用户名: 密码: 验证码:
电子式电流互感器在线校验关键技术及相关理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为智能电网的重要组成部分,数字化变电站的出现及发展大大促进了智能电网的进步。而作为数字化变电站中一次系统的传感元件,电子式互感器是所有继电保护装置及电能计量装置的数据源头。然而,由于电子式互感器在可靠性、使用寿命、连续运行、电磁兼容等方面,还需要进一步的积累运行经验。因此,电子式互感器的在线校验、实时监测尤为重要。但是目前缺乏可以在带电状态下对电子式互感器性能进行监测的有效手段,大大限制了电子式互感器的性能提高及完善。本文正是在南方电网科技项目的资助和实际工程项目的需求牵引下,重点针对带电操作方式、高准确度标准电流传感头设计、非线性负荷下的数据处理算法等关键技术,对当前数字输出电子式电流互感器在线校验技术进行了较为深入的探讨和研究。
     从校验方式出发,提出一种新的电子式电流互感器校验方式,在国内首次实现对数字输出电子式电流互感器的准确度在线校验,并研制出国内首台符合IEC61850-9-2标准的电子式互感器在线校验系统,该系统具有0.05级的准确度,可以校验同步方式为B码、PPS,额定电流为600A和1500A,0.2S级的电子式电流互感器。到目前为止,该系统已经在贵州省电网公司多个数字化变电站进行现场测试,挂网运行结果表明,系统准确度高、运行状态良好、现场操作方便。
     首先针对校验系统需要带电操作的问题,考虑到带电操作的安全性,采用地电位作业法,设计了一种基于绝缘操作杆的钳形操作机构,在地面通过钳形操作机构可以完成传感头的带电安装及拆卸;其次,提出一种组合式钳形电流传感头构成标准电流通道的技术方案。采用钳形铁芯传感头作为标准电流互感器,准确度高,体积小,并针对气隙对钳形铁芯传感头准确度影响较大的问题,采用钳形空心传感头作为铁芯传感头闭合完好的判断依据。由于钳形空心传感头的角差几乎不受气隙的影响,而钳形铁芯传感头的角差受气隙影响较大,以两者角差一致性为特征量,用来检测钳形铁芯传感头的闭合程度,提高了校验准确度。另外,本文在分析电网波形成分及以往算法的基础上,提出一种基于数据预处理的加二阶汉宁卷积窗的高准确度基波提取算法,在现场复杂的非线性负荷校验环境下,该算法针对有频率波动的电网,在抑制频谱泄漏、间谐波及谱间干扰等引起的误差方面,有更高的准确度。
     给出了系统具体的设计及实现方案。硬件设计主要考虑到标准通道的高准确度采集,在分辨率、动态范围两个方面进行了详细分析;同时考虑到稳定性及可靠性,从采集装置的带宽设计、接地及屏蔽等几个方面做出了具体的抗电磁干扰设计。另外,上位机软件主要实现了组合式传感头特征量判断功能、标准通道数据采集功能、合并单元数据接收及解码功能、基波提取算法及误差计算功能、数据的显示、记录和存储等功能。
     以贵州白城110kV变电站1500A组合式电子式互感器为试验对象,将全文所研究的方法和技术进行了整体验证和应用。挂网运行结果表明,该系统能够在不断电的情况下完成对电子式电流互感器的实时校验。另外,在论文研究内容基础上,编制了“电子式互感器在线校验规范”及“电子式互感器在线校验作业指导书”,为后续电子式互感器的在线校验提供了校验依据,并参与编写了《贵州电网数字化变电站计量装置在线检测规范》,为电子式互感器的在线监测及分析提供检测规范。
As an important part of smart grid, the occurrence and development of digital substation has largely promoted the progress of smart grid. And as the primary sensor elements in digital substations, electronic transformers (ETs) are data sources of all relay protection devices and electric energy metering equipments. Comparing with traditional transformers, ETs are used widely because there are outstanding features including simple insulation, digital output, wide dynamic range and the frequency band. But ETs are newborn things which need further running experience including reliability, working life and EMC. On-line calibration of ETs periodically or real-time can greatly improved reliability during running time. At present, calibration of both traditional transformers and ETs stayed on the off-line calibration lack of efficient measures for on-line monitoring performance of ETs. Because of this, there is no related calibration specification which limited the performance monitoring and improving of ETs and the application in digital substation. In the traction of China Southern Power Grid and real project, the paper conducted more thorough research to the on-line calibration technology of ETs with digital output focus on the portability of on-line operations, standard current sensor design and data processing algorithm in non-linear load. The main researches and achievements are as follows.
     A new calibration method for electronic current transformers (ECTs) was proposed. The proposed system can reach the precision class up to0.05and the system can calibrate the ETs for0.2S in the range of600A-1500A at rated current which the synchronization method can be PPS or IRIG-B. Actual onsite calibration shows that the system has high-accuracy, and is easy to operate with satisfactory stability.
     Earth potential working was used in the system and a clamp operating mechanism based on insulated operating rod was designed. The performance differences were systemically analyzed between a clamp-shape iron core sensor and a clamp-shape air core sensor and a high-accuracy method based on combined clamp-shape current sensors was proposed originally according with the performance differences in the paper. Clamp-shape current sensor when open and close, may be the cause of opening cannot be closed completely, even if there is air gap only micron, will also cause a significant reduction in the standard current accuracy. In online calibration under the condition of high voltage, air gap exists or not, the operator can't be judged by conventional means of low pressure.Principle deduction and simulation were carried out and experimental analysis details were made for the air-gap influence on clamp-shape sensors. The actual tests results show that the novelty method can make judgment on air-gap of amp-shape iron core sensors accurately. A high-accuracy algorithm is one of the most important key technologies and a new method based on data preprocessing was proposed after the analysis of waveform components and algorithms before, In complicated non-linear load calibration environments, the algorithm has high accuracy in inhibition of errors resulted from spectral leakage, frequency fluctuation, inter-harmonics and mutual interference.
     A detailed design of on-line calibration system was given in the paper. Digital sampling of analog output signal of standard channel is the factor influencing accuracy of calibration system so the paper introduced the influences on calibration accuracy in different parameters from two aspects:high resolution and wide dynamic range. Meanwhile, considering stability and reliability, EMC design was made from bandwidth design, ground and shielding. Four improvements were given according to the design of data frame program. PC software mainly realizes the modular sensor head characteristic judgment function, standard channel data acquisition, merging unit data reception and decoding, the fundamental wave extraction algorithm and error calculation, data display, record, storage, and other functions.
     At the end of this paper, a series of performances testing verification and application of the method and technology of the whole paper were made for the combined electronic transformers (1500A/5A) in Bai Cheng110kV substation in Gui Zhou province. The experimental results prove that the on-line calibration system can realize the real-time calibration of ETs which provide the data guarantee for the running of substation and the running stability and quality were improved. Besides that, on-site calibration norm and on-line monitoring specification of ETs and electric energy metering equipments were established which can provide calibration norm for the on-line calibration of ETs.
引文
[1]刘振亚.特高压输电是中国电力发展的必由之路.国家电网,2006,(12):4-5
    [2]李兴源,魏巍,王渝红等.坚强智能电网发展技术的研究[J].电力系统保护与控制,2009,37(17):1-7
    [3]余贻鑫,梁文鹏.智能电网评述[J].中国电机工程学报,2009,29(34):1-8
    [4]韩琪.数字化变电站应用及数字化变电站发展趋势研究.硕士论文.山东大学,2011
    [5]侯伟宏,张沛超,胡炎.数字化变电站系统可靠性与可用性研究[J].电力系统保护与控制,2010,38(17):34-38
    [6]刘延冰,李红斌等.电子式互感器原理、技术及应用.北京科学出版社.2009:1-20
    [7]张文亮,刘壮志,王明俊等.智能电网的研究及发展趋势[J].电网技术,2009,33(13):1-11
    [8]郭剑波.我国电力科技现状与发展趋势.电网技术,2006,30(18):1-7
    [9]曹阳,姚建国等.智能电网核心标准IEC61970最新进展[J].电力系统自动化,2011,35(17):1-4
    [10]陈庆.电子式空心电流互感器若干关键问题的研究.硕士论文.华中科技大学,2004
    [11]P.Ripka,"El电子式电流互感器ric current sensors:a review", Meas. Sci. Technol. 21(2010):112001.
    [12]张贵新,赵清姣,罗承沐.电子式电流互感器的现状与发展前景[J].电力设备,2006,7(4):108-109.
    [13]罗苏南.组合式光学电流互感器的研究与开发.博士论文.华中科技大学,2000
    [14]陈金玲.基于比较测量法的光学电流互感器研究.博士论文.华中科技大学,2007
    [15]李准海,李峰,华小兵.全光纤电子式电流互感器的原理及研究[J].华东电力,2011,39(5):077-081
    [16]Bohnert K, Gabus P, Kostovic J, et al. Optical fiber sensors for the el电子式电流互感器ric power industry. Optics and Lasers in Engineering,2005,43(3-5):511-526
    [17]肖浩,刘博阳,湾世伟等.全光纤电子式电流互感器的温度误差补偿技术[J].电力系统自动化,2011,35(21):91-94
    [18]R. L. Kahler, "High Voltage Multi-Purpose Current and Voltage El电子式电流互感器ronic Transformer", IEEE Trans. Instrum. Meas.2008,28(5):162-164.
    [19]邱红辉.电子式互感器的关键技术及其相关研究.博士论文.大连理工大学,2008
    [20]巩学海,孔维政,余占清等.变电站互感器宽频传输特性试验研究[J].高电压技术,2009,35(7):1736-1741
    [21]马海杰,罗广孝,徐刚等.特高压变电站二次设备电磁兼容建模[J].电力系统保护与控制,2010,38(17):53-57
    [22]何金良,曾嵘.作用在发变电站仪器及控制系统上的主要干扰源[J].电力建设,2000,(1):3-7
    [23]宁伟红,杨以涵,李静等.互感器校验装置综述[J].电力系统保护与控制,37(10):131-134
    [24]S. A. C. Harmon, L. C. A. Henderson, and A. J. Wheaton, "Comparison of the measurement of current transformers:EUROMET proj电子式电流互感器s 473and 612," in Proc. CPEM, Ottawa, ON, Canada,2002, pp.546-547
    [25]赵修民.互感器校验仪的原理和应用.太原:山西人民出版社,1982
    [26]刘庆余.互感器校验仪的原理与整体检定.北京:中国计量出版社,2003
    [27]A. Brandolini, M. Faifer, and R. Ottoboni, "A novel and simple method for VT and CT calibration," in Proc. IEEE Int. Instrum. Meas. Technol. Conf., May 12-15,2008, pp.1879-1884
    [28]顾红波,吴宏斌,王宇等.新型比较仪式互感器校验仪的研制[J].电测与仪表,2003,40(12):20-23
    [29]R. L. Kahler, "An el电子式电流互感器ronic ratio error set for current transformer calibrations", IEEE Trans. Instrum. Meas.2007,28(2):162-164.
    [30]Yue Tong, Hongbin Li, Lei Cheng, et al. A Highly Accurate电子式电流互感器 calibration system Based on Virtual Instrument Technology[C]. Conference proceedings of the Seventh International Conference on El电子式电流互感器ronic Measurenent & Instruments.2008:246-248.
    [31]IEC60044-8, Instrument transducers. Part eight:El电子式电流互感器ronic current transducers[S].
    [32]张明珠,李开成,易扬等.基于高准确度采集卡的电子式互感器校验系统设计[J].电力系统保护与控制,2010,38(15):114-118
    [33]C. Cherbaucich, P. Mazza, N. Kuljaca, G. De Dona, S. Weiss, U. Brand. "A New Tool For Live, On-Site, HV Instrument Transformers Accuracy Check",19th International Conference on El电子式电流互感器ricity Distribution (CIRED), Vienna, May 2007
    [34]A. Brandolini, M. Faifer, and R. Ottoboni, "A Simple Method for the Calibration of Traditional and El电子式电流互感器ronic Measurement Current and Voltage Transformers", IEEE Trans. Instrum. Meas., vol.58, no.5, pp.1345-1353,2009.
    [35]Andersson A, Destefan D, Ramboz JD. Unique EHV current probe for calibration and monitoring.2001 IEEE/PES TRANSMISSION AND DISTRIBUTION CONFERENCE AND EXPOSITION,2001, (1):379-384
    [36]徐波,张志.电子式互感器数字输出校验技术[J].电力自动化设备,2011,31(9):147-150.
    [37]Suomalainen, E.-P. Hallstrom. Onsite Calibration of a Current Transformer Using a Rogowski Coil[Z]. IEEE Trans. Instrum. Meas., vol.58, no.4, pp.1054-1060, 2009.
    [38]李童杰,张晓更.基于DSP的电子式电流互感器校验仪的研制[J].仪器仪表学报,2008,29(8):1695-1699
    [39]马永跃,黄梅.数字量输出型电子式互感器校验系统的研制[J].电力系统保护与控制,2010,38(1):83-86.
    [40]Zhang Zhi, Li Hong-bin. An accurate system for onsite calibration of el电子式电流互感器ronic transformers with digital output. Review of Scientific Instruments, VOL.83,065111(2012).
    [41]张秋雁,李鹏程,肖坚等.电子式互感器数字输出校验系统的研究[J].电测与 仪表,2012,49(1):45-48.
    [42]秦晓军,童悦.电子式互感器数字输出现场校验仪[J].湖北电力,2008,32(5):64-66.
    [43]余春雨,叶国雄.电子式互感器的校准方法与技术[J].高电压技术,2004,30(4):22-22
    [44]伍志荣,聂德鑫.特高压变压器局部放电试验分析[J].高电压技术,2010,36(1):54-60
    [45]陆宇航.基于光纤电流传感器的局部放电检测方法研究.硕士学位论文.天津大学,2008
    [46]Tong Yue, Li Bin Hong. An accurate continuous calibration system for high voltage current transformer[J]. Review of Scientific Intrusments,2011,82(2): 025107-025107-9.
    [47]刘曲波.基于IEC61850的电子式互感器数字接口的设计.硕士学位论文.华中科技大学,2009
    [48]朱勇.基于电子式互感器的数据采集系统及采样值传输研究.硕士学位论文.华中科技大学,2009
    [49]万博,苏瑞.遵循IEC61850-9-2实现变电站采样值传输[J].电网技术,2009,33(19):199-203
    [50]胡宏波,袁越,曾献华等.基于IEC61850标准的过程层采样值传输[J].中国电力,2009,1(18):47-50
    [51]谷晓妍.IEC61850-9-2标准下合并单元信息模型及其映射的实现.硕士论文.大连理工大学,2010
    [52]童晓阳,廖晨淞,周立龙等.基于IEC61850-9-2的变电站通信网络仿真[J].电力系统自动化,2010,34(2):69-73
    [53]童悦.电流互感器在线校验关键技术研究.博士学位论文.华中科技大学,2011
    [54]J. D. Ramboz, D. E. Destefan, and R. S. Stant, "The verification of Rogowski coil linearity from 200 A to greater than 100 kA using ratio methods," in Proc.19th IEEE IMTC, May 21-23,2002(1):687-692
    [55]陈庆.基于霍尔效应和空心线圈的电流检测新技术.博士学位论文.华中科技 大学,2008
    [56]P. Ripka, "Introduction coil sensors:a review", Meas. Sci. Technol.18(2007): R31-R46.
    [57]Chen Qing, Li Hong-bin. "Design and Characteristics of Two Rogowski Coils Based on Printed Circuit Board". IEEE Transaction on Instrumentation and Measurement,2006,55(3):939-943
    [58]Kojovic L. PCB Rogowski coils benefit relay prot电子式电流互感器ion. IEEE Computer Application in Power,2002,15(6):50-53
    [59]杨鹏,赵伟,黄松岭等.铁芯开气隙电流互感器原理表述新探[J].电测与仪表,2007,44(502):44-47
    [60]顾惠芬,高光润.钳形电流互感器的误差分析与补偿[J].仪表技术,2000(5):24-25.
    [61]John D. Ramboz. A Highly Accurate, Hand-Held Clamp-on Current Transformer. IEEE Trans. Instrum. Meas.1996(02):445-448.
    [62]罗苏南,田朝勃,赵希才.空心线圈电流互感器性能分析[J].中国电机工程学报,2004,24(3):108-113
    [63]邹积岩.罗哥夫斯基线圈测量电流的仿真计算及实验研究[J].电工技术学报,2001,16(1):81-84
    [64]Kojovic L. Rogowski coils suit relay prot电子式电流互感器ion and measurement of power system. IEEE Computer Application in Power,1997,10(3):47-52
    [65]张艳,李红斌.PCB Rogowski线圈的可靠性研究[J].高压电器,2006,42(6):421-424
    [66]Kojovic L. PCB Rogowski coils benefit relay prot电子式电流互感器ion. IEEE Computer Application in Power,2002,15(6):50-53
    [67]陈庆,李红斌,张明明等.采用主副印制电路板构造的Rogowski线圈性能分析及设计[J].电力系统自动化,2004,28(16):79-82
    [68]王程远.PCB空心线圈电子式电流互感器的理论建模及设计实现.博士学位论文.华中科技大学.2004
    [69]张林枫.基于PCB钳形Rogowski线圈的电子式电流互感器.硕士学位论文.华中科技大学,2009
    [70]黄世泽,郭其一.铁芯开气隙电流互感器暂态特性仿真[J].系统仿真学报,2011,23(8):1719-1723
    [71]P. N. Miljanic, E. So, and W. J. M. Moore, "An el电子式电流互感器ronically enhanced magnetic core for current transformers," IEEE Trans. Instrum. Meas., vol. 40, pp.410414, Apr.1991.
    [72]E. So, S. Ren, and D. A. Bennett, "High-current high-precision openable-core ac and ac/dc current transformers," IEEE Trans. Instrum. Meas., vol.42, pp.571-576, Apr.1993.
    [73]IEC60044-8, Instrument transformers-Part 8:El电子式电流互感器ronic current transformers,2002
    [74]赵文春,马伟明,胡安.电机测试中谐波分析的高准确度FFT算法[J].中国电机工程学报,2001,21(12):83-87
    [75]李红,杨善水.傅立叶电力系统谐波检测方法综述[J].现代电力,2004,21(4):39-44
    [76]律方成,晁红军,徐志钮等.介质损耗数字化测量方法综述[J].华北电力大学学报,2008,35(6):21-26
    [77]Harris, F. J. On the use of windows for harmonic analysis with the discrete Fourier transform, Proc. IEEE,1978,66(1):51-83
    [78]Nuttall A H. Some window with very good sidelobe behavior, IEEE Trans.n ASSP,1981,29(1):84-91
    [79]王爱国,杨仕友,倪光正等.基于准同步离散傅立叶变换的介损测量方法[J].高电压技术,2004,30(10):42-45
    [80]Jain, K. Vijay, Collins, L. William, Davis, C. David, "High-Accuracy Analog Measurements via Interpolated FFT", IEEE Trans. Instrum. Meas., vol.28, no.2, pp. 113-122,1979.
    [81]G. Andria, M. Savino, and A. Trotta, "Windows and Interpolation Algorithms to Improve El电子式电流互感器rical Measurement Accuracy," IEEE Trans. Instrum. Meas., vol.8, no.4, pp.856-863, Aug.1989.
    [82]柴旭峥,文习山,关根志等.一种高准确度的电力系统谐波分析算法[J].中国电机工程学报,2003,23(9):67-70
    [83]潘文,钱俞寿,周鹗.基于加窗插值FFT的电力谐波测量理论(Ⅰ)窗函数研究 [J].电工技术学报,1994,(1):50-54
    [84]潘文,钱俞寿,周鹗.基于加窗插值FFT的电力谐波测量理论(II)双插值FFT理论[J].电工技术学报,1994,(2):53-56
    [85]徐志钮,律方成,李和明.加Blackman-Harris窗插值算法仿真介损测量[J].高电压技术,2007,33(3):104-108
    [86]H. Qian, R. X. Zhao, T. Chen, "Interharmonics Analysis Based on Interpolating Windowed FFT Algorithm", IEEE Trans. Power Delivery, vol.22, no.2, pp. 1064-1069,2007.
    [87]徐志钮,律方成,罗运国等.介损角测量的两种加窗插值DFT算法[J].华北电力大学学报,2006,33(6):11-14
    [88]张介秋,陈砚圃,梁昌洪.基于卷积窗的电力系统谐波误差估计与数值模拟[J].中国电机工程学报,2004,24(12):34-37
    [89]张介秋,陈砚圃,梁昌洪.交流电电气参量高准确度测量的加权算法[J].仪器仪表学报,2005,26(2):172-176
    [90]H. Wen, Z. S. Teng, S. Y. Guo. Triangular Self-Convolution Window with Desirable Sidelobe Behaviors for Harmonic Analysis of Power System[Z]. IEEE Trans. Instrum. Meas., vol.59, no.3, pp.543-552,2010.
    [91]温和,滕召胜,卿柏元.Harming自卷积窗及其在谐波分析中的应用[J].电工技术学报,2009,24(2):164-168
    [92]H. Ahmad, M. A. Salam, L. Y.Ying, and N. Bashir, "Harmonic Components of Leakage Current as A Diagnostic Tool to Study the Aging of Insulators," J. El电子式电流互感器rostat, vol.66, no.3/4, pp.156-164, Mar.2008.
    [93]曾喆昭,文卉,王耀南.一种高准确度的电力系统谐波智能分析方法[J].中国电机工程学报,2006,26(10):23-27
    [94]Q. M. Li, L. Zhang, T. Zhao, "Definition of Instantaneous Diel电子式电流互感器ric Loss Factor and Digital Algorithm for Online Monitoring", IEEE Trans. Instrum. Meas., vol.58, no.3, pp.666-673,2009.
    [95]P. Wang, M. R. Raghuveer, W. McDermid, J. C. Bromley, "A Digital Technique for the On-Line Measurement of Dissipation Factor and Capacitance", IEEE Trans. Diel电子式电流互感器rics and El电子式电流互感器rical Insulation, vol.8, no. 2, pp.228-232,2001.
    [96]Zhang Peng, Li Hong-bin. "Power System Frequency Estimation Algorithm for El电子式电流互感器ric Energy Metering of Nonlinear Load", Metrol. Meas. Syst, Vol. XIX (2012), No.2, pp.307-320.
    [97]张鹏.基于离散小波法的非线性负荷电能计量的研究论.博士学位论文.华中科技大学,2012
    [98]贲树俊,葛乃成,沈晓枉等.基于角差校正法的高准确度电力谐波检测[J].电测与仪表,2007,44(494):13-16.
    [99]Belega D, Dallet D. Frequency estimation via weighted multipoint interpolated DFT. IET Sci Meas Technol,2008,2(1):1-8.
    [100]Jain V K, Collins W L,Davis D C. High-accuaracy analog measurements via interpolated FFT. IEEE Trans Instrum Meas,1979,28(2):113-122
    [101]钱政,梅志刚,罗承沐.电子式互感器中数据采集系统的实现与误差补偿[J].高压电器,2004(1):37-39
    [102]刘立群,孙志毅,金坤善.基于MSP430单片机的超低功耗数据采集器设计[J].自动化仪表,2005,26(4):30-31
    [103]王玉峰.变电站瞬态电磁环境及微机保护系统EMC研究.博士学位论文.山东大连理工大学,2007
    [104]王晓蓉,杨敏中,严璋.电力设备局部放电测量中抗干扰研究的现状和展望[J].电网技术,2000,40(2):135-138
    [105]李振华.高压组合型电子式电流电压互感器.硕士学位论文.华中科技大学,2010
    [106]钱政.有源电子式电流互感器中高压侧电路的供能方法[J].高压电器,2004,40(2):135-138
    [107]邱红辉,李立伟,段雄英等.用于激光供能电流互感器的低功耗光电传输系统[J].电力系统自动化,2006,30(20):72-76
    [108]E F Donaldson, J R Gibson, G R Jones, et al. Hybrid Optical Current Transformer with Optical and Power-line Energisation. IEE Proc-Gener. Transm. Distrib. 2000,147(5):304-309
    [109]黄章勇.光纤通信用光电子器件和组件.北京:北京邮电大学出版社.2001:60-75
    [110]Kirkham H, Johnston A R. Optically powered data link for power system applications. IEEE Transactions on Power Delivery,1989,4(4):1997-2004
    [111]张爱民,张杭,陈德贵等.具有屏蔽机壳的电子设备系统级电磁敏感性分析方法[J].西安交通大学学报,2007,41(2):190-194
    [112]杨乐平,李海涛,赵勇等.LABVIEW高级程序设计.北京:清华大学出版社,2003:80-96
    [113]Piotr Bilski, Wieslaw Winiecki. Virtual Sp电子式电流互感器rum Analyzer Based on Data Acquisition Card. IEEE Transaction on instrumentation and measurement, 2002,51(1):82-87
    [114]Teng J H, Chan S Y. A Labview Based Virtual instrument for Power Analyzers. IEEE Power System Technology,2000, (1):179-184
    [115]程春红.基于Labview的非整周期采样及谐波分析的算法设计.硕士学位论文.湘潭大学,2007
    [116]刘飞,杨飞.基于WinPcap的网络抓包系统[J].计算机光盘软件与应用,2012,(8):132-133
    [117]王瑞雪,王开宇,李忠安.IEC61850-9-2数据收发测试的探索[J].江苏电机工程,2011,30(3):56-58
    [118]范建忠,马千里.基于WinPcap的GOOSE报文捕获分析工具开发[J].电力系统自动化,2007,31(23):52-56
    [119]胡小春,陈燕,何潜航等.一个Windows进程抓包器的C++实现[J].广西科学院学报,2007,23(4):266-269
    [120]王程远,陈幼平,张冈等.PCB空心线圈位置误差分析与控制[J].中国电机工程学报,2008,28(15):103-105
    [121]Niewczas P, Cruden A, Michie WC, et al. Error analysis of an optical current transducer operating with a digital signal processing system. IEEE Transaction on Instrumentation and Measurement,2000,49(6):1254-1259
    [122]祝福,赵吉福.电流互感器测量误差的不确定度评定[J].山东电力技术. 2010(1):36-38
    [123]中国计量科学研究院.JJF1059-1999测量不确定度评定与表示.北京:中国计量出版社,1999

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700