用户名: 密码: 验证码:
高温超导磁梯度仪关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超导量子干涉器(SQUID)是目前磁测灵敏度最高的传感器,用其制成的超导磁力仪具有可直接测量磁场,噪声低,频带宽,低频响应好等特点,在地球物理勘查上,可用来探测地磁异常或作为电磁法的接收探头进行深部金属矿、油气资源的勘查。但由于超导磁力仪对磁场极其灵敏,在无屏蔽环境中极易受到外界噪声干扰,限制了其在野外的使用范围,且磁力仪测量的数据仅能反映磁异常的存在和大小,在查明磁异常源的特点和细节方面提供的信息有限。本论文针对这些问题,采用两个高温射频超导量子干涉器进行磁梯度测量研究。通过研究磁梯度测量理论,设计并制作了高温超导磁梯度探头,研制了满足野外使用的无磁液氮杜瓦,对高温射频超导量子干涉器信号检测技术进行研究,研制了高性能的射频超导量子干涉器信号检测装置,改进原有高温超导磁力仪的手动调节方法,研制了可自动调节射频超导量子干涉器工作点的仪器测控系统,提高了仪器调试效率,方便了野外磁法工作,进行了高温超导磁梯度测量仪的室内测试与标定,测试结果表明研制的高温超导磁梯度仪能够满足野外工作的要求,进行了高温超导磁梯度仪的野外性能测试,并与磁通门磁力仪,光泵磁力仪和高温超导磁力仪进行了对比实验,取得了满意效果,达到了研究目的。
     本文研究是在国家863计划重大项目《航空地球物理勘查技术系统》的“全数字化矢量航磁勘查系统研发”课题以及吉林大学研究生创新研究计划项目《高温超导磁梯度测量关键技术研究及样机研制》资助下进行的,开展的高温超导磁梯度仪关键技术的研究,为我国未来开展航空全张量磁梯度测量提供了研究基础和技术储备。
SQUID (Superconducting Quantum Interference Device) is the most sensitive sensor ever known in the field of measurement of weak magnetic. The sensitivity of magnetometer made by SQUID can reach as high as 10fT/Hz1/2 (range of white noise), which is over three orders higher than other magnetometers. With characteristics such as direct magnetic field measurement, low noise, wide frequency band, and good low-frequency effects, it can be utilized in the areas of MCG and MEG detection, nondestructive testing of metals, geophysical prospecting, and detecting submarine, etc. However, when it is employed in the wild magnetic prospecting or as the receiving probe of TEM doing deep metal mining, oil and gas exploration, the noise interference is so great in unshielded environment that it could seriously lead to inability of functioning, because its sensitivity is too high to the magnetic field. Meanwhile, calibration of magnetic diurnal variation is needed during a long period of data measurement, the angle of measurement must be compensated, and the measurement data can only reflect the existence and size of the magnetic anomalies, limited information when identifying the characteristics of magnetic anomaly sources and the details. To solve the problems mentioned above, in this paper, two SQUIDs are introduced to research on magnetic gradient measurements and to develop the equipment.The common mode noise outside can be suppressed effectively by measuring the magnetic gradient. Compared with the magnetometer, Gradient measurements can provide more information that reflects the characteristics and details of the sources of magnetic anomalies. This research is supported by the topic in development of full digital vector airborne magnetic prospecting system in airborne geophysical prospecting techniques system of the 863 Project, and it is also funded by the key technology of HTS SQUID magnetic gradiometer and development of instrument in Jilin University Graduate Innovation Program. Main contents and results are as follows:
     1. The method of high temperature superconducting magnetic gradient measurement has been studied and the high temperature superconducting magnetic gradiometer has been developed. Studying the principle and methods of magnetic gradient measurement, analyzing the differences between the measured value and the theoretical value, the advantages and feasibility of high-temperature superconducting magnetic gradient measurement are obtained through studying the influence on magnetic gradient measurement value made by different baseline distances. Measurement principle of SQUID and measurement method of HTS SQUID magnetic gradiometer has been studied and the design of the equipment has been realized.
     2. The HTS SQUID magnetic gradiometer probe has been developed. The high-vacuum multilayer insulated non-magnetic Dewar has been developed after studying the vacuum performance of Dewar and selecting proper Dewar material with non-magnetic. The special treatment of anti-radiation layer has been done to improve the insulation performance of Dewar, extend the Bandwidth, and reduce electromagnetic wave radiation effectively. The vacuum performance between inner and outer skin of Dewar is enhanced with suitable technology. The tests of daily evaporation rate have been carried out which indicate that it meets the requirements of magnetic prospecting in the wild. After studying the cross-talk between tow SQUIDs and analyzing the impact of the sensor baseline orientation on gradient measurement, a reasonable structure of magnetic gradient probe is developed and the HTS SQUID magnetic gradiometer probe is assembled.
     3. The research on the key signal detection technology of HTS SQUID magnetic gradiometer has been done, which mainly includes the RF SQUID detection technology based on flux-locked state, RF signal generation technology of adjustable frequency and power, weak RF signal amplification technology of RF SQUID, anti-jamming technology of electromagnetic shielding system, etc. Based on these key technologies above, a high stable signal detection with low noisy based on HTS SQUID is developed.
     4. The research of the key control system technology of HTS SQUID magnetic gradiometer has been carried out. By studying the low-noise data acquisition technology of adaptive variable sampling rate and adaptive-switching range, the technology of high-speed data transmission and data error correction, and the technology of RF SQUID operating point adjustment, a control system with the functions including adjusting the operating point automatically, measuring and saving dynamically is developed, which greatly facilitates the magnetic work in the field and significantly improves efficiency, compared with the traditional manual operating system.
     5. The indoor testing and calibration of HTS SQUID magnetic gradiometer has been carried out. The platform for indoor testing and calibration has been built. The methods for parameters test have been introduced and the results of static noise level, sensitivity, dynamic range, bandwidth, and slew rate have been obtained and analyzed. The balance adjustment and test methods of HTS SQUID magnetic gradiometer have been presented, and the calibration method of HTS SQUID magnetic gradiometer has also been studied, which provide technical support for further field experiments. The HTS SQUID magnetic gradiometer has been calibrated and tested. The results of tests show that the key parameter and performance index of the instrument is able to meet the demand of field work, which lay the technical support for field experiments.
     6. The field experiments of HTS SQUID magnetic gradiometer has been carried out. The noise level, impact of baseline offset, and the stability of the instrument has been tested. The results of the tests show that the HTS SQUID magnetic gradiometer can keep long time work stably. Compared with the magnetic field measure, gradiomentic measurement can suppress the common model effectively, eliminate the influence of geomagnetic diurnal change and interferences caused by light mechanical vibration or sloshing. The real performances of system working in field conditions are verified with setting known experimental models. Comparison experiments with other magnetic are carried out, and then the advantages of measurement by HTS SQUID magnetic gradiometer are obtained.The field experiment shows that the developed HTS SQUID magnetic gradiometer is able to achieve the purpose of the study.
     Innovative work in this paper is as follows.
     1. The HTS SQUID suitable for field work without any shielding has been developed. Aiming at the problems of field magnetic prospecting, the principle of magnetic gradient measurement has been studied, and the method of magnetic gradient measurements with two SQUIDs is researched, which is combined with the key technology of HTS SQUID, the HTS SQUID magnetic gradiometer for field unshielded environment containing HTS SQUID magnetic gradiometer probe, signal detection device, and control system has been developed. The field experiments of HTS SQUID magnetic gradiometer has been carried out and results indicate that the purpose of the study has been achieved, which lay the technical support for the further application research of the HTS SQUID and full tensor magnetic gradiometer in practical magnetic prospecting.
     2. A self-correcting algorithm for data transmission had been proposed. In the algorithm, the sum of rows and columns are considered as the parity. After locating the incorrectness data, finite cross iteration are introduced to realize the data self-correct according to incorrectness level in order to avoid the phenomenon of data errors or data packet loss caused by external interference during high-speed data transmission, which enhanced the reliability and stability of data transmission of HTS SQUID magnetic gradiometer.
     3. A method of adjusting operating point of SQUID automatically has been proposed. The range of frequency is determined with the Fourier Transform of modulation signal obtained by the SQUID. Amplitude and SNR are estimated via spectral analysis. The optimal operating point of the SQUID is obtained when the modulation signal has max amplitude and highest SNR. The automatic operating point adjusting function has been realized with the test-controlled software and the designed hardware circuit, which reduced the equipments required for filed adjusting by HTS SQUID magnetic gradiometer, lowered the degree of tedious of adjusting, and improved efficiency.
     Through this study, HTS SQUID magnetic gradiometer for unshielded environment field is developed, which solved the problems of field application of HTS SQUID magnetometer. By the field experiments, it can be seen that the developed HTS SQUID magnetic gradiometer contains the advantages of low noise, high stability, accurate measurement, etc. It provides an important technical foundation for the research and development of airborne tensor magnetic gradiometer in the future. Meanwhile, it has a positive impact on the underground iron, oil and gas exploration.
引文
[1]王永生.我国矿产资源综合利用现状、潜力和对策措施[J].矿产保护与利用,2007,(6):5-7.
    [2]赵洁心,冯波,谭俊等.我国矿产资源开发利用现状与可持续发展探讨[J].黄金,2006,27(2):1-4.
    [3]张言海,张文艺.21世纪我国矿产资源实现可持续开发利用战略问题探讨[J].吉林地质,2000,19(2):27-30.
    [4]段海燕.我国矿产资源循环利用研究[D].吉林:吉林大学,2009.
    [5]罗大锋.当代中国矿产资源开发存在的问题及对策[J].中国工程科学,2005,7(S1):49-52.
    [6]滕吉文,刘建明等.第二深度空间金属矿产探查与东北战略后备基地的建立和可持续发展[J].吉林大学学报(地球科学版),2007,37(4):633-651.
    [7]刘树林.老矿山探矿增储工作的探讨[J].黄金,2010,31(12):1-3.
    [8]杜贵亭,刘晓民.深部煤田钻探施工技术的实践与应用[J].西部探矿工程,2010,31(11):99-102.
    [9]滕吉文.强化开展地壳内部第二深度空间金属矿产资源地球物理找矿、勘探和开发[J].地质通报,2006,25(7):767-771.
    [10]李新,李泽营,许雁超等.深部资源勘探成果思考及开采过渡方式选择[J].金属矿山,2009,8:91-96.
    [11]严加永,滕吉文等.深部金属矿产资源地球物理勘查与应用[J].地球物理学进展,2008,23(3):871-891.
    [12]董树文,李廷栋,高锐等.地球深部探测国际发展与我国现状综述[J].地质学报,2010,84(6):734-768.
    [13]曹新志,张旺生,孙华山等.我国深部找矿研究进展综述[J].地质科技情报,2009,28(2):104-109.
    [14]秦葆瑚.高精度磁法勘探[M].武汉:中南工业大学出版社,1988.
    [15]长春地质学院磁法教研室.磁法勘探[M].北京:地质出版社,1979.
    [16]金羽.石油物理勘探技术及应用[J].辽宁化工,2008,31(11):782-786.
    [17]娄德波,宋国玺,李楠,等.磁法在我国矿产预测中的应用[J].地球物理学进展,2008,23(1):249-256.
    [18]管志宁,郝天珧,姚长利.21世纪重力与磁法勘探的展望[J].地球物理学进展,2002, 17(2):237-244.
    [19]张昌达,董浩斌.重力和磁力勘探进入新时期[J].物探与化探,2010,34(1):1-7.
    [20]郑全库.高精度磁法在多金属矿产勘探中的应用[J].科学技术与工程,2009,9(9):2412-2415.
    [21]马平,杨涛,谢飞翔,等.高温超导量子干涉磁强计的发展现状及其应用[J].现代仪器,2001,(5):28-30.
    [22]Yang H.-C, Wang Shu-yu, Chen Chin-hao, et al. Research and Some Applications of High-Tc SQUIDs [J]. Journal of Low Temperature Physics,2003,131 (3/4):509-519.
    [23]陈林,李敬东,唐跃进等.超导量子干涉仪发展和应用现状[J].低温物理学报,2005,27(z1):657-661.
    [24]Y. Zhang, N. Wolters, J. Schubert, et al. HTS SQUID gradiometer using substrate resonators operating in an unshiedlded environment—a portable MCG system [J].IEEE Transactions on applied superconductivity,2003,13(2):389-392.
    [25]John P. Wikswo, Jr. SQUID magnetometers for biomagnetism and nondestructive testing: important question and initial answers [J]. IEEE Transactions on applied superconductivity,1995,5(2):74-120.
    [26]A. Chwala, R. Stolz, J. Ramos, et al. An HTS dc SQUID systemfor geomagnetic prospection [J]. Superconductor Science and Technology,1999,12(11):1036-1038.
    [27]M. Bucj, G. Panaitov, N. Wolters, et al. A HTS rf SQUID vector magnetometer for geophysical exploration [J].1999,9(2):3780-3785.
    [28]A Chwala, R Stolz, J Ramos, et al. An HTS dc SQUID system for geomagnetic prospection [J]. Supercond,1999,12(11):1036-1038.
    [29]戴远东.高Tc超导量子干涉器及其应用[J].物理,1991,20(8):488-490.
    [30]漆汉宏.高温超导dc-SQUIDs及其涡流无损检测方法研究[D].河北:燕山大学,2004.
    [31]C.P Foley, K.E. Leslie, R. Binks, C Lewis, W. Murray, G.J. Sloggett, S.Lam, B. Sankrithyan, N. Savvides, A.Katzaros, K.-H. Muller, E.E. Mitchell and J. Pollock. Field Trials Using HTS SQUID Magnetometers for Ground-based and Airborne Geophysical Applications [J]. IEEE Transactions on Applied Superconductivity,1999,9(2): 3786-3792.
    [32]曾昭发,王者江SQUID及在地球物理中的应用[J].地球物理学进展,2003,18(4):608-613.
    [33]R. Stolz, L. Fritzsch and H.-G Meyer. LTS SQUID Sensor with A New Configuration [J]. Superconductor Science and Technology,1999,12(11):806-808.
    [34]A. Chwala, R. Stolz, R.I. Jsselsteijn, V. Schultze, N. Ukhansky, H.-G. Meyer and T. Schuler. SQUID Gradiometer for Archaeometry [J]. Superconductor Science and Technology,2001,14(12):1111-1114.
    [35]P. Seidel, C. Becker, A. Steppke, M. Buettner, H. Schneidewind, V. Grosse, G. Zieger and F. Schmidl. Long-time Stable High-temperature Superconducting DC-SQUID Gradiometers with Silicon Dioxide Passivation for Measurements with Superconducting Flux Trasnsormers [J]. Superconductor Science and Technology,2007,20(Supp.): 380-384.
    [36]张昌达.航空磁力梯度张量测量——航空磁测技术的最新进展[J].工程地球物理学报,2006,3(5):354-360.
    [37]吴招才,刘天佑.磁力梯度张量测量及应用[J].地质科技情报,2008,27(3):107-110.
    [38]张朝阳,肖昌汉,阎辉.磁性目标的单点磁梯度张量定位方法[J].探测与控制学报,2009,31(4):44-48.
    [39]张昌达.量子磁力仪研究和开发近况[J].物探和化探,2005,29(4):283-287.
    [40]王光源,马海洋,章尧卿.航空磁探仪探潜目标磁梯度定位方法[J].兵工自动化,2011,30(1):32-38.
    [41]林君.地球物理弱磁测量仪器进展[J].石油仪器,1997,11(2):7-11.
    [42]祁香兵.数字氦光泵磁力仪的设计与实现[D].浙江:浙江大学,2007.
    [43]金惕若,瞿清昌,肖良熙.频率跟踪式He-4光泵及其在梯度磁强计中的应用[J].计量学报,1982,3(1):33-41.
    [44]张立虹.光泵氦磁力仪测磁场梯度的新方法研究[J].中国计量学院学报,1993,6(2):76-82.
    [45]张青衫,麻丰林,许丽云.航空三位磁梯度测量方案研究[J].地质与勘探,2010,46(6):1087-1091.
    [46]朗佩琳,陈珂,郑东宁等.高阶高温超导量子干涉器件平面式梯度计的设计[J].物理学报,2004,53(10):3530-3534.
    [47]漆汉宏,魏艳君,王天生.硅双晶结高温超导直流量子干涉器件[J].传感器技术,2001,20(1):31-33.
    [48]漆汉宏,田永君,王天生等.高温超导双晶结垫圈型dc SQUID磁强计的研制[J].电子器件,2003,26(4):333-336.
    [49]田永君, 王天生,陈珂等.用于无屏蔽环境生物磁测量的倒装片式高温超导梯度计[J].中国科学,1999,29(12):1119-1124.
    [50]漆汉宏,田永君,魏艳君.高温超导DC-SQUID平面式梯度计[J].仪器仪表学报,2001,22(2):176-178.
    [51]Zhao Jing, Wang Jun, Liu Guangda. Axial High-temperature RF SQUID Gradiometer System for Geomagnetic Prospecting[C]. Proceedings of 9th International Conference on Electronic Measurement and Instruments, Beijing,2009:1704-1707.
    [52]Zhao Jing, Liu. Guangda,An Zhanfeng, Wang Jun,Ren Shengnan. High-temperature RF SQUID gradiometer controlling system[C]. Proceedings of 2009 International Conference on Information Engineering and Computer Science, Wuhan,2009:1433-1435.
    [53]P.W. Schmidt and D.A. Clark et al. The magnetic gradient tensor: Its properties and uses in source characterization [J]. The Leading Edge,2006,25(1):75-78.
    [54]Y. Tavrin, Y. Zhang, W. Wolf, et al. A second-jorder SQUID gradiometer operating at 77K [J]. Superconductor Science and Technology,1994,7(5):265-268.
    [55]G. Panaitov, M. Bick, Y. Zhang. Peculiarities of SQUID magnetometer application in TEM [J].Geophysics,2002,67(3):739-745.
    [56]R. Stolz, V. Zakosarenko, M. Schulz, et al. Magnetic full-tensor SQUID gradiometer system for geophysical applications [J]. The Leading Edge,2006,25(2):178-180.
    [57]R. Stolz, A. Chwala, V. Zakosarenko, M. Schulz, L. Fritzsch and H.-G. Meyer. SQUID technology for geophysical exploration [C]. SEG/New Orleans 2006 Annual Meeting, 2006, SEG Expanded Abstracts 25:894-898.
    [58]H.-G. Meryer, R. Stolz, A.Chwala and M. Schulz. SQUID technology for geophysical exploration [J]. Physica Status Solidi(c),2005,2(5):1504-1509.
    [59]Andreas Klaus Kurt Rompel. Geological applications for FTMG [C].11th SAGA Biennial Technical Meeting and Exhibition. Swaziland,2009:39-42.
    [60]Tristan Technologies. Products Instruction for Magnetometers for Geophysics. http://www.tristantech.com/prod tensor.html
    [61]Bracken, R.E., Brown, P.J.,2004, Concepts and procedures required for successful reduction of tensor magnetic gradiome-ter data obtained from a UXO detection demonstration at Yuma Proving Ground, Arizona, U.S. Geological Survey Open File Report 2004.
    [62]McFee, J., Das, Y. A multi-element fluxgate gradiome-ter array for ordnance detection[C]. Proceedings of the Un-exploded Ordinance Detection and Range-Remediation Conference, Colorado School of Mines,1994:347-364.
    [63]Smith, D. V., Bracken, R. E. Field experiments with the tensor magnetic gradiometer system at Yuma Proving Ground,Arizona[C]. Proceedings of the Symposium on the Application of Geophysics to Engineering and Environmental Problems (SAGEEP). February,2004.
    [64]Wright, D. J., Kingdon, J. Development of a combined EMI/magnetometer sensor for UXO detection [C]. Proceedings ofthe Symposium on the Application of Geophysics to Engineer-ing and Environmental Problems (SAGEEP), February,2004.
    [65]G. T. Jeffrey, E. D. William. Initial design and testing of a full-tensor airborne SQUID magnetometer for detection of unexploded ordnance[C]. SEG Technical Program Expanded Abstracts,2004,23:798-801.
    [66]W. M. Wynn. Magnetic dipole localization using the gradient rate tensor measured by a five-axis gradiometer with known velocity [C]. SPIE Proceedings,1995,2496:357-367.
    [67]Robert E. Bracken, Philip J. Brown. Reducing tensor magnetic gradiometer data for unexploded ordnance detection[C]. USGS Scientific Investigations Report,2005-5046.
    [68]David V. Smith, Robert E. Bracken. Field Experiments with the tensor magnetic gradiometer system for UXO surveys:A Case History[C]. U. S. Geological Survey, SEG Technical Program Expanded Abstracts,2004,23:806-809.
    [69]Philip J. Brown Ⅱ, Robert E. Bracken, David V. Smith. A case study of magnetic gradient tensor iInvariants applied to the UXO problem[C]. U. S. Geological Survey, SEG Technical Program Expanded Abstracts,2004,23:794-797.
    [70]T.R. Clem, M.C. Froelich, D.J. Ovenvay, et al. Advances in sensor development and demonstration of superconductinggradiometers for mobile operation [J]. IEEE Transactions on Applied Superconductivity,1997,7(2):3287-3293.
    [71]T.J. Gamey, W.E. Doll, L.P. Beard, et al. Analysis of correlated noise in airborne magnetic Gradients for unexploded ordnance detection [J]. The Journal of Environmental and Engineering Geophysics,2004,9(3):115-126.
    [72]P. Schmidt, D. Clark, K. Leslie, et al. GETMAG—A SQUID magnetic tensor gradiometer for mineral and oil exploration [J]. Exploration Geophysics,2004,35(4):297-305.
    [73]J. Du, Cathy P. Foley and Keith L. Leslie. Superconducting electronics research at CSIRO Australia—20years after discovery of HTS [J]. Journal of Electronic Science and Technology of China,2008,6(2):216-224.
    [74]David L Tilbrook. Rotating magnetic tensor gradiometry and a superconducting implementation [J]. Superconductor Science and Technology,2009,22(7):1-7.
    [75]M. Bick, K. E. Leslie, R. A. Binks, et al. Axial high-temperature superconducting gradiometer with a flexible flux transformer [J]. Applied Physics Letters,2004, 84(26):5347-5349.
    [76]管志宁.地磁场与磁力勘探[M].北京:地质出版社,2005.
    [77]秦葆瑚,吴天彪.磁通门式磁力梯度仪与磁场梯度测量[M].北京:地质出版社,1985.
    [78]王其俊.超导量子干涉器[M].西安:西北大学出版社,1988.
    [79]李颖,刘希芳译.超导量子干涉器件在地球物理学中的应用[M].北京:地质出版社,1988.
    [80]张朝兴,王海彦,邓红斌等.在液氮温区工作的RF超导量子干涉仪的研究[J].低温与超导,1991,19(2):40-45.
    [81]陈文升.超导地球物理仪器原理[M].北京:地震出版社,1988.
    [82]张凡,谢飞翔,马平等.用于甚高频rf SQUID的电感耦合式谐振器[J].低温物理学报,1991,21(1):39-44.
    [83]蔡晓磊,谢飞翔,聂瑞娟等.用于高Tc rf SQUID的高Tc超导平面谐振器[J].低温物理学报,1998,20(2):89-93.
    [84]孟树超,邓鹏,聂瑞娟等.用于高HTc rf SQUID的新型超导共面平面谐振器[J].低温物理学报,1998,20(2):89-93.
    [85]Y. Zhang, N. Wolters, X. H. Zeng, et al. Washer rf SQUID magnetiometers with coplanar resonators at 77K [J]. Applied Superconductivity,1998,6(7):385-390.
    [86]Y. Zhang, J. Schubert, N. Wolters, et al. Substrate resonator for HTS rf SQUID operation [J]. Physica C,2002,6 (7):282-286.
    [87]Yi Zhang. Evolution of HTS rf SQUIDs [J]. IEEE transactions on applied superconductivity,2001,11(1):1038-1042.
    [88]Y. Zhang, H. R. Yi, J. Schubert, et al. Operation of rf SQUID magnetometers with a multi-turn flux transformer integrated with a superconducting Labyrinth resonator [J]. IEEE transactions on applied superconductivity,1999,9(2):3396-3400.
    [89]Y. Zhang, G. Panaitov, S. G. Wang, et al. A HTS SQUID Gradiometer using superconducting coplanar resonators for operation in unshielded environment [J]. Chinese Journal of Physics,2000,38(2):330-338.
    [90]Mark N. Keene, Kevin P. Humphrey, Thomas J. Horton. Actively shielded, adaptively balanced SQUID gradiometer system for operation aboard moving platforms [J]. IEEE transactions on applied superconductivity,2005,15(2):761-764.
    [91]王勋,齐亮,焦洁青等. HTc SQUID软件梯度计研究[J].稀有金属材料与工程,2008,37(S4):464-467.
    [92]张远斌,潘皖江.复合材料杜瓦设计与分析[J].机械工程师,2008,(9):104-105.
    [93]孟令华,章学华,赵晓如.异性液氮无磁杜瓦的研制[J].低温工程,1996,93(5):27-30.
    [94]徐烈,叶军,徐佳梅等.低温玻璃钢等材料的热膨胀系数[J].低温与超导,1996,24(1):30-33.
    [95]肖尤明,徐烈,张洁等. HTc SQUID磁强计用与无磁液氮玻璃钢杜瓦的真空性能研究[J].低温与超导,2004,32(1):12-15.
    [96]李娟,汪荣顺,魏蔚.高真空多层绝热杜瓦漏放气速率实验研究[J].真空预低温,2005,11(4):229-232.
    [97]张远斌.基于材料出气率的复合材料杜瓦设计[J].玻璃钢/复合材料,2010,(1):7-9.
    [98]张存泉,徐烈,邓东泉等.低温真空多层遽尔结构热阻的理论分析[J].低温工程,2005,(5):37-41.
    [99]徐烈,周淑亮,曹庆等.玻璃钢的放弃性能研究[C].第六届全国低温测试会议论文集.浙江,1993:67-70.
    [100]徐烈,周淑亮,曹庆等.玻璃钢的放弃性能研究[C].第六届全国低温测试会议论文集.浙江,1993,67-70.
    [101]陈晓东,赵毅,张杰.无磁杜瓦频率特性对高温超导磁强计的影响[J].物探化探计算技术,2007,29(S1):292-303.
    [102]王赤军.无磁杜瓦频谱特性问题的研究[J].地质装备,2010,11(1):25-28.
    [103]杨长春,潘皖江,武松涛.玻璃钢复合材料无磁杜瓦真空性能研究[J].真空科学与技术学报,2010,30(2):193-197.
    [104]徐烈,王如竹.提高玻璃钢真空气密性的方法之研究[J].真空科学与技术学报,1987,(4):277-281.
    [105]李娟,汪荣顺.小型高真空多层绝热杜瓦日蒸发率性能研究[J].低温技术,2006,34(6):404-407.
    [106]李娟,汪荣顺,于耀华.低温杜瓦日蒸发率随压力变化规律研究[C].上海市制冷学会2005年学术年会论文集,上海,2005.
    [107]谢高峰,汪荣顺.低温容器蒸发率试验及影响因素分析[C].第八届全国低温工程大会暨中国航天低温专业信息网2007年度学术交流会论文集,2007.
    [108]黄伟,江重桦,乔勇等.测试杜瓦热损失分析及理论计算[C].第八届全国低温工程大会暨中国航天低温专业信息网2007年度学术交流会论文集,2007.
    [109]王赤军,陈晓东. SQUID磁强计的低噪声设计一频率合成及锁相技术的应用[J].地学仪器,1997,(1):14-18.
    [110]王赤军,陈晓东,赵毅.77K VHF SQUID低噪声磁强计的研制[J].仪器仪表学报, 1999,20(3):287-293.
    [111]Zhang Y, Soltner H, Zander W, et al. HTS RF SQUIDs with fully integrated plannar tank circuit [J]. Apll Supercond,1997,7(2):2870-2873.
    [112]赵静,王君,凌振宝,等.高温RF SQUID磁力仪射频振荡器[J].吉林大学学报(信息科学版),2009,27(2):113-116.
    [113]高晋占.微弱信号检测[M].北京:清华大学出版社,2004.
    [114]周志敏,纪爱华.电磁兼容技术[M].北京:电子工业出版社,2007.
    [115]闻映红 等译.电磁兼容导论[M].北京:机械工业出版社,2006.
    [116]李刚,张丽君,林凌,等.利用过采样率技术提高ADC测量微弱信号时的分辨率[J].纳米技术与精密工程,2009,7(1):71-75.
    [117]刘青兰,方志刚,邵志学.利用过采样率技术提高ADC测量分辨率[J].现代电子技术,2007,(12):74-79.
    [118]徐双武,白天蕊,杨修,等.基于过采样技术的∑-ΔA/D转换器的设计[J].微电子学,2007,37(4):574-578.
    [119]石立春,杨银堂,吴笑峰,等.高精度Sigma-delta调制器系统设计和仿真[J].湖南大学学报(自然科学版),2010,37(5):54-59.
    [120]萧世文,宋廷清.USB2.0硬件设计[M].北京:清华大学出版社,2006.
    [121]吕超,张玉霞,王立欣.USB接口高速数据传输的实现[J].计算机测量与控制,2009,17(5):1003-1012.
    [122]戴小俊,杨绪光,丁铁夫,等.基于USB2.0的高速数据通信接口设计[J].电子器件,2006,29(4):1320-1324.
    [123]位小记,谢红,郭慧.基于FPGA和USB的高速数据传输平台的设计[J].应用科技,2010,37(11):53-56.
    [124]李朋勃,张洪平.基于FPGA和USB2.0的高速数据采集系统[J].单片机与嵌入式系统应用,2009,(9):32-35.
    [125]杨隆梓,段星辉,魏焕东.基于FPGA的多通道同步数据采集系统[J].科学技术与工程,2008,8(6):1466-1469.
    [126]徐怡如,袁本均.BCC码检错机制理论分析[J].航空精密制造技术,1994,(5):29-31.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700