元(译).北京:清华大学出版社,2002.
    [85]Jeeho, Lee and Gregory L. Fenves, Plastic-Damage Model for Cyclic Loading of Concrete Structures. Journal of Engineering Mechanics,1998,124(3):892-900.
    [86]江见鲸等.混凝土结构有限元分析.北京:清华大学出版社,2005.
    [87]Bazant Z.P., Mechanics of Fracture and Progressive Cracking in Concrete Structures, Fracture Mechanics of Concrete; Structural Application and Numerical Calculation, edited by George C. Sih and A.Ditommaso, Martinus Nijhoff Publishers,1985.
    [88]于骁中等.岩石和混凝土断裂力学,湖南:中南工业大学出版社,1991.
    [89]Jeeho. Lee and Gregory L. Fenves, A Plastic-Damage Concrete Model for Earthquake Analysis Of Dams, Journal of Earthquake Engineering And Structural Dynamics, 1998,27:937-956.
    [90]Gopalaratnam. V S. and Shah.S. P. Softening Response of Plain Concrete in Direct Tension, ACI Journal,1985 (3):310-323.
    [91]吕涛,石济民,林振宝.区域分解算法.北京:科学出版社,1992.
    [92]Schwarz, H. A., Gesammelete Mathematische Abhandlungen, Volume 2, Springer, Berlin,1890. First published in Vierteljahrsschrift der Naturforschenden Gesellschaft in Zurich, volume 15,1870,272-186.
    [93]金先龙,李渊印.结构动力学并行计算方法及应用.北京:国防工业出版社,2008.
    [94]张林波,迟学斌,莫则尧,李若.并行计算导论.北京:清华大学出版社,2006.
    [95]中国水利水电科学研究院.水工建筑物抗震设计规范.北京:中国电力出版社,2001.
    [96]张志国,肖明,陈俊涛.大型地下洞室地震灾变过程的三维动力有限元模拟.岩石力学与工程学报,2011,30(3):509-523.
    [97]肖明.地下洞室围岩稳定与支护数值方法研究.武汉大学,2002.
    [98]长江水利委员会长江科学院.工程岩体分级标准.1995.
    [99]FEMA (2005), Federal Guidelines for Dam Safety, Earthquake Analyses and Design of Dams, May 2005
    [100]Bureau of Reclamation U.S (2006), State-of-Practice for Nonlinear Analysis of Concrete Dams.
    [101]Federal Energy Regulatory Commission Division of Dam Safety and Inspections (1999), Engineering Guidelines for the Evaluation of Hydropower Projects, Chapter 11-Arch Dams.
    [102]长江水利委员会长江科学院.工程岩体分级标准(征求意见稿).2011.
    [103]水利部长江水利委员会长江勘测规划设计研究院.混凝土重力坝设计规范.北京:中国水利水电出版社,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700