用户名: 密码: 验证码:
海洋重力辅助导航方法及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文将海洋重力辅助导航界定为利用海洋重力场的空间分布特征提高惯性导航精度,修正或限定惯性导航系统误差积累的无源自主导航方法。其技术途径有三条:一是惯性导航系统重力补偿,用于提高惯性导航系统中矢量重力参数的精度,改善惯性导航系统的力学编排,从而改进惯性导航系统本身的精度;二是重力匹配,即以重力场的空间特征作为导航信标,通过与惯性导航系统的组合修正或限定惯性导航误差积累,延长惯性导航系统在水下的有效工作时间并减少其对GPS等的依赖,增强水下导航系统的隐蔽性;三是制图与定位同步技术(SLAM),用于事先没有绘制重力基准图或重力基准图精度不足海域,它在航行器航行过程中创建增量式重力基准图,同时依据该基准图确定航行器位置。
     海洋重力辅助导航系统主要由惯性导航系统(INS)、实时重力测量系统、重力基准图和辅助导航算法等组成。本文以上述各组成部分为研究对象,系统提出了海洋重力辅助导航理论方法并论证其技术可行性,主要工作包括:(1)分析了惯性导航系统的误差特征及其修正方法;(2)提出了重力辅助导航基本原理,即通过重力补偿提高惯性导航精度,在重力基准图预先已制作区域通过重力匹配限定惯性导航的误差积累,在缺少重力基准图区域将SLAM作为重力匹配的补充;(3)研究了海洋重力仪和重力梯度仪的技术特点及其测量方法,分析了二者用作实时重力测量系统的技术可行性;(4)研究了卫星测高反演海洋重力场的理论方法,包括卫星测高交叉点平差、共线平差、测高垂线偏差推估、海洋重力场反演等,分析了卫星测高等现代海洋重力技术绘制海洋重力基准图的技术可行性;(5)系统提出了惯性导航系统重力补偿技术,包括基于海洋重力基准图的重力补偿方法和基于重力梯度仪的重力补偿方法;(6)依据重力场空间分布特性提出组合匹配方法,阐明了组合匹配的工作流程,分析了惯性导航误差、基准图误差、实时重力测量误差等对重力匹配的影响,研究了评估重力场适配性的理论方法;(7)探索了基于SLAM的海洋重力辅助导航方法,阐述了利用地图增强卡尔曼滤波(MAK)实现同时定位与重力基准图创建的理论技术; (8)在10 o S ~10oN, 160 o E ~180oE海域开展了海洋重力辅助导航仿真验证,包括基于重力基准图INS重力补偿仿真、基于重力梯度仪的INS重力补偿仿真、基于海洋重力仪的重力匹配仿真、基于重力梯度仪的重力匹配仿真;(9)依照海洋重力辅助导航系统的研究发展现状及其应用需求,开展海洋重力辅助导航应用设计。
     本文研究结果和结论及技术创新点如下。(1)海洋重力辅助导航可直接确定相对于基准参考坐标系的位置和速度,其精度不随航行时间或航行距离而改变,无需浮出水面或使用外部坐标,也不需要来自地球的导航和通信信号,有望在水下实现惯性导航系统综合校正从而最终解决水下导航隐蔽性问题。(2)海洋重力仪用作海洋重力辅助导航中的实时重力测量系统时需顾及滞后效应和厄特弗斯效应的影响;而海洋重力梯度仪不受滞后效应或厄特弗斯效应的影响,是海洋重力辅助导航中较理想的实时重力测量系统。(3)本文提出了精确、快速计算卫星测高交叉点和正常点及其平均海面高的理论方法,从而改进了卫星测高的交叉点平差和共线平差技术;另外,卫星测高等现代海洋重力探测技术所绘制的海洋重力基准图的空间分辨率高于2′×2′,精度优于7毫伽,为海洋重力辅助导航的工程实现提供了条件。(4)本文推导了惯性导航系统中的重力参数误差影响惯性导航精度的严密理论公式,阐明了惯性导航系统中的重力参数误差每小时可产生数百米的惯性导航误差,已成为高精度惯性导航系统的主要误差源之一。(5)在实验海域,基于重力基准图的INS重力补偿技术在100小时内可提高惯性导航精度约16000米;基于重力梯度仪的INS重力补偿可有效改进惯性导航精度;基于海洋重力仪的重力匹配可将惯性导航系统的误差限定在3000米以内;基于重力梯度仪的重力匹配可将惯性导航系统的误差限定在2000米左右。
The marine gravity aided navigation is defined as the technique which improves the precision or corrects the drifted biases of INS by the marine gravity information. And the marine gravity aided navigation methods include the gravity compensation for INS, the gravity map-matching navigation and SLAM.
     The marine gravity aided navigation systems are composed of the inertial navigation systems, the real-time marine gravimetry systems, the marine gravity reference maps and the algorithms for aiding navigation. In the paper, the whole systems of marine gravity aided navigation are the research objects, and the marine gravity aided navigation methods are proposed completely and their technical feasibilities are demonstrated. Firstly, the INS error properties with their correction are analyzed. Secondly, the fundamental principles of the marine gravity aided navigation are presented, which includes improving the INS precision by the gravity compensation and bounding the INS drifted errors by the gravity matching navigation with the gravity reference map or by SLAM without the gravity reference map. Thirdly, the technical characterizations and the survey approaches of the marine gravimeters and the gravity gradiometers are discussed. Fourthly, the methods for the marine gravity reference mapping by the modern marine gravity exploration technologies such as the altimetry are studied, which includes the crossover adjustments, the collinear adjustments, predictions of the vertical deflections and the marine gravity maps from the altimetry data. Fifthly, the gravity compensation methods for INS are proposed, which can be classified into two categories according to the determination of the gravity vectors. One is the gravity compensation based on the gravity reference map and another based on gravity gradiometers observations. Sixthly, the integrated gravity map-matching navigation methods are proposed according to the gravity field’s properties, which include the procedures of the integrated gravity map-matching navigation, the influences on the gravity map-matching navigation precision from the errors of the INS, the gravity reference maps, the real-time gravimetry systems, and the approaches of evaluating the gravity field map-matching applicability were proposed. Seventhly, the SLAM is explored to bound the INS drifted error where there is no gravity reference maps. Eighthly, the simulations of the gravity aided navigation were implemented in the 10 o S ~10oN、16 0oE~180oE sea area, which includes the simulation of the gravity compensation for INS based on the gravity reference map or based on the gravity gradiometers observations and the simulation of the gravity matching navigation based on the gravimeters observations or the gravity gradiometers observations. In the end, the applications of the marine gravity aided navigation systems were designed according to their status and requirements.
     In the paper, the conclusions and the innovations are as follows. (1)The marine gravity aided navigation is able to determine the navigation velocities and positions related to the earth referenced coordinate systems directly and their navigation precisions don’t be influenced as the navigation time or distance is added. It doesn’t need to float on the sea surface, or receive outside position information or communication message from the earth. And it can be used to correct the underwater INS errors and resolved the underwater covert navigation problems completely. (2) The gravity gradiometers are the ideal real-time marine gravimetry systems. And the lagged time and the E?tv?s effects must be taken into account if the gravimeters are used as the real-time marine gravimetry systems. (3)The fast computing algorithms for the altimetry crossovers and the nominal points with their mean sea surface heights precisely are presented, which refined the altimetry crossover adjustments and the collinear adjustments. And it is proved that the marine gravity reference map resolution is superior to 2′×2′and their precision is superior to 7 mGal nowadays, which make it possible for the realization of the marine gravity aided navigation. (4) The rigorous formulae for the influences on the INS from the INS gravity parameter errors are induced, which proves that the horizontal navigation errors from the INS gravity parameter errors can reach hundreds of meters in one hour. And the INS gravity parameters’errors have become the main error causes of the high precise INS. (5)In the experiment sea area, the gravity compensation based on the gravity reference map improved the INS precision by 16000 meters in 100 hours and the gravity compensation for the INS based on the gravity gradiometers improved the INS precision inefficiently, and the gravity map-matching navigation based on the gravimeters bounds the INS errors less than 3000 meters and the gravity map-matching navigation based on the gravity gradiometers bounds the INS errors about 2000 meters.
引文
[1]陈观强.潜艇水下定位能力分析及发展方向[A].见:中国电子学会导航分会.第二届全国水下导航应用技术研讨会论文集[C].青岛:海军潜艇学院,2006:7-9.
    [2]武凤德. 21世纪的舰船导航技术[A].97全国GPS及DGPS应用学术交流会,1997
    [3]许厚泽,戴全发,许大欣.利用海洋重力测高成果实现潜艇重力匹配导航[A].见:中国电子学会导航分会.第二届全国水下导航应用技术研讨会论文集[C].青岛:海军潜艇学院,2006:1-6.
    [4]许大欣.利用重力异常匹配技术实现潜艇导航.地球物理学报[J], 2005, 48(4): 812~816
    [5]熊正南,蔡开仕,武凤德,高宏伟.21世纪美国弹道导弹核潜艇导航技术发展综述[J].舰船科学技术,2002,24(3):30~37
    [6] John J.Lenard, Andrew A. Bennett, Christopher M. Smith, Hans Jacob S. Feder. Autonomous underwater vehicle navigation[R]. MIT : Dept. of Ocean Engineering, Massachusetts Institute of Technology, Cambridge, 1998
    [7] Hugh R, Louis M, Robert A, Daniel M. Next generation marine precision navigation system[A]. IEEE PLANS: Position Location and Navigation Symposium[C], 2000, 200~206
    [8] John HTUMorylUTH. Advanced submarine navigation systems[J]. Sea Technology, 1996, 37(11):33-39
    [9]彭富清,方兆宝.海洋地球物理水下自主导航综述[A].见:中国电子学会导航分会.第二届全国水下导航应用技术研讨会论文集[C].青岛:海军潜艇学院,2006:315-318.
    [10] Mclean, S. Macmillan. The US/UK World Magnetic Model for 2005-2010[R]. NOAA Technical Report NESDIS/NGDC-1, 2005
    [11]彭富清.地磁模型与地磁导航[J].海洋测绘, 2006, 26(2):73-75
    [12]周军,葛致磊,施桂国,刘玉霞.地磁导航发展与关键技术[J].宇航学报, 2008, 29(5): 1467-1472
    [13]乔玉坤,王仕成,张琪.地磁异常匹配制导技术应用于导弹武器系统的制约因素分析[J].飞航导弹, 2006,8:39-41
    [14]郝燕玲,赵亚凤,胡峻峰.地磁匹配用于水下载体导航的初步分析[J].地球物理学进展,2008, 23(2): 594-598
    [15] Hwang C, Kao EC, Parsons B. Global derivation of marine gravity anomalies from Seasat, Geosat, ERS-1 and TOPEX/POSEIDON altimeter data. Geophys J Int, 1998, 134: 449~459
    [16] Sandwell DT, Smith WHF. Marine gravity anomaly from Geosat and ERS-1 satellite altimetry. 1997, J Geophys Res 102(B5): 10039~10054学报,2003,46(4):462~466
    [18]李建成,陈俊勇,宁津生,晁定波.联合Topex/Poseidon、ERS-2和Geosat卫星测高资料确定中国海重力异常[J].测绘学报,2003,
    [19]王海瑛,王广运.卫星测高数据的沿轨迹重力异常反演法及其应用.测绘学报,2001,30(1):21-26
    [20] Jekeli C. The Effect of Earth’s Gravity on Precise, Short-Term, 3-D Free-Inertial Navigation [J]. Navigation, 1997, 44(3):347-357
    [21] Jekeli C., J.H. Kwon. Analysis and Processing of Svalbard Airborne INS/GPS Data for Vector Gravimetry[R]. NIMA contract NMA 202-98-1-1110, OSU Project 736145
    [22] Jekeli C. Precision Free-Inertial Navigation with Gravity Compensation by an Onboard Gradiometer[J]. Journal of Guidance, Control, and Dynamics, 2006, 29(3): 704-713
    [23] Eugene M. Wells. A priori and real time use of a gravity gradiometer to improve inertial navigation[D]. Stanford University, 1982
    [24]吴太旗,边少锋,蒋勃,周勇.重力场对惯性导航定位误差影响及仿真研究[J].测绘科学技术学报,2006,3(5):341-344
    [25]王可东.用于水下辅助导航的等值线匹配算法研究[D].北京大学,2005
    [26]袁书明,孙枫,刘光军,陈晶.重力图形匹配技术在水下导航中的应用[J].中国惯性技术学报,2004,12(2):13-17
    [27]刘繁明,成怡.重力/惯性匹配导航系统的仿真研究[J].惯性技术学报,2005,13(3):22-25
    [28]刘承香.水下潜器的地形匹配辅助定位技术研究[D].哈尔滨工业大学博士论文, 2003
    [29] Self M, Cheeseman P. A stochastic map for uncertain spatial relationships[A]. Proceedings of the 1987 International Symposium on Robotics Research[C].1987, 467~474
    [30] Paul Michael Newman. On the structure and solution of the simultaneous localization and map building problem[D]. PhD thesis, Australian Center for Field Robotics, the University of Sydney
    [31] Feder H J S. Simulataneous Stochastic Mapping and Localization [D]. PhD Tehsis, MIT, USA, 1999
    [32]张恒,樊晓平,刘艳丽.移动机器人同步定位与地图构建研究进展[J].数据采集与处理,2005,20(4):458~465
    [33]徐遵义,晏磊,宁书年,邹华胜.海洋重力辅助导航的研究现状与发展[J].地球物理学进展,2007,22(1):104-111
    [34]武凤德,李传学.水下导航技术的最新发展[A].全国首届水下导航应用技术研讨会论文集,2003, 1~9
    [35]武凤德,侯全新.无源重力导航技术[A].全国首届水下导航应用技术研讨会论文集,2003,70~76
    [36] Albert J, Dosch H, Daniel E H. Gravity aided Inertial Navigation System (GAINS)[A]. Proceedings of the Annual Meeting-Institute of navigation, 1991, 221-229
    [37] John Moryl, Hugh Rice. The Universal Gravity Module for Enhanced Submarine Navigation[J].IEEE 2004:324-331
    [38] Warren G H. Gradiometer-Aided Inertial Navigation[M]. Analytic Sciences Corporation, 1975
    [39] Wells E M, Breakwell J V. A study to determine the best utilization of gravity gradiometer information to improve inertial navigation system(INS) accuracy[J]. AIAA, 1980:72-79
    [40] Prokhorov Y G. Observability of gravimeter-aided inertial navigation systems[J]. Journal of Guidance, Control, and Dynamics, 1995, 18(6): 1416-1419
    [41] Murray S G, John J B. Precision Gravity Gradiometer/AUV System[J]. IEEE: Autonomous Underwater vehicles, 1998: 167-174
    [42] Behzad Kamgar-Parsi, Behrooz Kamgar-Parsi. Vehicle localization on gravity maps[J].Part of the SPIE Conference on Unmanned Ground Vehicle Technology, 1999, SPIE 3693(4):182-191
    [43]彭富清,霍立业.海洋地球物理导航[J].地球物理学进展,2006,22(3):759-764
    [44]徐遵义,晏磊,宁书年,刘光军.基于Hausdorff距离的海底地形匹配算法仿真研究[J].计算机工程,2007, 33(9):7-9
    [45]魏东.重力匹配定位方法研究[D].硕士论文,哈尔滨工程大学,2004
    [46]汪凤林.速率方位惯性平台及其组合系统理论与仿真研究[D].博士论文,东南大学,2008
    [47]戴全发,许厚泽,许大欣,王勇.基于卫星测高数据的重力匹配导航仿真[J].武汉大学学报,2008,33(2):203-207
    [48]戴全发.重力匹配导航仿真研究[D].武汉:中国科学院测量与地球物理研究所,2007
    [49]孙岚.重力匹配导航[D].郑州:信息工程大学测绘学院,2006
    [50]束蝉方.高精度惯导系统的重力补偿系统研究[D].武汉大学硕士论文,2005
    [51]陈勇,吴太旗.海洋重力辅助导航在潜艇上的应用[J].航海技术,2008,5,36-37
    [52] Jordan S.K., Center J L. Establishing Requirements for Gravity Surveys for Very Accurate Inertial Navigation[J]. Navigation, 1986, 33(2): 90-108
    [53] Peter Domian Kopcha. NGA gravity support for inertial navigation[R]. ION 60th Annual Meeting/U.S. Air Force Institute of Technology & The U.S. Air Force Research Laboratory, Sensors Directorate, 7-9 June, 2004, 497-504
    [54] May M, Lowrey J A. Aikawa M. VERDICT-a plan for gravity compensation of inertial navigation systems[A]. In: Position Location and Navigation Symposium. IEEE PLANS[C]. 1988, 280-287
    [55] D.A. Grejner-Brzezinska, Y. Yi, C. Toth, R. Anderson, J. Davenport, D. Kopcha, R. Salman. Enhanced Gravity Compensation for Improved Inertial Navigation Accuracy[A]. Proceedings of the 16th International Meeting of the Satellite Division of the Institute of Navigation IONGPS/GNSS, Orgon convention Center Portland, Oregon, 2003, 2879-2909
    [56]周永余,许江宁,高敬东.舰船导航系统[M].北京:国防工业出版社,2005
    [57]秦永元.惯性导航[M].北京:科学出版社,2005
    [58] Heiskanen W. A. ,Moritz H., Physical Geodesy, San Francisco:W. H. Free man and Company,1967
    [59] Moritz. Advanced physical geodesy. 1980.
    [60]陆仲连.地球重力场理论与方法[M].解放军出版社.1996.
    [61]陆仲连,吴晓平等.弹道导弹重力学[M].八一出版社.1993.
    [62]夏哲仁.外空扰动引力场的传播特性[J].地球物理学报,1998,41(4)
    [63]黄谟涛.潜地战略导弹弹道扰动引力计算与研究[D].郑州:解放军信息工程大学测绘学院,1991.
    [64] A. Richeson. Gravity gradiometer aided inertial navigation within non-GNSS environments[D]. Ph.D. thesis, the University of Maryland, 2008
    [65] Jekeli C. Inertial Navigation Systems with Geodetic Applications[M]. Berlin: Walter deGruyter, 2000
    [66] Yang Y, Xu T. An adaptive Kalman filter based on Sage windowing weights and variance components [J]. Journal of Navigation, 56:231~240, 2003
    [67] Yang Y, He H and Xu G. Adaptively Robust filtering for kinematic geodetic positioning[J]. Journal of Geodesy, 2001, 75, 09-116
    [68] Gelb A. Applied Optimal Estimation[M]. Cambridge: MIT Press, 1974, 39-45
    [69] Smith R. Selfm, Cheeaeman P. Estimating uncertain spatial relationships in Robotics[M]. Autonomous Robot Vehicles. London: Springer Verlag, 1990: 167-193
    [70]王耀南,余洪山.未知环境下移动机器人同步地图创建与定位研究进展[J].控制理论与应用,2008,25(1):57-65
    [71]黄谟涛,翟国军等著.海洋重力场测定及应用[M].北京:测绘出版社,2005
    [72] Jekeli C. Airborne Vector Gravimetry Using Precise, Position-Aided Inertial Measurement Units[J]. Bulletin Geodesique, 1994, 69:1-11
    [73] Jekeli C. Airborne Gradiometry Error Analysis[J]. Surveys in Geophysics, 2006, 27: 257-275
    [74]王广运,王海瑛,许国昌.卫星测高原理[M].北京:科学出版社, 1995
    [75] Cheney RE, Douglas BC, Agreen RW, Miller L and Doyle NS. The NOAA Geosat Geophysical Data Records-User Handbook[R], NOAA TM NOS NGS-46, Rockwille, MD: NOAA, 1987
    [76] Hanes BJ, Et al. Precise Orbits Computation for the Geosat Exact Repeat Mission[J]. 1990, J. Geophys. Res., 95(C3), 2871-2885
    [77] AVISO User Handbook: Merged TOPEX/POSEIDON Products AVI-NI-02-100-CN [M]. Edition 3, 1996.
    [78] Fu L L., et al. TOPEX/POSEIDON Mission Overview[J]. J. Geophys. Res., 1994, 99(C12): 24369-24382
    [79] G. Balmino. Orbit Choice and the Theory of Radial Orbit Error for Altimetry[A]. In: Lecture Notes in Earth Sciences. Satellite Altimetry in Geodesy and Oceanography[C]. New York: Springer-Verlag, 1993: 244-317
    [80]翟国君.卫星测高数据处理的理论与方法[D]. 1998,武汉:武汉测绘科技大学
    [81] Mara M. Yale and David T.Sandwell et. Comparison of along track resolution of stacked Geosat, ERS-1, and TOPEX satellite altimeters [J]. JGR, 1995,100(B8): 15117-1512
    [82]彭富清.计算测高卫星的正常点及其平均海面高[J].海洋地球物理学进展,2004,19(2):437-441
    [83] Gysen H et al. Analysis of Collinear Passes of Satellite Altimeter Data[J]. J. Geophys. Res., 1992, 97(C2): 2265-2277
    [84] Wagner C A. Accuracy estimate of geoid an ocean topography recovered Jointed from satellite altimetry[J]. J.Geophys. Res., 1986: (B1): 3027-3036
    [85] R. Rummel. Principle of Satellite Altimetry and Elimination of Radial Orbit Errors[A]. In: Lecture Notes in Earth Sciences. Satellite Altimetry in Geodesy and Oceanography[C]. New York: Springer-Verlag, 1993: 190-243
    [86]姜卫平.卫星测高技术在大地测量学中的应用[D].武汉:武汉大学,2001
    [87]李建成,陈俊勇,宁津生等.地球重力场逼近理论与中国2000似大地水准面的确定[M].武汉:武汉大学出版社,2003
    [88]刘传勇,黄谟涛,欧阳永忠,王克平等.卫星测高正常点海面高度计算方法研究[J].海洋测绘,2005,25(6):4-8
    [89] Schrama E J O. The Role of Orbit Errors in Processing of Satellite Altimeter Data [ Ph. D. thesis] . Delft: Delft university, 1989
    [90] Colombo O L. Altimetry, orbits and tides[R]. Greonbelt: NASA Technical Memorandum 86180, 1984
    [91] William M. Kaula. Theory of Satellite Geodesy, Blaidsel, Waltham, Mass., 1969.
    [92] Engelis, T. Radial Orbit Error Reduction and Sea Surface Topography Determination Using Satellite Altimetry. Dept. Of Geodetic Science and Surveying, the Ohio State University, Rep. Columbus, Ohio, 1987, No.377
    [93]朱长青.数值计算方法在测绘中的应用.北京:测绘出版社,1997,37-68
    [94] Olgiati A, Balmino G, Sarrailh M, Green CM. Gravity anomalies from satellite altimetry: comparison between computation via geoid heights and via deflections of the vertical. Manuscripta geodaetica, 1995,69: 252-260
    [95] Cheinway Hwang, Eu-Chi Kao and Barry Parsons. Global derivation of marine gravity anomalies from Seasat, Geosat, ERS-1 and TOPEX/POSEIDON altimeter data. Geophys. J.Int, 1998, 134: 449-459
    [96] C. Hwang, H.-Y. Hsu, R.-J. Jang. Global mean sea surface and marine gravity anomaly from multi-satellite altimetry: applications of deflection-geoid and inverse Vening Meinesz formula[J]. Journal of Geodesy, 2002, 76: 407-418
    [97]彭富清,夏哲仁.卫星测高中的垂线偏差法[J].海洋测绘,2004, 24(2):5~9
    [98]王海瑛.中国近海卫星测高数据处理与应用研究[D].武汉:中国科学院测量与地球物理研究所, 1999
    [99]陆仲连.球谐函数[M].郑州:解放军信息工程大学测绘学院.1988.
    [100]Hwang C. Inverse Vening Meinesz formula and deflection-geoid formula :applications to the predictions of gravity and geiod over the South China Sea. Journal of Geodesy, 1998, 72:304-312
    [101]Andersen OB. and Knudsen P. Global marine gravity field from the ERS-1 and Geosat geodetic mission altimetry[J]. J. Geophys.Res., 1998, 103(C4): 8219-8317
    [102]Yu J, Jekeli C, Zhu M. The analytical solutions of the geodetic boundary value problems with ellipsoidal boundary[J]. The Journal of Geodesy, 2002, 76(11):653-667
    [103]Mcadoo D C, Marks K M. Gravity Fields of the Southern Ocean from Geosat Altimetry. J Geophys Res, 1992, 97(B3): 3 247-3 260
    [104]Kwon J.H. and Jekeli C. Gravity Requirements for Compensation of Ultra-Precise Inertial Navigation[J]. The Journal of Navigation, 2005, 58: 479-492
    [105]Jay Hyoun Kwon. Gravity compensation methods for precision INS[C].ION 60th annual meeting/U.S. Air Force Institute of Technology & The U.S. Air Force Research Laboratory, Sensors Directorate, Dayton, OH, 7-9 June 2004, 483-490
    [106]Dorota A. Grejner-Brzezinska and Jin Wang. Gravity Modeling for High-Accuracy GPS/INS Integration[J]. Navigation, 1998, 45(3): 209-220
    [107]Grejner-Brzezinska D., Yi Y., Toth T., Anderson R., Davenport J., Kopcha D. and Salman R. Enhanced Gravity Compensation for Improved Inertial Navigation Accuracy[R]. ION GPS, September 9-12, CD-ROM
    [108]Grejner-Brzezinska D., Toth C., Yi Y. On improving navigation accuracy of GPS/INS systems[J]. Photogrammetric Engineering & Remote Sensing, 2005, 71(4): 377-389
    [109]Grejner-Brzezinska D A. Airborne Integrated Mapping System: Positioning Component[A]. In: Proceedings of 53rd ION Annual Meeting, Albuquerque, 1997:225-235
    [110]S.A. Levine, A. Gelb. Effect of deflections of the vertical on the performance of a terrestrial inertial navigation system[J]. J.Spacecraft, 1969, 6(9):978-984
    [111]秦永元,张洪钺,汪叔华.卡尔曼滤波与组合导航原理[M].西安:西北工业大学出版社,1998
    [112]黄维彬.近代平差理论及其应用[M].北京:解放军出版社,1990
    [113]杨元喜.动态系统的抗差Kalman滤波[J].解放军测绘学院学报,1997, 14(2): 79-84
    [114]Gelb A. Applied Optimal Estimation[M]. MIT Press, Cambridge, MA, 1974, 39-45
    [115]Jordan SK, Moonan PJ, Weiss JD. State-Space Models of Gravity Disturbance Gradients[J]. IEEE Transactions of Aerospace and Electronic Systems, 1981, Vol. AES-17(5):610-618
    [116]Jordan S K. Effects of Geodetic Uncertainties on a Damped Inertial Navigation Systems [J]. IEEE TRANSACTIONS ON AEROSPCE AND ELECTRONIC SYSTEMS, 1973, 9(5):741-752
    [117]Clive AA, Albert J. Passive gravity gradiometer navigation system [A]. IEEE PLANS’90: Position Location and Navigation Symposium[C], 1990: 60~66
    [118]Moryl J. Advanced submarine navigation systems[J]. Sea Technology,1996,37(11):33~39
    [119]辛廷慧.水下地形辅助导航方法研究[D].西安:西北工业大学, 2004
    [120]Diane E.Di Massa. Terrain-relative Navigation for Autonomous Underwater Vehicles[D]. Massachusetts Institute of Technolgy, 1997
    [121]Behad Kamgar-Parsi, Behrooz Kamgar-Parsi. Registration algorithms for geophysical maps. U.S. Government work: pp974-980
    [122]S.T. Touhy, J.J. Leonard, J.G. Bellingham, N.M. Patrikalakis, and C.Chryssostomidis. Map based navigation for autonomous underwater vehicles[R]. MIT Dept. of Ocean Engineering, 1995
    [123]Berthold K.P. Horn. Closed-form solution of absolute orientation using unit quaternion[J]. Optical Society of America, 1987, 4(4): 629-642
    [124]Horn, B., Hilden, H., and Negahdaripour, S. Closed-Form solution of Absolute Orientation Using Orthonormal Matrices: JOSAA, vol.5(7),1988
    [125]Behzad Kamgar, Behrooz Kamgar-Parsi. Matching Sets of 3D Line Segments with Application to Polygonal Arc Matching[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(10):1090-1099
    [126]W.Stasior. Autonomous localization for underwater vehicles. Master’s thesis, Massachusetts Institute of Technology, Cambridge, Massachusetts, December 1990
    [127]Paul J. Besl, Neil D. Mckay. A method for registration of 3-D Shapes[J]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 1992,14(2):239-256
    [128]Brian Steven Bingham. Precision autonomous underwater navigation[D].Massachusetts Institute of Technology, 2003
    [129]D. Simon. Fast and accurate shape-based registration[D]. Robotics Institute, Carnegie Mellon Univ., 1996
    [130]刘承香,阮双深,刘繁明,张敏.基于迭代最近点的地形匹配算法可靠性分析[J].深圳大学学报理工版,2005,22(1):22-26
    [131]Byung-Uk Lee, Chul-Min Kim, Rae-Hong Park. An orientation reliability matrix for the iterative closest point algorithm[J]. IEEE Transactions on pattern Analysis and Machine Intelligence, 2000, 22(10):1205-1208
    [132]yung-Uk Lee, Chul-Min Kim, Rae-Hong Park. Error sensitivity of rotation angles in the ICP algorithm[J]. Proc. Of SPIE, Three-Dimensional Image Capture and Applications II, 1999, 3640, 146-156
    [134]Bishop G C. Gravitational field maps and navigational errors[J]. IEEE Journal of Oceanic Engineering, 2002,3:726-737
    [135]李德华,杨灿.地形匹配区选择准则研究.华中理工大学学报,1996,24(2):7~8
    [136]在不同地形条件下的地形辅助导航系统定位精度评估.宇航学报,1998(19):84~89
    [137]朱华勇.地形适配性分析方法及计算技术[D].长沙:国防科技大学,2001
    [138]刘志锋.地形辅助导航中基准图的适配性能分析[D].长沙:国防科技大学,2000
    [139]冯庆堂.地形匹配新方法及其环境适应性研究[D].长沙:国防科技大学,2004
    [140]吴尔辉.地形匹配辅助导航系统中的地形可导航性分析方法研究[D].长沙:国防科技大学,1998
    [141]艾浩军,丁明跃,涂吉林.地形适配性快速计算方法研究[J].数据采集与处理,1997,12(3):234-237
    [142]Tang W, WcClintock RL. Terrain correlation suitability[J]. SPIE, Orlando, F1 USA, 1994,50-58
    [143]彭嘉雄,张天序.地形统计模型研究[J].宇航学报,1984,(6):14-20
    [144]刘徐德.地形辅助导航系统技术[M].电子工业出版社,1994
    [145]Uhlmann J. Dynamic Map Building and Localization:New Theoretical Foundation [D]. PhD thesis, University of Oxford,1995
    [146]迟建男,徐心和.移动机器人即时定位与地图创建问题研究机器人[J].2004,26(1):92-96
    [147]张恒,樊晓平,刘艳丽.移动机器人同步定位与地图构建研究进展[J].数据采集与处理,2005,20(4):458-465
    [148]Goldenberg F. Geomagnetic navigation beyond magnetic compass[C]. In: IEEE PLANS 2006, San Diego, California, 684-694

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700