用户名: 密码: 验证码:
区域滑坡崩塌地质灾害特征分析及其易发性和危险性评价研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地质灾害作为一种破坏性的地质事件,经常对人类的生命财产和生存环境构成严重威胁,制约着人类的可持续发展。经过几十年的探索,我国在地质灾害研究领域取得了丰硕的成果。但总体来说,与国际先进水平相比还存在着一定的差距。特别是对于区域地质灾害的自组织临界性、幂律相依性、频率空间相依性和规模参数对数正态分布性等方面,缺乏定量的认识;在区域地质灾害评价因子筛选与分析、易发性及危险性评价方面也有许多问题值得深入探索。宁强县地处秦巴山区,地质灾害充分发育,发生频率高,分布点多面广,是陕西省地质灾害重灾县之一,也是进行区域地质灾害特征分析和危险性评价的良好实验基地。基于此,本文以宁强县为例,依托陕西省“13115”科技创新工程重大科技专项项目(2008ZDKG-75)"基于3S技术的陕西省宁强县强震次生灾害监测评估研宄”,在小比例尺地质灾害详查和SPOT5等遥感数据解译基础上,建立了详细的地质灾害编录数据库。对地质灾害的某些特征进行了定量分析研究,对该区域地质灾害的易发性和危险性进行了评价与分区,最后对风险管理进行了探索。取得了以下主要成果:
     1.定量的探索和揭示了区域地质灾害某些特征:
     ①宁强县地质灾害以滑坡为主,崩塌、泥石流次之。在地域分布上,呈现一带三区;在规模类型上,以小型为主,但特大型和巨型滑坡崩塌控制着滑坡崩塌总面积和总体积:在形态分布上,以半圆型和等长式滑坡为主;在物质组成上,滑坡以土质堆积层滑坡为主,崩塌以岩质崩塌为主;在空间分布上,既有分散性又有聚集性。聚集性有规模上的集聚性、受威胁对象的集聚性,有时间上的聚集性和空间上的聚集性等。特别是在空间聚集性上,本文通过最近邻分析法和Ripley K函数法进行了验证。
     ②通过定量分析频率与规模之间的数量关系,探索了地质灾害的自组织临界性,并在国内首次发现了当滑坡规模较小时,在双对数曲线上滑坡崩塌频率出现“偏转效应”。
     ③提出了地质灾害规模参数的幂律相依性,这在国内研究处于空白状态,即使是国外的研究也仅限于对体积与面积幂律相依性的讨论。本文在揭示体积与面积幂律相依性的基础上,进一步提出面积与长、宽等参数之间的幂律相依性,并给出了公式。
     ④定量分析了地质灾害的分形与变维分形特征,采用盒维数法计算了单体滑坡和空间地质灾害分布的分形维数,并以滑坡空间分布与高程、坡度的关系为例,揭示了其变维分形特征。
     ⑤论述了地质灾害频率的空间相依性及其分区,指出地质灾害频率是地质灾害的空间分布参数,在进行滑坡崩塌地质灾害评价分区时必须选择一个合理的目标区域:区域地质灾害分区、线性地质灾害分区和场地地质灾害分区。
     ⑥指出了地质灾害参数的对数正态分布特征,通过箱式图和QQ图进行了验证,并用正态、韦伯和Logistic分布曲线进行了拟合。
     2.论述了制图单元的选择,将制图单元归结为5类:网格单元、地域单元、均一条件单元、斜坡单元和地形单元。根据研究需要,文中选择了斜坡单元和网格单元进行地质灾害的评价。
     3.建立了较为完善的区域滑坡崩塌地质灾害评价指标体系,通过定性与定量相结合的方法,系统分析和阐述了地质灾害与其评价因子之间的关系。采用信息量法、Logistic回归法、人工神经网络法和支持向量机等方法进行了易发性评价,采用乘积法和综合法进行了危险性评价。在此基础上,将宁强县地质灾害的易发性划分为3个分区,分别为:高易发区、中易发区和低易发区。危险性分为3个分区,分别为:高危险区、中危险区和低危险区。
     4.系统的提出了对地质灾害易发性评价结果比较的意义与方法,指出分类关乎成本,误分类类型不同,其成本也有很大的不同。并将模型准确性统计按照其是否受临界值约束这一条件分为受临界值约束和不受临界值约束两类。并采用ROC曲线、Kappa系数和成功率曲线等性能评价方法对各种方法和模型的易发性评价结果进行了比较分析,结果表明:相比于其它模型与方法,人工神经网络模型模拟计算结果更客观、更合理。
     5.探索了地质灾害事件的概率和频率分布,采用泊松分布模型对宁强县滑坡在不同面积、体积等级上5年、10年和50年的超越概率进行了计算。并将地质灾害的频率分为:绝对频率、相对频率和间接频率;最后,通过考虑过去地质灾害活动程度和未来影响因素来间接反映地质灾害的频率。
     6.探讨了地质灾害的风险及其风险管理和风险可接受水平,有针对性的建立了地质灾害风险管理体系以及控制途径。描述了地质灾害的矛盾性,风险的动态性等,进而指出灾害系统的实质是地球表层系统中的“人类-自然耦合系统”。
As a destructive geological event, geological disasters affect human life,property and living environment seriously, and restrict the sustainable development of human beings. In spite of our country in the field of geological disasters has achieved fruitful results during the past several decades,on the whole, In comparison to the international advanced level there are large gaps. Especially for certain characteristics of regional geological disaster, such as self-organized criticality, power-law dependence, laggregation,spatial-dependence of frequency and log-normal of parameters of scale, lack of qualitative or quantitative cognition. About the assessment of regional geological disasters, such as deep and systematic analysis of impact factor, comparison of results of susceptibility assessment,frequency on geological hazard and other related fields,there are exploration space. Ningqiang County is located in Qin-Ba mountains, there are many geological disasters.they has the extensive distribution in Shaanxi Province.but it is also a good experimental base for characteristic analysis and hazard assessment of geological disaster. Therefore, this paper takes Ningqiang county as an example, which in Hanzhong city of Shaanxi province, on the back of "13115" science and technology innovation engineering major technology special project (2008ZDKG-75) named"The evaluation research of secondary disasters based on3S technique in Ningqiang county of Shanxi Province", and then established the detailed catalogue of geological disasters and the database based on scrutinize in small scale geological disasters and the interpretation of remote sensing data such as SPOT5. On the bases of above, fist, analysis the characteristics of geological disaster systematically, then do some researches on susceptibility assessment and do some exploratory study on risk assessment of Ningqiang country, finally discusses the risk of geological disasters and risk management briefly. Made the following main conclusions:
     1. Some features of the regional geological disasters were explored and revealed quantitatively as below:
     ①The main type of geo-hazard is landslide in Ningqiang county and the second is landfalls and debris flow. In the regional distribution, the types of geological hazards present1belt and3areas.In the scale, mainly with small, but the total area and the bulk volume of the landslide and collapse were controlled by large and giant landslide; In the distribution pattern, primarily with half-round and equal-length landslide; In the material composition, the main type of landslide is soil and debris landslide and collapse is rock collapse; In the space distribution, the types of geo-hazard have the characteristics of dispersion and clustering; the characteristic of clustering are showed in the scale, the threatened object, time and space. Especially in the clustering of space, this article further verified the characteristic of clustering by the nearest analysis and Ripley K function method.
     ②Self-organized criticality of geological disasters was explored quantitatively by analysis the relationship between frequency and scale. And found "rollover effect" of frequent of landslides and collapse at home for the first time in double logarithmic coordinate when the scale of landslide is small.
     ③Power law dependency of scale parameter of geological disasters was put forward, which was blank in the research at home and limited to power law dependency discussion on volume and area on abroad. This paper further put forward power law dependency between the parameters of area, length and width on the basis of revealing the power law dependency of volume and area, and put forward the formula.
     ④The fractal and variable dimension fractal feature of geological disasters were analyzed quantitatively, calculate fractal dimension of monomer landslide and space distribution of geological disasters by using the box counting dimension method, and took the relationship of space distribution of landslide between elevations and slope for example, reveals its variable dimension fractal feature.
     ⑤The frequency of space dependency and zoning of geo-hazard were discussed, putting forward the frequency of geo-hazard is the parameters of spatial distribution of geo-hazard. A reasonable target area should be chose when making evaluation zone of geo-hazard:regional geo-hazard zone, linear geo-hazard zone and the field zone.
     ⑥The logarithm normal distribution characteristic of parameters of geo-hazard was pointed out, which was verified by box figure and QQ figure and fitted with normal, Weibull and Logistic distribution curves.
     2.The selection of mapping unit was discussed and the mapping unit comes down to5kinds:the grid unit, regional unit, uniform conditions unit, slope unit and terrain unit. According to the needs, the evaluation of the geological hazard in this paper chose slope unit and grid unit.
     3. An integrated index system of regional geo-hazard assessment has been established, the relationship between the geo-hazard and their evaluation factor has been analyzed and discussed systematically.By using information model, Logistic regression model, artificial neural network and support vector machine method to evaluate geo-hazard susceptibility,and using product method and synthesis method to evaluate landslide hazard. On this basis, divided landslide susceptibility of Ningqiang County into three zones:high susceptibility zones,middle susceptibility zones and low susceptibility zones. divided landslide hazard into three zones:high middle and low hazard zone.
     4. Provided the significance and method of comparison of assessment results of landslide susceptibility, pointed out that the classification relates to the cost. the costs are very different in different type of misclassification error. Accuracy statistics of model were divided into cutoff-dependent performance criteria and cutoff-independent performance criteria according to whether the statistics are constrained by the critical value.At last,by using the method of receiver operating characteristic, cohen's kappa and success-rate curves to make comparative analysis of susceptibility assessment.The results showed that:compared to other models and methods, the simulation results of artificial neural network model was more objective and reasonable.
     5.The geo-hazard in the probability of events and frequency distribution were explored, and the exceeding probability of landslide in different classes of area, volume on five years.10years and50years in Ningqiang county was calculated by using poisson distribution model. The frequency of the geological disasters is divided into:absolute frequency, relative frequency and indirect frequency, and the frequency of geo-hazard were reflected indirectly through geo-hazard in the past and future activity.
     6.The risk of geo-hazard, risk management and risk acceptable level were discussed, and the geological disaster risk management system and control system were established. In this article, the contradiction in geological disasters and the dynamic of risk were described. and pointed out that the essence of the disaster systems is "human-natural coupling system" in earth surface system.
引文
[1]Aldo C, Susanna P, Claudio T, et al. A procedure for landslide susceptibility zonation by the conditional analysis method[J].Geomorphology,2002,48:349-364
    [2]Aleotti P, Chowdhury R.Landslide hazard assessment:summary review and new perspectives[J].Bull.Eng.Geol.Env.,1999,58:21-24
    [3]Baeza C., Corominas J. Assessment of shallow landslide susceptibility by means of multivariate statistical techniques[J]. Earth Surface Processes and Landforms,2001, 26(12):1251-1263
    [4]Bak,P.How Nature Works:The Science of Self-Organized Criticality[M].New York: Copernocus Press For Springer-Verlag,1996.31-32
    [5]Banair A.A review of vegetation indices[J].Remote Sens. Review.1995,13:95-120
    [6]Barling R.D.,Moore I.D.,Grayson R.B.A quasi-dynamic wetness index for characterizing the spatial distribution of zones of surface saturation and soil water content [J]. Water Resourse Research.1994.30:1029-1044
    [7]Begueria S. Validation and evaluation of predictive models in hazard assessment and risk management[J]. Natural Hazards.2006,37 (3):315-329
    [8]Beven K.J.,Kirkby M.J.,Schoffield N.,et al.Testing a Physically-based flood forecasting model(TOPMODEL) for three UK catchments[J].Journal of Hydrology.1984,69: 119-143
    [9]Beven K.J..Kirkby M.J.A physically based.variable contributing area model of basin hydrology[J].Hyddrological Sciences Bulletin,1979,24:43-68
    [10]Brabb E.E. Innovative approaches to landslide hazard mapping[J].4th International Symposium on Landslides,1984,1:307-324
    [11]Brardinoni F., Church M. Representing the landslide magnitude frequency relation: Capilano River basin, British Columbia[J]. Earth Surface Processes and Landforms,2004, 29:115-124
    [12]Brunsden D.,Prior D.B.Slope instability[M]. New York John Wiley and Sons,1984:620.
    [13]Bucknam, R.C., Coe, J.A., Chavarria, M.M.,et al.Landslides triggered by Hurricane Mitch in Guatemala-inventory and discussion.U.S.Geological Survey Open File Report 01-443 (38 pp),2001
    [14]Burrough P A.Fractal dimensions of landscapes and other environmental data[J]. Nature, 1981,294:240-242
    [15]C.J.Van Westen, N.Rengers, M.T.J.Terlien.Predietion of the oeeurrenee of slope instability Phenomena through GIS-based hazard zonation[J], GeolRundseh,1997,86:404-414
    [16]Cannon, S.H., Ellen, S.D.,1988. Rainfall that resulted in abundant debris-flow activity during the storm. In:Ellen, S.D., Wieczorek, G.F. (Eds.), Landslides, floods and marine effects of the storm of January 3-5,1982, in the San Francisco Bay region,California. U.S. Geological Survey Professional Paper, vol.1434, pp.27-33
    [17]Cardinali, M., Ardizzone, F., Galli, M., Guzzetti, F., Reichenbach,P.,2000. Landslides triggered by rapid snow melting:the December 1996-January 1997 event in Central Italy. In:Claps, P., Siccardi, F. (Eds.), Proceedings 1st Plinius Conference on Mediterranean Storms. Bios Publisher, Cosenza,pp.439-448
    [18]Cardinali, M., Carrara, A., Guzzetti, F., Reichenbach, P.,2002.Landslide hazard map for the Upper Tiber River basin. CNR Gruppo Nazionale per la Difesa dalle Catastrofi Idrogeologiche Publication n.2116. scale 1:100,000
    [19]Carrara A., Cardinali M., Detti R., Guzzetti F., PasquiV., ReichenbachP.GIS Techniques and statistical models in evaluating landslide hazard[J]. Earth Surface Processes and Landform,1991,16:427-445
    [20]Carrara A., Crosta G.B., Frattini P. Comparing models of debris-flow susceptibility in the alpine environment[J]. Geomorphology,2008,94:353-378
    [21]Carrara A., Crosta G.B., Frattini P. Geomorphological and historical data in assessing landslide hazard[J]. Earth Surface Processes and Landforms,2003,28:1125-1142
    [22]Carrara A., Guzzetti F., Cardinali M., ReichenbachP.Use of GIS technology in the prediction and monitoring of landslide hazard[J]. Natural Hazards,1999,20:117-135
    [23]Carrara A.,Cardinali M,Guzzetti F,Reiehenbaeh P.GIS technology techniques in mapping Landslide hazard[M]. The Netherlands:Ktlwer,Dordreeht,1995:135-175
    [24]Chung C.F., Fabbri A.G. Validation of spatial prediction models for landslide hazard mapping[J]. Natural Hazards,2003,30 (3):451-472
    [25]Cilliers P. Complexity and Postmodernism:Understanding Complexity Systems[M]. New York:Routledge,1998
    [26]Coe, J.A., Michael, J.A., Crovelli, R.A., Savage, W.Z.,2000. Preliminary map showing landslide densities, mean recurrence intervals, and exceedance probabilities as determined from historic records, Seattle, Washington. United States Geological Survey Open File Report 00-303
    [27]Committee of the International Decade for Natural Disaster Reduction. Final Report of the International Decade for Natural Disaster Reduction (IDNDR).1999. http://www. idndr.org/stcrep.htm.
    [28]Committee of the International Decade for Natural Disaster Reduction. Final report of the international decade for natural disaster reduction.1999.http://www.idndr.org/stcrep.htm
    [29]Connor C.B., Hill B.E. Three nonhomogeneous Poisson models for the probability of basaltic volcanism:application tothe Yucca Mountain region, Nevada[J]. Journal of Geophysical Research,1995,100:10107-10125
    [30]Corominas J., Moya J. Reconstructing recent landslide activity in relation to rainfall in the Llobregat River basin, Eastern Pyrenees, Spain[J].Geomorphology,1999,30 (1-2):79-93
    [31]Corominas, J. The angle of reach as a mobility index for small and large landslides[J]. Canadian Geotechnical Journal,1996,33:260-271
    [32]Cortes c, Vapnik V. Support Vector Networks[J]. Machine Learning.1995,20(3):273-297
    [33]Costa, J.A., Baker, V.R.Surficial Geology-Building with the Earth[M]. New York:John Wiley and Sons,1981:498
    [34]Cotecchia V.,Guerricchio A.,Melidoro G.The geomorphogenetic crisis triggered by the 1783 earthquake in Calabria(Southern Italy)[J].Geologia applicata e idrogeologica. 1986,21:245-304
    [35]Crosta G.B.. Frattini P. Distributed modeling of shallow landslides triggered by intense rainfall[J]. Natural Hazards and Earth System Sciences.2003.3 (1-2):81-93
    [36]Crovelli, R.A.,2000. Probability models for estimation of number and costs of landslides. United States Geological Survey Open File Report 00-249
    [37]Crozier M. The climate landslide couple:a Southern Hemisphere perspective[J]. Palaeoclimate Research.1997.19:333-354
    [38]Crozier, M.J., Glade, T.,2005. Landslide hazard and risk:issues, concepts and approach.In:Glade, T., Anderson. M.G., Crozier, M.J. (Eds.), Landslide Risk Assessment. InJohn Wiley, Chichester, pp.1-40
    [39]Davis P.A., GoodrichM.T. A proposed strategy for the validation of ground-water flow and solute transport models[R]. Albuquerque, NM (USA):Sandia National Labs,1990
    [40]Drummond, C., Holte, R.C.,2000. Explicitly representing expected cost:an alternative to ROC representation. Proc. of the 6th ACMSIGKDD International Conference on Knowledge Discovery and Data Mining, pp.198-207
    [41]Ercanoglu M., Gokceoglu C.Assessment of landslide susceptibility for a landslide-prone area (north of Yenice, NW Turkey) by fuzzy approach[J]. Environmental Geology,2002, 41 (6):720-730
    [42]ERM-Hong Kong. Landslides and Boulder Falls from Natural Terrain:Interim Risk Guidelines. Hong Kong:Geotechnical Engineering Office,1998,1-15
    [43]Farina P.,et al. Permanent Scatterers for landslide investigations:outcomes from the ESA-SLAM project[J].Engineer Geology,2006.88(3-4):200-217
    [44]Fell R, H.K.,Laeasse S, Leroi E.A framework for landslide risk assessment and management.in The Intematfonal Conference on Landslide Risk Managelnent 2005. Vancouver, Canada:A.A.Balkema Publishers
    [45]Fell R.Landslide risk assessment and acceptable risk[J]. Canadian Geotechnical Journal, 1994,31:261-272
    [46]Fernandez T., Irigaray C., E1 Hamdouni R., ChaconJ.Methodology for landslide susceptibility mapping by means of a GIS. Application to the Contraviesa Area(Granada, Spain)[J]. Natural Hazards,2003,30:297-308
    [47]Frattini P., Crosta G.B., Carrara A., Agliardi F.Assessment of rockfall susceptibility by integrating statistical and physically-based approaches[J]. Geomorphology,2008,94 (3-4): 419-437
    [48]GalIi M.. Ardizzone F.. Cardinali M., Guzzetti F., ReichenbachP.Comparing landslide inventory maps[J]. Geomorphology,2008,94:268-289
    [49]Gokceoglu C, Aksoy H. Landslide susceptibility mapping of the slopes in the residual soils of the Mengen region (Turkey) by deterministic stability analyses and image processing techniques[J].Engineering Geology,2006,44:147-161
    [50]Gorsevski P.V.. Gessler P.E., Foltz R.B., Elliot W.J. Spatial prediction of landslide hazard using logistic regression and ROC analysis[J]. Transactions in GIS,2006.10 (3):395-415
    [51]Greenway D R. Vegetation and slope stability. In:M G Richards K S (Eds.). slides investigation and mitigation,Transportation Research Anderson, Slope Stability. New York:Wiley,1987:187-230
    [52]Gregory C Ohlmacher, John C Davis. Using Multiple Logistic Regression and GIS Technology to Predict Landslide Hazard in Northeast Kansas, USA[J]. Engineering Geology,2003,69:331-343
    [53]Guerricchio A.,Melidoro G.Movimenti di massa pseudo tettonici nell'apennino dell'Italia Meridionale[J].Geologia Applicata e Idrogeologica,1981,16:251-294
    [54]Guthrie R.H., EvansS.G. Magnitude and frequency of landslides triggered by a storm event,LoughboroughInlet, British Columbia[J]. Natural Hazards and Earth System Sciences,2004,4:475-483
    [55]Guzzetti F. Estimating the quality of landslide susceptibility models[J]. Geomorphology, 2006.81(1-2):166-184
    [56]Guzzetti F., Carrara A., Cardinali M., Reichenbach P. Landslide hazard evaluation:a review of current techniques and their application in a multi-scale study, Central Italy[J]. Geomorphology,1999,31:181-216
    [57]Guzzetti F., Galli M., Reichenbach P., Ardizzone F., Cardinali M.Landslide hazard assessment in the Collazzone area, Umbria, central Italy[J]. Natural Hazards and Earth System Sciences,2006,6:115-131
    [58]Guzzetti F., Malamud B.D., TurcotteD.L., ReichenbachP.Power-law correlations of landslide areas in Central Italy[J]. Earth and Planetary Science Letters,2002,195:169-183
    [59]Guzzetti F., Reichenbach P., Cardinali M., Galli M,, Ardizzone F.Probabilistic landslide hazard assessment at the basin scale[J]. Geomorphology,2005,72:272-299
    [60]Haflidason, H., Lien, R., Sejrup, H.P., Forsberg, C.F.,et al.The dating and morphometry of the Storrega Slide[J]. Marine and Petroleum Geology,2005,22:187-194
    [61]Hansen, A.,1984. Landslide hazard analysis. In:Brunsden, D., Prior, D.B. (Eds.), Slope Instability. Wiley & Sons, New York. pp.523-602
    [62]Harmon R.S.. Doe III.W.W.. Landscape Erosion and Evolution Modeling[M].Springer Verlag.2001:535
    [63]Harp E.L., Jibson R.L. Landslides triggered by the 1994 Northridge. California earthquake[J]. Seismological Society of America Bulletin.1996.86:319-S332
    [64]Hovius N., Stark C.P., Allen P.A. Sediment flux from a mountain belt derived by landslide mapping[J]. Geology,1997,25:231-234
    [65]Imaizumi, F., Sidle, R.C. Linkage of sediment supply and transport processes in Miyagawa Dam catchment, Japan[J].2007,Journal Geophysical Research 112 (F03012). doi:10.1029/2006JF000495
    [66]Imaizumi, F., Sidle, R.C., Kamei, R.Effects of forest harvesting on the occurrence of landslides and debris flows in steep terrain of central Japan. Earth Surface Processes and Landforms[J].2008,33:827-840
    [67]Innes J.N. Lichenometric dating of debris-flow deposits in the Scottish Highlands[J].Earth Surface Processes and Landforms,1983,8:579-588
    [68]Irigaray C., Fernandez T., El Hamdouni R., Chacon J. Verification of landslide susceptibility mapping:a case study[J]. Earth Surface Processes and Landforms 1999,24: 537-544
    [69]Jibson, R.W., Harp, E.L., Michael, J.A.,1998. A metho d for producing digital probabilistic seismic landslide hazard maps:an example from the Los Angeles, California, Area.US Geological Survey Open File Report 98-113
    [70]Johnson, K.A., Sitar, N. Hydrologic conditions leading to debris-flow initiation[J]. Canadian Geotechnical Journal,1989,27:789-801
    [71]Jordi Corominas, Jose Moya. A review of assessing landslide frequency for hazard zoning purposes[J]. Engineering Geology,2008,102:193-213
    [72]Keaton, J.R., Anderson, L.R., Mathewson, C.C.,1988. Assessing debris flow hazards on alluvial fans in Davis County, Utah. In:Fragaszy, R.J. (Ed.), Proceedings 24th Annual Symposium on Engineering Geology and Soil Engineering. Washington State University, Pullman, pp.89-108
    [73]Keefer, D.K. Landslides caused by earthquakes[J]. Geological Society of America Bulletin,1984,95 (4):406-421
    [74]Kenkel N C. Pattern of self-thinning in jack pine:testing the random mortality hypothesis[J]. Ecology,1988,69:1017-1024
    [75]Kilburn C.R.J., Pasuto A. Major risk from rapid, large-volume landslides in Europe(EU Project RUNOUT)[J]. Geomorphology,2003,54(1/2):3-9
    [76]Klein F.W. Patters of historical eruptions at Hawaiian volcanoes[J].Journal of Volcanology and Geothermal Research.1982.12:1-35
    [77]Korup O. Distribution of landslides in southwest New Zealand[J]. Landslides 2005,2: 43-51
    [78]Korup O. Geomorphic imprint of landslides on alpine river systems, southwest New Zealand[J]. Earth Surface Processes and Landforms,2005.30:783-800
    [79]L.Cascini,C.B.,Landslide hazard and risk zoning for urban planning and development. Landslide Risk Management,ed.R.F.Oldrich Hungr.2005:A.A.BALKEMA 199-235
    [80]Larsen M.C., Torres Sanchez A.J. The frequency and distribution of recent landslides in three montane tropical regions of Puerto Rico[J]. Geomorphology,1998,24:309-331
    [81]LaveJ., Burbank D. Denudation processes and rates in the transverse ranges,southern California:erosional response of a transitional landscape to external and anthropogenic forcing[J]. Journal of Geophysical Research 109 (F01006).doi:10.1029/2003JF000023, 2004
    [82]LEE S. Application of Logistic Regression Model and its Validation for Landslide Susceptibility Mapping Using GIS and Remote Sensing Data[J]. International Journal of Remote Sensing,2005,26(7):1477-1491
    [83]Lee S., Min K.Statistical analysis of landslide susceptibility at Yongin, Korea[J]. Environmental Geology,2001,40:1095-1113
    [84]Lee S., Ryu J.H., Min K., Won J.S.Landslide susceptibility analysis using GIS and artificial neural network[J]. Earth Surface Processes and Landforms,2003,28,1361-1376.
    [85]Lee S.Application of logistic regression model and its validation for landslide susceptibility mapping using GIS and remote sensing data[J]. International Journal of Remote Sensing,2005,26 (7):1477-1491
    [86]Lee, E.M., Brunsden, D., Sellwood, M.,2000.Quantitative risk assessment of coastal landslide problems, Lyme Regis, UK. In:Bromhead, E., Dixon, N., Ibsen, M.-L (Eds.),Landslides, in research theory and practice. VIII International Symposium on Landslides, vol.2. Thomas Telford, pp.899-904
    [87]Lips, E.W., Wieczorek, G.F.,1990. Recurrence of debris flows on an alluvial fan in central Utah. In:French, R.H.(Ed.), Hydraulic/Hydrology of Arid Lands, Proceedings of the International Symposium. American Society of Civil Engineers,pp.555-560
    [88]Lowrance. Of Acceptable Risk:Science and the Determination of Safety[M]. California: William Kaufmann, Inc.,1976:1-174
    [89]M.Borga.,G.Dalla Fontana.,D.Da Ros..L.Marchi.Shallow landslide hazard assessment using a physically based model and digital elevation data[J].Enviromental Geology,1998.35:2-3
    [90]M.J. Garcia-Rodriguez., J.A. Malpica., B. Benito., M. Diaz.Susceptibility assessment of earthquake triggered landslides in El Salvador using logistic regression[J]. Geomorphology,2007,95:172-191
    [91]Malamud B.D.. Turcotte D.L., Guzzetti F., ReichenbachP.Landslide inventories and their statistical properties[J]. Earth Surface Processes and Landforms.2004.29.687-711
    [92]Mandelbrot B. Fraetals.B.form,chance and dimension[M]. San Franeiseo. Calif: W.H.Freeman.1977
    [93]Mario Mejia,Navarro利用地理信息系统(GIS)进行地质灾害和风险评估-研究方法和模型在哥伦比亚麦德林地区的应用[J].地质科学译丛,1995,12(3):35-52
    [94]Marszal E M. Tolerable risk guidelines[J]. Isa Transactions,2001,40(4):391-399
    [95]Martin Y., Rood K., Schwab J.W., Church M.Sediment transfer by shallow landsliding in the Queen Charlotte Islands, British Columbia[J]. Canadian Journal of Earth Sciences,2002,39 (2):189-205
    [96]Mauro Rossi., Fausto Guzzetti., Paola Reichenbach., Alessandro Cesare Mondini., Silvia Peruccacci. Optimal landslide susceptibility zonation based on multiple forecasts[J]. Geomorphology,2009,114:129-142
    [97]Melchiorre, C., Matteucci, M., Remondo, J.Artificial neural networks and robustness analysis in landslide susceptibility zonation. Proc. International Joint Conference on Neural Networks, Vancouver, BC, Canada,2006. July 16-21
    [98]Michael Leiba M. Quantitative Landslide Risk Assessment of Cairns [A]. Thomas Telford. Landslides in research, theory and practice[C], Australia,2000:2-91
    [99]Mollard J.D.Regional landslide types in Canada.In reviews in engineering geology, Vol.3, Geological society of America,Boulder,Colo.,1977:29-56
    [100]Montgomery D.R., Dietrich W.E. A physically based model for the topographic control on shallow landsliding[J]. Water Resources Research,1994,30 (4):1153-1171
    [101]MontgomeryR.D., SchmidtK.M., Greenberg H.M., Dietrich W.E. Forest clearing and regional landsliding[J]. Geology,2000,28 (4):311-314
    [102]Nathenson, M.,2001.Probabilities of volcanic eruptions and application to the recent history of Medicine Lake Volcano. In:Vecchia, A.V. (Ed.), U.S. Geological Survey Open-file Report 2001-324, pp.71-74
    [103]Nefeslioglu H.A., Gokceoglu C., Sonmez, H. An assessment on the use of logistic regression and artificial neural networks with different sampling strategies for the preparation of landslide susceptibilitymaps[J].Engineering Geology,2008,97(3-4): 171-191
    [104]Nicoletti P.G., Sorriso Valvo M. Geomorphic controls of the shape and mobility of rock avalanches[J]. Geological Society of America Bulletin,1991,103:1365-1373
    [105]Oldrich Hungr. Robin Fell, Rejean Couture, et al.Preface[C]//HunF O. Fell R. Couture R.et al. Landslide Risk Management. The International Conference on Landslide Risk Management.Vancouver,Canada.31 May-3 June,2005
    [106]Onoz and Bayazit, M.Effect of the occurrence process of the peaks over threshold on the flood estimates[J]. Journal of Hydrology,2001,244:86-96
    [107]P. Bak, C. Tang, K. Wiesenfeld, Self-organized criticality:An explanation of 1/f noise[J], Phys. Rev. Lett.1987,59:381-384
    [108]Paolo Frattini, Giovanni Crosta, Alberto Carrara. Techniques for evaluating the performance of landslide susceptibility models[J]. Engineering Geology,2010,111:62-72
    [109]Paradise T.R.Perception of earthquake risk in Agadir,Morocco:A case study from a Muslim community[J].Global Environmental Change Part B:Environmental Hazards, 2005.6(3):167-180
    [110]Pelletier J.D., Malamud B.D., Blodgett T., Turcotte D.L.Scaleinvariance of soil moisture variability and its implications for the frequency-size distribution of landslides[J]. Engineering Geology,1997,48:255-268
    [111]Philip T, Steven E. An automated approach to the classification of the slope units using digital data[J].Geomorphology,1998,21:251-264
    [112]R Greco., M Sorriso-Valvo.,E.Catalano.Logistic Regression analysis in the evaluation of mass movements susceptibility:The Aspromonte case study,Calabria,Italy[J].Engineering Geology,2007,89:47-66
    [113]R.Nagarajan., A.Roy., R.Vinod Kumar., A.Mukherjee., M.V.Khire.Landslide hazard s usceptibility mapping based on terrain and elimatie factors for tropical monsoon regions[J], BullEngGeolEnv,2000,58:275-287
    [114]Reichenbach, P., Galli, M., Cardinali, M., Guzzetti, F., Ardizzone, F.,2005. Geomorphologic mapping to assess landslide risk:concepts, methods and applications in the Umbria Region of central Italy. In:Glade, T., Anderson, M.G., Crozier, M.J. (Eds.), Landslide Risk Assessment. John Wiley, Chichester, pp.429-468
    [115]Remondo J., Gonzalez A., Diaz de Teran J.R., Cendrero A., Fabbri A., Chung C.F.Validation of landslide susceptibility maps; examples and applications from a case study in northern Spain[J]. Natural Hazards,2003,30 (3):437-449
    [116]Rib H.T.,Liang T.Recognition and identification.In special report 176:Landslides: Analysis and Control.TRB,National Research Council,Washington,D.C.,1978:34-80.
    [117]Rice R.M., CorbettE.S., BaileyR.G. Soil slips related to vegetation, topography,and soil in Southern California[J]. Water Resources Research,1969,5 (3):647-659
    [118]Rice R.M.,et al. Effects of high intensity storms on soil slippage on mountainous watersheds in Southern California[J]. Water Resources Research,1971,7 (6):1485-1496
    [119]Risk Case Studies in Forest Development Planning and Operations:B.C., Ministry of Forests, Forest Science Program, Abstract of Land Management Handbook, vol.56,pp. 13-26
    [120]Roberds, W.,2005.Estimating temporal and spatial variability and vulnerability. In:Hungr, O., Fell, R., Couture, R., Eberthardt, E. (Eds.), Landslide Risk Management. Taylor and Francis, London, pp.129-157
    [121]Robin Fell, Jordi Corominas, Christophe Bonnard, et al. Guidelines for landslide susceptibility, hazard and risk zoning for land use planning[J]. Engineering Geology, 2008,102:85-98
    [122]Romeo R., Floris M., Veneri F.Area-scale landslide hazard and risk assessment[J]. Environmental Geology,2006,51:1-13
    [123]Schuster, R.L., Wieczorek, G.F.,2002. Landslide triggers and types. In:Rybar, J.,Stemberk, J., Wagner, P. (Eds.), Proceedings 1st European Symposium on Landsli des,Prague, pp.59-78
    [124]Shi-Biao Bai, Jian Wang, Guo-Nian Lu.GIS-based logistic regression for landslide susceptibility mapping of the Zhongxian segment in the Three Gorges area, China[J]. Geomorphology,2009,115:23-31
    [125]Simonett D.S. Landslide distribution and earthquakes in the Bewani and Torricelli Mountains, New Guinea. In:Jennings, J.N., Mabbutt, J.A. (Eds.), Landform Studies from Australia and NewGuinea[M]. Cambridge:Cambridge University Press,1967:64-84
    [126]Soeters, R., vanWesten, C.J.,1996. Slope instability recognition, analysis and zonation. In:Turner, A.K., Schuster, R.L. (Eds.), Landslide Investigation and Mitigation. Transportation Research Board Special Report, vol.247. National Research Council, pp. 129-177
    [127]Sridevi Jadi.斜坡不稳定性分类的统计模型[J].世界地质,1997,16(1):83-88.
    [128]Stark C.P., Hovius N. The characterization of landslide size distributions[J]. Geophysical Research Letters,2001,28:1091-1094
    [129]Takashi.Japan-China joint symposium on slope stability and their control[Z].1995. 114-118
    [130]Uromeihy..M.R.Mahdavifar.Landslide hazard zonation of the Kllorshrostam Area. Iran[J], Bull Eng GeolEnv.2000.58:207-213
    [131]Van Den Eeckaut M., Poesen J., Govers G., Verstraeten G.,Demoulin A. Characteristics of the size distribution of recent and historical landslides in a populated hilly region[J]. Earth and Planetary Science Letters,2007,256:588-603
    [132]Van Den Eeckhaut, M., Reichenbach P., Guzzetti F., Rossi M., Poesen J. Combined landslide inventory and susceptibility assessment based on different mapping units:an example from the Flemish Ardennes[J], Belgium. Natural Hazards and Earth Systems Sciences,2009,9:507-521
    [133]van Westen C J. Application of geographic information systems to landslide hazard zonation[M]. Netherlands:ITC Publication vol.15,Enschede,1993
    [134]Vandine, D.F., Moore, G., Wise, M., Vanbuskirk, C., Gerath, R.,2004. Chapter 3-technical terms and methods. In:Wise, M., Moore, G., VanDine, D. (Eds.), Landslide
    [135]Varnes, D.J., IAEG Commission on Landslides and other Mass-Movements. Landslide Hazard Zonation:A Review of Principles and Practice[M]. Paris:The UNESCO Press,1984
    [136]Western A.W.,Grayson R.B.,et al.Observed spatial organization of soil moisture and its relation to terrain indices[J].Water Resources Research,1999,35(3):797-810
    [137]Whitehouse I.E. Distribution of large rock avalanche deposits in the Central Southern Alps, New Zealand[J]. New Zealand Journal of Geology and Geophysics,1983, 26:271-279
    [138]Wiegand T, Moloney K A. Rings, circles and null-models for point pattern analysis in ecology[J].Oikos,2004,104:209-229
    [139]Wilson J P, Gallant J G. Digital terrain analysis.In:Wilson and Gallant,ed.Terrain analysis:Principal and application.John Wiley & Sons,Inc.2000,1-26
    [140]X.Yao.,L G.Tham.,F.C.Dai. Landslide susceptibility mapping based on Support Vector Machine:A case study on natural slopes of Hong Kong,China[J]. Geomorphology,2008, 101:572-582
    [141]Yesilnacar E., Topal T. Landslide susceptibility mapping:a comparison of logistic regression and neural networks methods in a medium scale study, Hendek region(Turkey)[J]. Engineering Geology,2005,79 (3-4):251-266
    [142]Yevjevich, V. Probability and Statistics in Hydrology.Water Resources Publications[M], Colorado:Fort Collins.1972:302
    [143]Zezere J.L.. Reis E., Garcia R., Oliveira S.. Rodrigues M.L., Vieira G., Ferreira A.B.Integration of spatial and temporal data for the definition of different landslide hazard scenarios in the area north of Lisbon (Portugal)[J]. Natural Hazard and Earth Systems Science,2004,4 (1):133-146
    [144]Zinck J.A., Lopez J., Metternicht G.I., Shrestha D.P., Vazquez-SelemL. Mapping and modelling mass movements and gullies in mountainous areas using remote sensing and GIS techniques[J]. International Journal of Applied Earth Observation and Geoinformation,2001,3 (1):43-53
    [145]陈善雄,许锡昌,徐海滨.降雨型堆积层滑坡特征及稳定性分析[J].岩土力学.2005,26(增刊):6-10
    [146]陈世荣,马海建,范一大,徐丰等.基于高分辨率遥感影像的汶川地震道路损毁评估[J].遥感学报,2008,12(6):949-955
    [147]陈晓利,冉洪流,祁生文.1976年龙陵地震诱发滑坡的影响因子易发性分析[J].北京大学学报(自然科学版),2009,45(1):104-110
    [148]陈玉琼.自然灾害与减灾对策建议[A].《全国减轻自然灾害研讨会论文集(1992)》[C].北京:气象出版社,1992:93-95
    [149]丛威青,潘愁,李铁锋,吴自兴等.基于GIS的滑坡、泥石流灾害危险性区划关键问题研究[J].地学前缘(中国地质大学(北京);北京大学),2006,13(1):185-190
    [150]崔鹏.韦方强.何思明.游勇.陈晓清等.5·1 2汶川地震诱发的山地灾害及减灾措施[J].山地学报,2008,26(3):280-282
    [151]戴福初,李军.地理信息系统在滑坡灾害研究中的应用[J].地质科技情报,2000,19(1):91-96
    [152]邓乃扬,田英杰.数据挖掘中的新方法——支持向量机[M].北京:科学出版社,2004
    [153]范建容,张建强,田兵伟等.汶川地震次生灾害毁坏耕地的遥感快速评估方法——以北川县唐家山地区为例[J].遥感学报,2008,12(6):918-923
    [154]付昱华.变换形成的分形与海洋环境数据分析预测[J].海洋通报,2000,19(1):79-88
    [155]付昱华.风浪流参数的分形分析[J].港工技术,1996,41(3):6-9
    [156]高华喜.滑坡灾害风险区划与预测研究综述[J].灾害学,2010,25(2):124-128
    [157]高克昌,崔鹏,赵纯勇,韦方强等.基于地理信息系统和信息量模型的滑坡危险性评价——以重庆万州为例[J].岩石力学与工程学报,2006,25(5):991-996
    [158]韩金良,吴树仁,汪华斌.地质灾害链[J].地学前缘(中国地质大学(北京);北京大学),2007,14(6):11-23
    [159]何淑军.陕西宝鸡市渭滨区地质灾害风险评估研究[D].中国地质科学研究院博士学位论文,2009
    [160]胡德勇,李京,陈云浩等.GIS支持下滑坡灾害空间预测方法研究[J].遥感学报,2007,11(6):852-859
    [161]胡德勇,赵文吉,李小娟,李京,李家存.不完备样本条件下基于支持向量回归模型的滑坡易发性评价[J].地理研究,2008,27(4):755-761
    [162]黄润秋,李为乐.“5·12”汶川大地震触发地质灾害的发育分布规律研究[J].岩石力学与工程学报,2008,17(12):2581-2591
    [163]黄润秋,向喜琼,巨能攀.我国区域地质灾害评价的现状及问题[J].地质通报,2004,23(11):1078-1082
    [164]黄庭,张志,谷延群,周曼蒂等.基于遥感和GIS技术的北川县地震次生地质灾害分布特征[J].遥感学报,2009,13(1):177-182
    [165]李新志,贺可强.地下水在三峡库区堆积层滑坡中的作用[J].山西建筑,2008,34(30):9-10
    [166]李雪平,唐辉明,陈实.基于GIS的Logistic回归在区域滑坡空间预测中的应用[J].公路交通科技,2005,22(6):152-155
    [167]马寅生,廖椿庭,张业成,吴满路等.黄河上游新构造活动与地质灾害风险评价[M].北京.地质出版社.2003
    [168]马志江,陈汉林,杨树锋.基于支持向量机理论的滑坡灾害预测[J].浙江大学学报,2003,30(5):592-596
    [169]马宗晋,高庆华.中国自然灾害综合研究60年的进展[J].中国人口·资源与环境,2010,20(5):1-5
    [170]马宗晋等.《自然灾害与减灾》(M),北京:地震出版社,1990
    [171]门可佩,高建国.重大灾害链及其防御[J].地球物理学进展,2008,23(1):270-275
    [172]倪文杰,张成福,马克锋.《现代交叉学科大词库》(M),北京:海洋出版社,1993:501
    [173]潘懋,李铁锋.灾害地质学[M].北京:北京大学出版社,2002
    [174]彭建兵,苏生瑞.渭河盆地活断层与地质灾害的分维特征[J].西北大学学报(自然科学版),1993,23(6):555-561
    [175]乔建平.滑坡危险度区划方法研宄.国上经济[J].1995,(专看):35-45
    [176]乔建平.民江上游滑坡危险度区划.水上保持学报[J].1994,8(1):39-44
    [177]秦绪文,张志.杨军杰,黄庭等.5.12汶川地震四川省平武县次生地质灾害遥感分析[J].地质科技情报,2009,28(2):12-15
    [178]邱骋,王纯祥,江崎哲郎,谢漠文.基于边坡单元的公路沿线滑坡危险度概率分析[J].岩土力学.2005,26(11):1731-1736
    [179]阮沈勇,黄润秋.基于GIS的信息量法模型在地质灾害危险性区划中的应用[J].成都理工学院学报,2001,28(1):89-92
    [180]尚志海,刘希林.可接受风险与灾害研究[J].地理科学进展,2010,29(1):23-29
    [181]石菊松,徐瑞春,石玲.基于RS和GIS技术的清江隔河岩库区滑坡易发性评价与制图[J].地学前缘,2007,14(6):119-128
    [182]石菊松,张永双,董诚等.基于GIS技术的巴东新城区滑坡灾害危险性区划[J].地球学报,2005,26(3):275-282
    [183]史陪军.再论灾害研究的理论与实践[J].自然灾害学报,1996,5(4):6-17
    [184]史培军.四论灾害系统研究的理论与实践[J].自然灾害学报,2005,14(6):1-7
    [185]史培军.五论灾害系统研究的理论与实践[J].自然灾害学报,2009,18(5):1-9
    [186]司康平,田原,汪大明,邬伦.滑坡灾害危险性评价的3种统计方法比较——以深圳市为例[J].北京大学学报(自然科学版)网络版(预印本),2008,4:19-26
    [187]苏凤环,崔鹏,韩用顺,刘应辉等.基于遥感技术的都汶公路地震次生山地灾害分布规律分析[J].地质科技情报,2009,28(2):29-32
    [188]苏桂武,高庆华.自然灾害风险的分析要素[J].地学前缘(中国地质大学,北京)2003,10(特刊):272-279
    [189]苏桂武,高庆华.自然灾害风险的行为主体特性与时间尺度问题[J].自然灾害学报,2003,12(1):9-16
    [190]孙广忠,姚宝魁.中国滑坡地质灾害及其研究[A].殷跃平.中国典型滑坡[C].北京:科学出版社,1988:1-11
    [191]唐川,朱静.GIS支持下的地震诱发滑坡危险区预测研究[J].地震研究,2001,(1):73-81
    [192]陶和平,刘斌涛,刘淑珍,范建容等.遥感在重大自然灾害监测中的应用前景——以5·12汶川地震为例[J].山地学报,2008,26(3):276-279
    [193]王劲峰.空间分析[M].北京:科技出版社,2006
    [194]王思敬.中国自然灾害及减灾战略研讨[J].地质灾害与防治.1990,1(3):1-7
    [195]王涛,吴树仁,石菊松.国际滑坡风险评估与管理指南研究综述[J].地质通报,2009,28(8):1006-1019
    [196]王雁林,郝俊卿,赵法锁等.陕西省地质灾害风险区划初步研究[J].西安科技大学学报,2011.31(1):343-348
    [197]王志旺.基于GIS技术的区域滑坡分形特征分析与危险性评价[D].中国地质大学(武汉)博士学位论文,2010
    [198]文宝萍.滑坡预测预报研究现状与发展趋势[J].地学前缘,1996,3(1-2):86-92
    [199]吴北平,李征航,徐绍铨等.GPS定位技术在三峡库区崩滑地质灾害监测中的试验分析[J].地球科学,2001,26(6):648-652
    [200]吴传钧.论地理学的研究核心—人地关系地域系统[J].经济地理,1991(3):1-5
    [201]吴益平.物元模型在滑坡灾害风险预测中的应用.地质科技情报[J].2003,22(4):96-99
    [202]夏金梧,郭厚祯.长江上游地区滑坡分布特征及主要控制因素探讨[J].水文地质工程地质,1997,41(1):19-32
    [203]向灵芝,崔鹏等.汶川县地震诱发崩滑灾害影响因素的易发性分析[J].四川大学学报(工程科学版),2010,42(5):105-112
    [204]向喜琼.区域滑坡地质灾害危险性评价与风险管理[D].成都理工大学博士学位论文,2005
    [205]肖胜,叶功实,倪志荣等.应用卫星遥感影像分析厦门市地表植被变化[J].林业科学,2003,39(1):129-133
    [206]谢礼立.自然灾害学报发刊词[J],《自然灾害学报》,1992,1(1):2-3
    [207]邢秋菊.基于GIS的滑坡危险性逻辑回归评价研究.地理与地理信息科学[J].2004,20(3):49-51
    [208]许冲,戴福初等.基于GIS的汶川地震滑坡灾害影响因子确定性系数分析[J].岩石力学与工程学报(增刊),2010,29(1):2972-2981
    [209]许强,黄润秋.地质灾害发生频率的幂律规则[J].成都理工学院学报.1997,24(增刊):91-96
    [210]许强,裴向军,黄润秋等.汶川地震大型滑坡研究[M].北京:科学出版社.2009
    [211]薛天放.杨庆.栾茂田.基于GIS技术的滑坡空间分布的分形特征研究[J].岩士力学.2007,28(2):347:354
    [212]延延,杜荣军,严芳.空间分析在铜川市耀州区地质灾害易发性分区中的应用[J].水土保持通报,2010,30(1):146-150
    [213]闫满存,王光谦.基于GIS的澜沧江下游区滑坡灾害危险性分析[J].2007,27(3):365-370
    [214]晏同珍.杨顺安.方云.滑坡学[M].武汉:中国地质大学出版社,2000
    [215]杨洪晓,张金屯,吴波等.毛乌素沙地油蒿种群点格局分析[J].植物生态学报,2006,30(4):563-570
    [216]杨军杰,张志,王旭,谷延群,强建华等.汶川县地震次生山地地质灾害遥感调查[J].山地学报,2008,26(6):755-760
    [217]杨山.灾害哲学[D].西南大学学位论文,2010.
    [218]姚令侃,黄艺丹,杨庆华.地震触发崩塌滑坡自组织临界性研究[J].四川大学学报(工程科学版),2010,42(5):33-43
    [219]叶米里扬诺娃.滑坡作用的基本规律[M].重庆:重庆出版社,1984
    [220]殷坤龙,陈丽霞,张桂荣等.区域滑坡灾害预测预警与风险评价[J].地学前缘(中国地质大学(北京);北京大学),2007,14(6):85-97
    [221]殷坤龙,韩再生,李志中.国际滑坡研究的新进展[J].水文地质工程地质,2000,19(5):1-4
    [222]殷坤龙,晏同珍.滑坡预测及相关模型[J].岩石力学与工程学报,1996,15(1):1-8
    [223]殷坤龙,张梁等.地质灾害风险分析与GIS技术应用研究[J].地理学与国土研究,2002,18(4):10-13
    [224]殷坤龙.滑坡灾害区划系统研究[J].中国地质灾害与防治学报,2000,11(4):28-32
    [225]殷坤龙.滑坡灾害预测预报[M].武汉:中国地质大学出版社,2004:1-100
    [226]於崇文.地质系统的复杂性[M].北京:地质出版社,2003:93-140
    [227]张彩霞,杨勤科,李锐.基于DEM的地形湿度指数及其应用研究进展[J].地理科学进展,2005,24(6):116-123
    [228]张桂荣,殷坤龙.区域滑坡空间预测方法研究及结果分析『J].岩石力学与工程学报,2005,224(23):4297-4302
    [229]张桂荣.基于webGIS的滑坡灾害预测预报与风险管理[D].中国地质大学(武汉)博士学位论文,2006
    [230]张健,郝占庆,宋波等.长白山阔叶红松林中红松与紫椴的空间分布格局及其关联性[J].应用生态学报,2007,18(8):16-81
    [231]张拴厚.王学平,林平选等.陕西龙门山地震带地质灾害的地质构造约束[J].陕西地质,2008,26(2):44-54
    [232]张倬元,王士天,王兰生.工程地质分析原理[M].北京:地质出版社.1994
    [233]赵建华,陈汉林,杨树锋.滑坡灾害危险性评价模型比较[J].自然灾害学报.2006,15(1):128-134
    [234]朱阿兴,裴韬,乔建平,陈永波,周成虎,蔡强国.基于专家知识的滑坡危险性模糊评估方法[J].地理科学进展,2006,25(4):1-12
    [235]朱良峰,吴信才,殷坤龙.基于GIS的中国滑坡灾害风险分析[J].岩土力学,2003,24(增):221-230
    [236]庄建琦,崔鹏等.5.12汶川地震崩塌滑坡分布特征及影响因子评价[J].地质科技情报,2009,28(2):16:22

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700