用户名: 密码: 验证码:
严寒地区土壤源热泵系统地埋管运行特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤源热泵是一项利用可再生能源进行供暖供冷的节能环保技术,随着人们节能环保意识的提高,近年来该项技术在国内外备受关注。严寒地区土壤初始温度低,土壤源热泵冬季运行时地埋管换热器周围土壤容易出现冻结现象,土壤冻结后导热性能增强,同时水分相变释放出的潜热量很大,这些均有利于提高地埋管换热器的换热量,但关于这方面的研究很少,对于土壤冻结对地埋管换热器换热量的影响有多大,现阶段并未有明确的说明;而且现有的地埋管换热器的传热模型大都未考虑出现土壤冻结现象后,由于相变潜热的释放和物性参数的变化使导热控制方程具有非线性的特点。尽管在严寒地区应用土壤源热泵会由于冬夏负荷不平衡降低系统的整体性能,但对于一些远离城市热网而且对污染物排放有较高要求的区域,应用土壤源热泵仍具有一定的合理性,因此本文将对严寒地区土壤源热泵系统地埋管换热器运行特性进行相关的研究。
     在借鉴国内外有关地埋管换热器传热模型的基础上,分析了严寒地区地埋管换热器的传热机理,针对土壤冻结后热传导方程非线性的特点,对地埋管换热器的管道截面进行了转换,采用方形截面的管道代替垂直U型埋管换热器的圆管,给出了管道截面转换的修正条件,并在直角坐标系下建立了考虑土壤冻结的地埋管换热器的数学模型,其中对于土壤的相变采用显热容法处理,该模型考虑了进出水支管传热的不对称性,并可实现对存在非线性项的地埋管换热器管群温度场进行整体求解,为模拟严寒地区土壤源热泵系统的运行特性奠定了基础。
     建立了地埋管换热器低温取热实验系统,根据对系统连续运行测试的结果,对严寒地区地埋管换热器的低温取热特性进行了分析,得到了连续低温取热工况下地埋管换热器的单位深度换热量,并利用实验数据验证了本文对管道截面转换后所建立的地埋管换热器的数学模型。
     在所建立的考虑土壤冻结的地埋管换热器传热模型的基础上,模拟研究了不同进口流体温度、土壤初始温度、土壤类型和土壤含水量对地埋管换热器周围土壤冻结特性的影响,并进一步分析了土壤冻结对地埋管换热器换热量的影响,为在实际工程中准确考虑土壤冻结对地埋管换热器换热量的影响提供了重要的理论支持。
     采用考虑土壤冻结的地埋管换热器管群传热模型,对影响地埋管换热器运行特性的管内流体的流量、管材、钻孔的深度、地埋管换热器两支管的间距、钻孔间距等因素进行了分析;根据对管群中不同位置地埋管换热器的换热能力以及管群长期单季节运行时的土壤温度场和换热量进行的计算分析,给出了严寒地区地埋管换热器推荐钻孔间距,该部分工作有助于在严寒地区地埋管换热器管群的设计中选取合理的参数。
     以哈尔滨地区一幢单体建筑为例,对严寒地区土壤源热泵系统的全年运行特性进行了模拟研究,分析了采暖期地埋管换热器的进出口流体温度变化趋势、地埋管换热器的取热量,以及土壤源热泵系统的供暖性能系数;针对供暖期结束后土壤温度较低的特点,对夏季采用土壤源热泵系统供冷和不启动热泵机组利用土壤冷源直接供冷的运行模式进行了比较,分析了两种不同模式的运行特性。此外,根据对严寒地区土壤热泵源系统全年土壤取放热量的计算,分析了严寒地区土壤冬夏取放热量的不平衡率,为严寒地区土壤源热泵系统的优化运行以及采取技术措施改善土壤取放热量不平衡的不利影响提供了参考。
Ground coupled heat pump is a renewable energy technique for heating and cooling supply, which is well known for its energy conservation, environment protection. In recent years, with the improvement of the awareness of energy conservation and environment protection, increasing attention has been paid to ground coupled heat pump system. Because the initial soil temperature is low in cold climate, the soil freezing phenomenon is likely to occur when ground coupled heat pump system is utilized in winter. When the soil around ground heat exchanger is frozen, the thermal conductivity of soil will increase, and the latent heat released by phase transition of soil water is very large, which are benefit to enhance the heat transfer of ground heat exchanger. Whereas, only a few related researches has been done on this subject, and there is no clear conclusion of the exactly effect of soil freezing on enhancing the heat transfer of ground heat exchanger. And most of current heat transfer model of ground heat exchanger do not consider the nonlinear characteristic of heat transfer control equation when the soil is frozen. Although the performance of ground coupled heat pump in cold climate will decrease by the unbalance of cooling and heating load, the utilization of ground coupled heat pump in cold climate is still reasonable for some regions, such as regions far away from district heating plant and high standards are required for waste discharging. Therefore, the operation characteristic of ground heat exchanger for ground coupled heat pump system in cold climate will be studied in this thesis.
     Based on domestic and foreign achievements in the heat transfer model of ground heat exchanger, the heat transfer mechanism of ground heat exchanger in cold climate is analyzed. In view of the nonlinear characteristic of heat transfer equation with soil freezing, the pipe section of ground heat exchanger is transformed and the circular pipe is replaced with square pipe. The revised principle of pipe section transformation is provided and the phase transition of soil is solved by apparent heat capacity method. The heat transfer model takes the unsymmetrical heat transfer of inlet and outlet branch into account, and can be used to solve nonlinear heat conduction equation for multiple boreholes heat transfer problem. This model has laid foundation for simulating the performance of ground coupled heat pump system in cold climate.
     An experimental system is set up for low temperature heat extraction of ground heat exchanger. Based on the measuring results of continuous operation, the low temperature heat extraction characteristic of ground heat exchanger in cold climate is analyzed, and the heat transfer rate per unit depth of ground heat exchanger with continuous low temperature operation is obtained. Furthermore, the experimental results is used to validate the heat transfer model of ground heat exchanger with transformed pipe section.
     On the basis of the established heat transfer model ground heat exchanger which take soil freezing into account, the soil freezing characteristic around ground heat exchanger is studied through numerical simulation, some influence factors such as inlet fluid temperature, initial soil temperature, soil type and soil water content are analyzed. And the effect of soil freezing on heat transfer of ground heat exchanger is analyzed also. This part of work provides important theoretical support for accurately considering the effect of soil freezing on heat transfer of ground heat exchanger in actual project.
     With the heat transfer model for multiple boreholes, the factors which can affect operation characteristic of ground heat exchanger are analyzed, such as flow rate, pipe material, borehole depth, distance between two pipe of U tube, distance between boreholes, etc. Moreover, the heat transfer rate of ground heat exchanger in different position of borehole field and the heat transfer and soil temperature variation with long term single season operation are calculated and analyzed, and the recommended distance between boreholes is provided for ground heat exchanger in cold climate. This part is helpful to select reasonable design parameters of ground heat exchanger in cold climate.
     Taking a single building in HARBIN as an example, the whole year operation performance of ground coupled heat pump system in cold climate is studied. The performance in heating season is analyzed, including variation of inlet and outlet fluid temperature of ground heat exchanger, the heat extracted from soil and the heating supply performance of coefficient of the ground coupled heat pump system. In view of the low temperature of soil after heating season, comparison is made between ground coupled heat pump system supply cooling and ground sink direct cooling system, and the performance of both cooling supply mode is analyzed. According to the calculation of the heat extracted from soil and heat rejected into soil after whole year operation of ground coupled heat pump system, the imbalance rate of soil heat transfer is analyzed, which can provide reference for optimizing operation of ground coupled heat pump system in cold climate, and for taking technical measures to improve the unfavorable effect of soil heat transfer imbalance.
引文
1张澜涛.国际能源态势与我国能源安全.国际关系学院学报. 2006, (5): 45~52
    2张宇燕,管清友.世界能源格局与中国的能源安全.世界经济. 2007, (9): 17~30
    3宋杰鲲,张在旭,李继尊.国内外能源综合利用政策法规对比.工业技术经济. 2007, 26(12): 79~81
    4马义飞.国际油价飙升的原因、影响及国内对策.价格理论与实践. 2008, (7): 22~23
    5隋建才,杜云贵,徐明厚等.我国煤燃烧研究发展现状与趋势.热能动力工程. 2008, 26(2): 111~116
    6刘长敏.浅谈我国城市的环境污染与防治措施.河南农业. 2009, (4): 37~38
    7江亿.我国建筑耗能状况及有效的节能途径.暖通空调. 2005, 35(5): 30~40
    8徐永铭.国内外建筑节能现状及发展.徐州工程学院学报. 2005, 20(3): 71~73
    9姚杨,马最良.浅议热泵定义.暖通空调. 2002, 32(3): 33
    10中国土壤系统分类研究丛书编委会.中国土壤系统分类进展.科学出版社. 1993: 354~360
    11范萍萍,端木琳,王学龙等.土壤源热泵的发展与研究现状.煤气与热力. 2005, 25(10): 66~70
    12高青,于鸣.高效率环保效能好的供热制冷装置-地源热泵的开发与利用.吉林工业大学自然科学学报. 2001, 31(2): 96~102
    13周亚素,张旭,李元旦等.土壤热源热泵冬季启动工况的试验研究.华东电力. 2001, (2): 30~33
    14 D.A.Ball, R.D.Fischer, D.L. Hodgett. Design Methods for Ground-Source Heat Pumps. ASHRAE Transactions. 1983, 89(2B): 416~440
    15 O.J.Svec, L.E.Goodrichan, J.H.L.Palmer. Heat Transfer Characteristics of in-Ground Heat Exchangers. Energy Research. 1983, (7): 265~278
    16徐亚娟,革非.土壤源热泵的研究与应用.制冷与空调. 2005, 19(4): 76~79
    17 John W. Lund, Derek H. Freeston, Tonya L. Boyd. Direct Application of Geothermal Energy: 2005 Worldwide Review. Geothermics. 2005, 34(6): 691~727
    18 Burkhard Sannera, Constantine Karytsas, Dimitrios Mendrinos, et al. Current Status of Ground Source Heat Pumps and Underground Thermal Energy Storage in Europe. Geothermics. 2003, 32(4-6): 579~588
    19 Burkhard Sanner, Erich Mands, Marc K. Sauer. Larger Geothermal Heat Pump Plants in the Central Region of Germany. Geothermics. 2003, 32(4-6): 589~602
    20 Dimitra Sakellari, Per Lundqvist. Energy Analysis of a Low-Temperature Heat Pump Heating System in a Single-Family House. International Journal of Energy Research. 2004, 28(1): 1~12
    21裴侠风.地源热泵技术的应用现状及展望.制冷与空调. 2004, (3): 76~78
    22岳建军,徐向荣.土壤源热泵系统在内蒙古地区的应用分析.制冷与空调. 2009, 9(1): 24~27
    23王华军,赵军,沈亮.地源热泵系统长期运行特性的实验研究.华北电力大学学报. 2007, 24(2): 52~54
    24钱程,徐伟.严寒地区土壤源热泵系统的运行性能分析.建筑科学. 2008, 24(12): 77~80
    25何雪冰,刘宪英.北方地区应用地源热泵应注意的问题.低温建筑技术. 2004, (2): 85~86
    26于明志,方肇洪,李明钧.土壤冻结对地下换热器传热的影响.山东建筑工程学院学报. 2001, 6(1): 42~46
    27杨卫波,施明恒,刘光远等.基于显热容法的地源热泵地埋管换热器周围土壤冻结特性研究.暖通空调. 2008, 38(4): 6~10
    28丁勇,李百战,卢军等.地源热泵系统地下埋管换热器设计(1).暖通空调. 2005, 35(3): 86~89
    29 V.C.Mei, Fischer S K. Vertical Concentric Tube Ground-Coupled Heat Exchangers. ASHRAE Transactions. 1983, 89(2): 391~406
    30 J.R.Partin. Sizing the Closed-Loop Earth Coupling for Heat Pumps. ASHRAE Transactions. 1985, 91(1): 61~68
    31 V.C.Mei, V.D.Baxter. Performance of a Ground-Coupled Heat Pump with Multiple Dissimilar U-Tube Coils in Series. ASHRAE Transactions. 1986, 29(2A): 30~41
    32 J.D.Parker, J.E.Bose, F.C.Mcquiston. The ASHRAE Design/data Manual for Ground-Coupled Heat Pumps. ASHRAE Transactions. 1985, 91(2B): 1169~1183
    33 Couvillion R J. Field and Laboratory Simulation of Earth-Coupled Heat Pump Coils. ASHRAE Transactions. 1985, 91(2):1326~1334
    34 S.P.Kavanaugh, M.L.Allan. Testing of Thermally Enhanced Cement Ground Heat Exchanger Grouts. ASHRAE Transactions. 1999, 105(1): 446~449
    35李元旦,张旭.土壤源热泵的国内外研究和应用现状及展望.制冷空调与电力机械. 2002, (1): 4~7
    36 Lund, John W. Direct-Use of Geothermal Energy in the USA. Applied Energy. 2003, 74(1): 33~42
    37高祖锟.用于供暖的土壤--水热泵系统.暖通空调. 1995, 25(4): 9~12
    38张昆峰,马芳梅,金六一等.土壤热源与热泵联接运行冬季工况的试验研究.华中理工大学学报.1996, 24(1): 23~26
    39李元旦,魏先勋.水平埋地管埋地换热器夏季瞬态工况的实验与数值模拟.湖南大学学报. 1999, (2): 58~63
    40 Wei Yang, Jin Zhou, Wei Xu, et al. Current Status of Ground-Source Heat Pumps in China. Energy Policy. 2010, 38(1): 323~332
    41魏唐棣,胡鸣明,丁勇等.地源热泵冬季供暖测试及传热模型.暖通空调. 2000, 30(1): 12~14
    42丁勇,李百战,卢军等.地源热泵系统地下埋管换热器设计(2).暖通空调. 2005, 35(11): 76~79
    43王勇,刘宪英,付祥钊.地源热泵及地下蓄能系统的实验研究.暖通空调. 2003, 33(5): 21~23
    44王明国,付祥钊.重庆某地源热泵系统冬季供热能力实验研究.建筑热能通风空调. 2007, 26(3): 45~47
    45周亚素,张旭,陈沛霖.土壤源热泵机组冬季供热性能的数值模拟与实验研究.东华大学学报(自然科学版). 2002,28(1): 5~9, 25
    46 Liu Jun, Zhang Xu, Gao Jun, et al. Evaluation of Heat Exchange Rate of GHE in Geothermal Heat Pump Systems. Renewable Energy. 2009, 34(12): 2898~2904
    47 Jun Gao, Xu Zhang , Jun Liu, et al. Thermal Performance and Ground Temperature of Vertical Pile-Foundation Heat Exchangers: A Case Study.Applied Thermal Engineering. 2008, 28(17-18): 2295~2304
    48于明志,方肇鸿.现场测试地下岩土平均热物性参数方法.热能动力工程. 2002, 9(5): 489~492
    49 Heyi Zeng, Nairen Diao, Zhaohong Fang. Heat Transfer Analysis of Boreholes in Vertical Ground Heat Exchangers. International Journal of Heat and Mass Transfer. 2003, 46(23): 4467~4481
    50 Ping Cui, Hongxing Yang, Zhaohong Fang. Heat Transfer Analysis of Ground Heat Exchangers with Inclined Boreholes. Applied Thermal Engineering. 2006, 26(11-12): 1169~1175
    51 Yi Mana, Hongxing Yang, Nairen Diao, et al. A New Model and Analytical Solutions for Borehole and Pile Ground Heat Exchangers. International Journal of Heat and Mass Transfer. 2010, 53(13-14): 2593~2601
    52庄迎春,孙友宏,谢康和.直埋闭式地源热泵回填土性能研究.太阳能学报. 2004, 25(2):216~220
    53王欣,俞亚南,高庆丰.地源热泵垂直套管式换热器传热研究.暖通空调.2005, 35(6): 16~19
    54张玲,陈光明,黄奕沄.土壤一维热湿传递实验研究与数值模拟.浙江大学学报(工学版). 2009, 43(4): 771~776
    55赵军,王华军.密集型桩埋换热器管群周围土壤换热特性的数值模拟.暖通空调. 2006, 36(2): 11~14
    56赵军,王华军,宋著坤等. U型管埋地换热器长期性能的实验研究与灰色预测. 2006, 27(11): 1137~1141
    57 Xinguo Li, Zhihao Chen, Jun Zhao. Simulation and Experiment on the Thermal Performance of U-Vertical Ground Coupled Heat Exchanger. Applied Thermal Engineering. 2006, 26(14-15): 1564~1571
    58 Jun Zhao, Huajun Wang, Xinguo Li, et al. Experimental Investigation and Theoretical Model of Heat Transfer of Saturated Soil Around Coaxial Ground Coupled Heat Exchanger. Applied Thermal Engineering. 2008, 28(2-3): 116~125
    59 Xinguo Li, Yan Chen, Zhihao Chen, et al. Thermal Performances of Different Types of Underground Heat Exchangers. Energy and Buildings. 2006, 38(5): 543~547
    60高青,李明,马纯强等.地下岩土蓄能过程控制模式.吉林大学学报(工学版). 2009, 39(3): 593~597
    61于鸣,高青,乔广等.地能利用中的蓄能时间效应.吉林大学学报(工学版). 2009, 39(2): 321~325
    62 Qing Gao, Ming Li, Ming Yu. Experiment and Simulation of Temperature Characteristics of Intermittently-Controlled Ground Heat Exchanges. Renewable Energy. 2010, 35(6): 1169~1174
    63姚杨,马最良,余延顺.土壤蓄冷与土壤耦合热泵集成系统的研究.流体机械. 2004, 32(6): 48~51
    64 Yanshun Yu, Zuiliang Ma, Xianting Li. A New Integrated System with Cooling Storage in Soil and Ground-Coupled Heat Pump. Applied Thermal Engineering. 2008, 28(11-12): 1450~1462
    65 Rui Fan, Yiqiang Jiang, Yang Yao, et al. Theoretical Study on the Performance of an Integrated Ground-Cource Heat Pump System in a Whole Year. Energy. 2008, 33(11): 1671~1679
    66 Rui Fan, Yiqiang Jiang, Yang Yao, et al. A Study on the Performance of a Geothermal Heat Exchanger Under Coupled Heat Conduction and Groundwater Advection. Energy. 2007, 32(11): 2199~2209
    67张开黎,王如竹,于立强.垂直埋管土壤源热泵供热供冷实验与分析.流体机械. 2001, 29(9): 57~60, 53
    68陆志,连之伟,刘蔚巍等.地源热泵竖直埋管数值线源综合模型.上海交通大学学报. 2008. 42(3): 409~414
    69 Yuehong Bi, Lingen Chen, Chih Wu. Ground Heat Exchanger Temperature Distribution Analysis and Experimental Verification. Applied Thermal Engineering. 2002, 22(2): 183~189
    70 Weibo Yang, Mingheng Shi, Guangyuan Liu, et al. A Two-Region Simulation Model of Vertical U-Tube Ground Heat Exchanger and its Experimental Verification. Applied Energy. 2009, 86(10): 2005~2012
    71 Yang, Weibo, Shi, Mingheng. Numerical Simulation on Heat Transfer Process in U-Bend Ground Heat Exchanger of Ground Source Heat Pump. Dongnan Daxue Xuebao. 2007, 37(1): 78~83
    72余延顺,马最良,姚杨等.土壤蓄冷与释冷过程的能量分析.太阳能学报. 2007, 28(12): 1407~1412
    73 Shuhong Li, Weihua Yang, Xiaosong Zhang. Soil Temperature Distribution around a U-Tube Heat Exchanger in a Multi-Function Ground Source Heat Pump System. Applied Thermal Engineering. 2009, 29(17-18): 3679~3686
    74冯健美,高晓兵,屈宗长等.土壤热源热泵地下换热性能分析.太阳能学报. 2002, 23(3):349~352
    75王向岩,马伟斌,黄远峰等.超强吸水树脂与源土混合作为地源热泵供热系统回填材料的实验研究.太阳能学报. 2007, 28(1):23~27
    76马伟斌,王剑锋,王向岩等.地源热泵在酒店供冷供热系统中的应用及经济性能分析.制冷. 2003, 22(4):45~48
    77 Nikolas Kyriakis, Apostolos Michopoulos, Konstantin Pattas. On the Maximum Thermal Load of Ground Heat Exchangers. Energy and Buildings. 2006, 38(1): 25~29
    78 Lamarche Louis, Beauchamp Benoit. A New Contribution to the Finite Line-Source Model for Geothermal Boreholes. Energy and Buildings. 2007, 39(2): 188~198
    79 Hikmet Esen, Mustafa Inalli, Yuksel Esen. Temperature Distributions in Boreholes of a Vertical Ground-Coupled Heat Pump System. Renewable Energy. 2009, 34(12): 2672~2679
    80 Mostafa H. Sharqawya, Esmail M. Mokheimerb, Hassan M. Badrb. Effective Pipe-to-Borehole Thermal Resistance for Vertical Ground Heat Exchangers. Geothermics. 2009, 38(2): 271~277
    81 F. Michopoulos, N. Kyriakis. Predicting the Fluid Temperature at the Exit of the Vertical Ground Heat Exchangers. Applied Energy. 2009, 86(10): 2065~2070
    82 A. Michopoulos, N. Kyriakis. The Influence of a Vertical Ground Heat Exchanger Length on the Electricity Consumption of the Heat Pumps. Renewable Energy. 2010, 35(7): 1403~1407
    83 Takao Katsura, Katsunori Nagano, Shigeaki Narita, et al. Calculation Algorithm of the Temperatures for Pipe Arrangement of Multiple Ground Heat Exchangers. Applied Thermal Engineering. 2009, 29(5-6): 906~919
    84 J.A.Edwards, P.K.Vitta. Heat Transfer from Earth-Coupled Heat Exchangers- Experimental and Analytical Results. ASHRAE Transactions.1985, 91(1A): 70~80
    85 Takao Katsura, Katsunori Nagano, Sayaka Takeda. Method of Calculation of the Ground Temperature for Multiple Ground Heat Exchangers. Applied Thermal Engineering. 2008, 28(14-15): 1995~2004
    86 Ingersoll LR, Plass HJ. Theory of the Ground Pipe Heat Source for the Heat Pump. ASHVE Transactions. 1948, 47: 339~348
    87 H.S.Carslaw, J.C.Jaeger. Conduction of Heat in Solids. Second Edition. Oxford University Press. 1959: 260~265
    88 Claesson J, Dunand A. Heat Extraction from the Ground by Horizontal Pipes: a Mathematical Analysis. Stockholm: Swedish Council for Building Research; 1983.
    89 J.D.Deerman, S.P.Kavanaugh. Simulation of Vertical U-Tube Ground-Coupled Heat Pump Systems Using the Cylindrical Heat Source Solution. ASHRAE Transactions. 1991, 97(1): 287~295
    90 Y.Gu, D.L.O'Neal. Development of an Equivalent Diameter Expression for Vertical U-Tubes Used in Ground-Coupled Heat Pumps. ASHRAE Transactions. 1998, 104(2): 347~355
    91 Y.Gu, D.L.O'Neal. Modeling the Effect of Backfills on U-Tube Ground Coil Performance. ASHRAE Transactions. 1998, 104(2): 356~365
    92唐志伟,时晓燕,黄俊惠等.地源热泵U型管地下换热器的数值模拟.北京工业大学学报. 2006, 32(1): 62~66
    93 Zhongjian Li, Maoyu Zheng. Development of a Numerical Model for the Simulation of Vertical U-Tube Ground Heat Exchangers. Applied Thermal Engineering. 2009, 29(5-6): 920~924
    94 R.L.D Cane, P.Eng. D.a. Forgas. Modeling of Ground-source Heat Pump Performance. ASHRAE Transactions. 1991, 97(1): 909~925
    95 Louis Lamarche, Benoit Beauchamp. New Solutions for the Short-Time Analysis of Geothermal Vertical Boreholes. International Journal of Heat and Mass Transfer. 2007, 50(7-8): 1408~1419
    96 Hikmet Esen, Mustafa Inalli, Mehmet Esen. Numerical and Experimental Analysis of a Horizontal Ground-Coupled Heat Pump System. Building and Environment. 2007, 42(3): 1126~1134
    97 Onder Ozgener, Arif Hepbasli. Modeling and Performance Evaluation of Ground Source (Geothermal) Heat Pump Systems. Energy and Buildings.2007, 39(1): 66~75
    98高青,李明,闰燕.地下群井换热强化与运行模式影响规律.太阳能学报. 2006, 27(1): 83~89
    99 Yujin Nam, Ryozo Ooka, Suckho Hwang. Development of a Numerical Model to Predict Heat Exchange Rates for a Ground-Source Heat Pump System. Energy and Buildings. 2008, 40(12): 2133~2140
    100 P. Cui, H. Yang, Z. Fang. Numerical Analysis and Experimental Validation of Heat Transfer in Ground Heat Exchangers in Alternative Operation Modes. Energy and Buildings. 2008, 40(6): 1060~1066
    101 P. Eskilson. Thermal Analysis of Heat Extraction Boreholes. University of Lund Ph.D. Thesis. 1987
    102 N. K. Muraya. Numerical Modeling of the Transient Thermal Interference of Vertical U-Tube Heat Exchangers. Texas A&M University Ph.D Dissertation. 1994
    103 N. K. Muraya, D. L. O'Neal, W. M. Heffington. Thermal Interference of Adjacent Legs in a Vertical U-Tube Heat Exchanger for a Ground-Coupled Heat Pump. ASHRAE Transactions. 1996, 102(2): 12~21
    104 P. Rottmayer, W. A. Beckman, J. W. Mitchell. Simulation of a Single Vertical U-Tube Ground Heat Exchanger in an Infinite Medium. ASHRAE Transactions. 1997, 103(2): 651~659
    105 Gehlin SEA, Hellstrom G. Influence on Thermal Response Test by Groundwater Flow in Vertical Fractures in Hard rock. Renew Energy. 2003, 28(14): 2221~2238
    106 C.K. Lee, H.N. Lam. Computer Simulation of Borehole Ground Heat Exchangers for Geothermal Heat Pump Systems. Renewable Energy. 2008, 33(6): 1286~1296
    107 V.C.Mei, C.J.Emerson, New Approach for Analysis of Ground-Coil Design for Applied Heat Pump Systems, ASHRAE Transactions. 1985,91(2): 1216~1224
    108 Andrew Morrison. Finite Difference Model of a Spiral Ground Heat Exchanger for Ground-Source Heat Pumps. University of Carleton Ph.D. Thesis. 1999
    109 Pavel A.Sokolov. Computational Heat Transfer Model of Thermal Energy Storage Canisters. Cleveland State University Doctoral Dissertation. 1997:9~13
    110郭宽良,孔祥谦,陈善年.计算传热学.合肥:中国科学技术大学出版社, 1988: 28, 36, 64~69
    111段东明,杨永平,魏庆朝等.利用热管-保温材料复合结构提高冻土区路基稳定性研究.北京交通大学学报. 2008, 32(1): 24~28
    112吕书清.人工冻结壁温度场模拟分析.哈尔滨师范大学自然科学学报. 2009, 25(3): 43~45
    113唐丽云,杨更社,龚霞等.冻土桩基伴有相变的非稳态温度场研究.人民黄河. 2008, 30(10): 82~83
    114苑中显,叶芳,陈峰等.人工土壤冻结过程的计算机模拟.工程热物理学报. 2000, 21(4): 479~482
    115季阿敏,李杰,糜仁华等.土壤冻结时间的数值模拟及实验.哈尔滨商业大学学报. 2004, 20(4): 492~495
    116商翔宇,周国庆,别小勇.冻结土壤温度场数值模拟的改进.中国矿业大学学报. 2005, 34(2): 179~183
    117余延顺.土壤蓄冷与土壤耦合热泵集成系统的研究.哈尔滨工业大学博士学位论文. 2004: 45~51
    118 Koui Kim, Wei Zhou, Scott L. Huang. Frost Heave Predictions of Buried Chilled Gas Pipelines with the Effect of Permafrost. Cold Regions Science and Technology. 2008, 53(3): 382~396
    119 Jiankun Liu, Yahu Tian. Numerical Studies for the Thermal Regime of a Roadbed with Insulation on Permafrost. Cold Regions Science and Technology. 2002, 35(1):1~13
    120 Gao Zhihua, Lai Yuanming, Zhang Mingyi, et al. An Element Free Galerkin Method for Nonlinear Heat Transfer with Phase Change in Qinghai–Tibet Railway Embankment. Cold Regions Science and Technology. 2007, 48(1):15~23
    121陶文铨.数值传热学.西安交通大学出版社出版. 1995: 1
    122章熙民,任泽霈,梅飞鸣.传热学.中国建筑工业出版社. 1995: 142, 147
    123徐学祖,王家澄,张立新.冻土物理学.北京:科学出版社, 2001: 61, 88~90
    124汪海年.青藏高原多年冻土地区路基温度场研究.长安大学硕士学位论文. 2004: 23
    125李忠建.寒冷地区地埋管直接供冷系统数值模拟与试验研究.哈尔滨工业大学博士学位论文. 2009: 22~23

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700