用户名: 密码: 验证码:
直流系统接地极电流场的分布特性及其对交流电网影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着直流输电工程的大规模建设,直流不平衡运行带来的电磁效应、热力效应和电化效应等负面影响已不容忽视。直流地电位分布引起的跨步电压可能影响人畜安全。直流地电流溢散引起的电化腐蚀可能缩短管网寿命,直流地电流分流引起的偏磁效应可能加剧设备损耗,严重时威胁交直流混联电网的安全稳定运行。在特高压大送端地区,接地极埋设数目更多,直流地电流更大,地质条件复杂多样,上述问题将更加突出。因此,研究直流系统接地极电流场的分布特性,了解直流单极运行工况对交流电网的影响程度,降低大送端地区多直流系统运行的防护成本,具有重要的科学意义和工程价值。
     以直流系统接地极电流场为对象,综合考虑地质结构的区域差异及直流接地极的实际形状,建立了环状电流源的电场分区模型,提出了直流地电位分布的计算公式,研究了接地极周边的跨步电压水平,讨论了直流地电位分布计算时土层结构的简化方法。结果表明:直流地电位的计算公式为无穷级数;复合分层媒质中的圆环镜像包含两组,第一组与水平分层媒质的情况相同,第二组为第一组与反射系数的乘积并进行坐标平移;修莫尔法可用于土层结构简化,提高了直流地电位计算速度。
     基于电流的渗透扩散模型,提出了地电流溢散的计算公式,研究了直流接地极注入电流在接地极内外环表面的溢流特性,以及在大地中不同轴向的散流特性;讨论了地电流溢散的主要影响因素。结果表明:电场力在圆环圆心产生了冲撞效应;当距离接地极较近时,接地极型式对溢散影响较大;当距离接地极较远时,土层结构对溢散影响较大;当送、受两端接地极极间距较小时,应考虑两极的共同作用。
     建立了直流单极运行工况的混联电网模型,研究了直流接地极注入电流经交流电网的分流特性,以及直流地电流通路等效参数的构成原则。基于电阻率随土层深度变化的特点,探讨了直流地电流分流的计算方法。结果表明:直流地电流分流与大地分层数、各层电阻率及厚度相关,直流地电流分流与地理位置的关系可用离散的对数函数近似表示,直流电流源及复杂的大地分层电阻可等效为电压源及内阻。经验证,采用本文提出的方法计算直流地电流分流与实际基本相符。
     针对特高压大送端地区的特点,研究了多直流系统接地极排布方式、运行工况、共用方案对地电流场分布特性的影响。以节约土地资源、降低防护成本为目标,探讨了同一区域多接地极共存的布置方法。
Along with the large-scale construction of HVDC project, the negative influence such as electromagnetic effect, thermal effect, electrochemical effect and so on which are brought by DC unbalanced operation can't be ignored. Distribution of DC earth surface potential will induce step voltage, which could affect human and animal safety. Overflow and divergence of DC grounding current will induce electrochemical corrosion, which could shorten the life of pipe network. Shunt of DC grounding current will induce magnetic bias effect, which could aggravate the loss of equipment. Severely, it will threaten the safe and stable operation of AC-DC interconnected system. Because the number of grounding electrode is rather more in the UHV large sending end area, DC grounding current is larger. With the complicated and diversified geological condition, the above problem must be more outstanding. Therefore, studying the distribution characteristics of DC grounding electrode's current filed, realizing the influence degree on AC power grid while the HVDC was operated in single-pole mode and reducing the protection cost for the operation of DC system in large sending end area have important scientific significance and project value.
     DC Grounding electrode current field was the research object. The difference in geological structure and the shape of DC grounding electrode were considered. The electric field division model of circular current source was established. The calculation method for distribution of DC earth surface potential was put forward. The characteristics of step voltage around DC grounding electrode was studied. The soil structure simplification in the calculation of distribution of DC earth surface potential was discussed. The results show that the calculation formula for distribution of DC earth surface potential is infinite series. The circular mirror image in the complex stratificated medium contains two kinds. One is the same with that in the horizontal stratificated medium. Another is the product of the first one and the reflection coefficient with coordinate translation. The Hummel method can be used to simplify the soil structure and improve the calculation speed of DC earth surface potential.
     Based on the infiltration and diffusion model of DC grounding current, the calculation formula for overflow and divergence of DC grounding current was put forward. The overflow of DC grounding current on inner and outer cirque surface of DC grounding electrode was studied. The divergence of DC grounding current at different directions in the earth was studied. The main influencing factors were discussed. The results show that the electric field force produces pounding effect in the center of cirque. When observation point is close to DC grounding electrode, the pattern of electrode has a big effect on the overflow and divergence of DC grounding current. When observation point is far from DC grounding electrode, soil structure has an effect on the overflow and divergence of DC grounding current. When the distance between DC grounding electrodes in the send area and receive area is short, the interaction of two electrodes should be considered.
     The interconnected power system model was established while the HVDC was operated in single-pole mode. The characteristics of shunt of DC grounding current via AC power grid were studied. The component principle of equivalent parameters of DC grounding current pathway was studied. Based on the characteristics which the resistivity varied with the soil-layer depth, the calculating method for the shunt of DC grounding current was discussed. The results show that the shunt of DC grounding current is related to the number of earth layers, the resistivity and the thickness of each layer. The relationship between shunt of DC grounding current and the geographical position can be expressed approximately by discrete logarithmic function. DC current source and the complex earth stratification resistance can be equivalent to the voltage source and internal resistance. The calculation method proposed in this paper has been proven in good agreement with the actual.
     In accordance with the characteristics of UHV large sending end area, the influence of different arrangement modes, operating conditions and sharing schemes of multiple DC systems'grounding electrodes on DC grounding current field was studied. In order to economize land resource and reduce the costing for protection, the arrangement means of multiple grounding electrodes exist in the same area are discussed.
引文
[1]刘开俊,葛旭波,王楠.能源基地建设与特高压电网规划[J].中国电力,2008,41(1):1-3.
    [2]刘振亚.加快建设坚强国家电网促进中国能源可持续发展[J].电力建设,2006,27(10):36-45.
    [3]刘振亚.特高压电网[M].北京:中国经济出版社,2005.
    [4]杜至刚.中国特高压电网发展战略规划研究[D].济南:山东大学,2008.
    [5]张运洲.对我国特高压输电规划中几个问题的探讨[J].电网技术,2005,29(19):11-14.
    [6]印永华.特高压大电网发展规划研究[J].电网与清洁能源,2009,25(10):1-3.
    [7]苏宏田,齐旭,吴云.我国特高压直流输电市场需求研究[J].电网技术,2005,29(24):1-4.
    [8]舒印彪,刘泽洪,袁骏,等.2005年国家电网公司特高压输电论证工作综述[J].电网技术,2006,30(5):1-12.
    [9]何智江.发展中的中国高压直流输电事业[J].高压电器,2006,42(6):460-463.
    [10]曾南超.高压直流输电在我国电网发展中的作用[J].高电压技术,2004,30(11):11-12.
    [11]哀清云.特高压直流输电技术现状及在我国的应用前景[J].电网技术,2005,29(14):1-3.
    [12]袁清云.我国特高压直流输电发展规划与研究成果[J].电力设备,2007,8(3):1-4.
    [13]詹奕,尹项根.高压直流输电与特高压交流输电的比较研究[J].高电压技术,2001,27(4):44-46.
    [14]喻新强.2003年以来国家电网公司直流输电系统运行情况总结[J].电网技术,2005,29(20):41-46.
    [15]X.M.Liang, Z.H.Liu, S.W.Wang, et al. Planning of UHVDC transmission system in ChinafC]. Asia Pacific Region T&D Conference, Dalian, China,2005.
    [16]J.E.T.Villas, C.M.Portela. Soil heating around the ground electrode of an HVDC system by interaction of electrical, thermal, and electroosmotic phenomena[J]. IEEE Transactions on Power Delivery,2003,18(3):874-881.
    [17]Fan Chen, Bo Zhang, Jinliang He. Influence of Coke Bed on HVDC Grounding Electrode Heat Dissipation[J]. IEEE Transactions on Magnetics,2008,44(6):826-829.
    [18]V.D.Albertson. Solar-Induced-Current in Power system:Causes and Effects[J]. IEEE Transactions on Power Apparatus and Systems,1973,92(1):471-477.
    [19]D.H.Boteler. Geomagnetically Induced Currents:Present Knowledge and Future Researeh[J]. IEEE Transactions on Power Delivery,1994,9(1):50-58.
    [20]Liu Qu, Zheng Jianchao, Li Licheng. Study on Effects of DC Current on Transformers during HVDC Systems operated in Ground-return Mode[C]. Proceedings of the XIVth International Symposium on High Voltage Engineering, Beijing, China,2005.
    [21]中华人民共和国电力行业标准.高压直流输电大地返回运行系统设计技术规定[s].北京:中国电力出版社,2005.
    [22]F.Dawalibi, D.Mukhedkar. Optimum Design of Substation Grounding in a two Layer Earth Structure. PartⅠ, Ⅱ and Ⅲ[J]. IEEE Transactions on Power Apparatus and Systems,1975,94(2): 252-272.
    [23]J.Ma, F.P.Dawalibi. Analysis of grounding systems in soils with cylindrical volumes[J]. IEEE Transactions on Power Delivery,2000,15(3):913-918.
    [24]Y.L.Chow, J.J.Yang, K.D.Srivastava. Complex images of a ground electrode in layered soils[J]. Appl. Phys,1992,71(2):569-574.
    [25]J.E.T.Villas, C.M.Portela. Calculation of electric field and potential distributions into soil and air media for a ground electrode of a HVDC system[J]. IEEE Transactions on Power Delivery,2003, 18(3):867-873.
    [26]赵志斌,张波,崔翔,等.分层土壤中点电流源电流场计算的递推算法[J].华北电力大学学报,2003,30(1):22-25.
    [27]郭剑,邹军,何金良,等.水平分层土壤中点电流源格林函数的递推算法[J].中国电机工程学报,2004,24(7):101-105.
    [28]P.J.Lagace, J.Fortin, E.D.Crainic. Interpretation of resistivity sounding measurements in n-layer soil using electrostatic images[J]. IEEE Transactions on Power Delivery,1996,11(3):1349-1354.
    [29]孙结中,刘力.运用等值复数镜像法求解复合分层土壤结构的格林函数[J].中国电机工程学报,2003,23(9):146-151.
    [30]李云长,李庆民,李贞,等.半岛地质条件下计算高压直流输电地中直流分布的扩展镜像法[J].高电压技术,2011,37(2):444-452.
    [31]J.N.Towle, F.S.Prabhakara, J.Z.Ponder. Geomagnetic Effects Modelling for the PJM Interconnection System Part I-Earth Surface Potentials Computation[J]. IEEE Transactions on Power systems,1992,7(3):949-955.
    [32]T.N.Giao, M.P.Sarma. On the potential and field distribution around a ground electrode for HVDC transmission[J]. IEEE Transactions on Power Apparatus and Systems,1971,90(6):2793-2801.
    [33]郝治国,余洋,张保会,等.高压直流输电单极大地方式运行时地表电位分布规律[J].电力自动化设备,2009,29(6):10-14.
    [34]陆继明,肖冬,毛承雄,等.直流输电接地极对地表电位分布的影响[J].高电压技术,2006,32(9):55-58,91.
    [35]W.Ruan, J.Ma, J.Liu, et al. Performance of HVDC Ground electrode in various soil structures[C]. International Conference on Power System Technology,2002,2:962-968.
    [36]C.E.Caroli, N.Santos, D.Kovarsky, et al. ITAIPU HVDC Electrodes:Interference Considerations and Potential Curve Measurements During BiPole Ⅱ comissioning[J]. IEEE Transactions on Power Delivery,1990,5(3):1583-1590.
    [37]P.J.Lagace, J.L.Houle, Y.Gervais, et al. Evaluationof the voltage distribution around toroidal HVDC ground electrodes in N-layer soils[J]. IEEE Transactions on Power Delivery,1988,3(4): 1573-1579.
    [38]D.Kovarsky, LJ.Pinto, C.E.Caroli, et al. Soil surface potentials induced by ITAIPU HVDC ground return current part I-theoretical evaluation[J]. IEEE Transactions on Power Delivery,1988.3(3): 1204-1210.
    [39]C.E.Caroli, N.Santos, D.Kovarsky, et al. Soil Surface Potentials Induced By ITAIPU HVDC Ground Return Current PartⅡ-Measurements[J]. IEEE Transactions on Power Delivery,1988, 3(3):1211-1216.
    [40]曾连生.高压直流输电陆地接地极设计—关于地面电位和跨步电压分布的计算[J].电力建设,1994,15(3):12-18.
    [41]T.N.Giao, M.P.Sarma. Effect of a two Layer Earth on the Electric Field Near HVDV Ground Electrodes[J]. IEEE Transactions on Power Apparatus and Systems,1972,91(6):2356-2365.
    [42]F.Dawalibi, D.Bensted, D.Mukhedkar. Soil Effects on Ground Fault Currents[J]. IEEE Transactions on Power Apparatus and Systems,1981,100(7):3442-3450.
    [43]解广润.电力系统接地技术[M].北京:中国电力出版社,1989.
    [44]陈慈萱.地网的热稳定和流散电流分布[J].高电压技术,1987,(2):33-38.
    [45]高里迎,郭贤珊,董晓辉.接地极入地电流对杆塔腐蚀及防护研究.中国电力,2009,42(12):38-41.
    [46]魏德军.直流接地极对地下金属设施的电腐蚀影响[J].电网技术,2008,32(2):75-77.
    [47]陈水明.直流输电大地回流对附近地下金属管道的影响[J].华东电力,1992,7:1-4.
    [48]P.J.Lagace, J.L.Houle, H.Greiss, et al. Computer Aided Evaluation of Pipeline Current Near Totoidal HVDC Ground Electrodes[J]. IEEE Transactions on Power Delivery,1989,4(1): 216-222.
    [49]迟兴和,张玉军.直流接地极与大地中金属管道的防护距离[J].电网技术,2008,32(2):71-74,84.
    [50]曹昭君,何俊佳,叶会生,等.直流系统大地运行时交流系统直流分布的计算[J].高电压技术,2006,32(10):82-84,113.
    [51]张波,赵杰,曾嵘,等.直流大地运行时交流系统直流电流分布的预测方法[J].中国电机工程学报,2006,26(13):84-88.
    [52]Bo Zhang, Jie Zhao, Rong Zeng, et al. Numerical Analysis of DC Current Distribution in AC Power System Near HVDC System[J]. IEEE Transactions on Power Delivery,2008,23(2):960-965.
    [53]Bo Zhang, Xiang Cui, Rong Zeng, et al. Calculation of DC current distribution in AC power system near HVDC system by using moment method coupled to circuit equations[J]. IEEE Transactions on Magnetics,2006,42(4):703-706.
    [54]赵杰,张波.输电线路地线对流入变压器中性点直流电流的影响[J].电网技术,2005,29(19):60-64.
    [55]何俊佳,叶会生,林福昌,等.土壤结构对流入变压器中性点直流电流的影响[J].中国电机工程学报,2007,27(36):14-18.
    [56]刘曲,李立涅,郑健超.复合土壤模型下HVDC系统单极大地运行时的电流分布[J].中国电 机工程学报,2007,27(36):8-13.
    [57]刘曲.高压直流输电系统单极大地运行时地中电流分布的研究[D].北京:清华大学,2007.
    [58]刘曲,郑健超,李立涅.直流输电系统变压器中性点电流分布的影响因素[J].高电压技术,2008,34(4):643-646.
    [59]刘曲,李立涅,郑健超.考虑海洋影响的直流输电单极大地运行时变压器中性点直流电流研究[J].电网技术,2007,31(2):57-60,65.
    [60]马为民.换流变压器中直流偏磁电流的计算[J].高电压技术,2004,30(11):48-49.
    [61]董晓辉,杜忠东,徐勇,等.直流接地极入地电流对交流变压器的影响[J].高电压技术,2007,33(12):134-138.
    [62]F.H.Wang, Z.J.Jin, Y.F.Cao, et al. Development of the DC controlled current source for the DC-bias experment of large-scale power transformer[C]. International Conference on Test and Measurement,2009:79-82.
    [63]曾连生.直流输电接地极电流对电力变压器的影响[J].高电压技术,2005,31(4):57-59.
    [64]A.P.S.Meliopoulos, G.Christoforidis. Effects of DC Ground Electrode on Converter Transformers[J]. IEEE Transactions on Power Delivery,1989,4(2):995-1002.
    [65]彭晨光,刘连光.基于JA理论的750kV自耦变压器直流偏磁研究[J].华东电力,2010,38(3):349-353.
    [66]Xiaoping Li, Xishan Wen, P.N.Markham, et al. Analysis of Nonlinear Characteristics for a Three-Phase, Five-Limb Transformer Under DC Bias[J]. IEEE Transactions on Power Delivery, 2010,25(4):2504-2510.
    [67]龚文强,徐亮,周科,等.直流换流站接地极对变压器中性点电流的影响[J].广东电力,2011,24(4):19-23.
    [68]曹林,曾嵘,赵杰,等.高压直流输电系统接地极电流对电力变压器运行影响的研究[J].高压电器,2006,42(5):346-348.
    [69]赵志刚,刘福贵,程志光,等.变压器直流偏磁励磁方式的实验研究和分析[J].电气应用,2010,29(5):41-43.
    [70]Xiaoli Tang, Huaiwu Zhang, Hua Su, et al. Influence of Microstructure on the DC-Bias-Superposition Characteristics of NiZn Ferrites[J]. IEEE Transactions on Magnetics,2011, 47(10):4332-4335.
    [71]党克,张晓宇,张峰,等.变压器直流偏磁的仿真研究[J].电网技术,2009,33(20):189-192.
    [72]李泓志,崔翔,刘东升,等.直流偏磁对三相电力变压器的影响[J].电工技术学报,2010,25(5):88-96.
    [73]李泓志,崔翔,刘东升,等.大型电力变压器直流偏磁分析的磁路建模与应用[J].高电压技术,2010,36(4):1068-1076.
    [74]李泓志,崔翔,卢铁兵,等.变压器直流偏磁的电路-磁路模型[J].中国电机工程学报,2009, 29(27):119-125.
    [75]李晓萍,文习山.三相五柱变压器直流偏磁计算研究[J].中国电机工程学报,2010,30(1):127。131.
    [76]Yinghui Chen, Tiebing Lu, Lin Li, et al. Study on the electromagnetic influence of DC bias on the power transformer[C]. IEEE International Symposium on Electromagnetic Compatibility,2009: 301-304.
    [77]李晓萍,文习山,蓝磊,等.单相变压器直流偏磁试验与仿真[J].中国电机工程学报,2007,27(9):33--40.
    [78]郭满生,梅桂华,刘东升,等.直流偏磁条件下电力变压器铁心B-H曲线及非对称励磁电流[J].电工技术学报,2009,24(5):46-51,59.
    [79]赵志刚,刘福贵,程志光,等.直流偏磁条件下叠片铁心的磁性能模拟[J].电工技术学报,2010,25(9):14-19.
    [80]赵志刚,刘福贵,张俊杰,等.直流偏磁条件下变压器励磁电流的实验与分析[J].电工技术学报,2010,25(4):71-76.
    [81]O.Biro, S.Ausserhofer, GBuchgraber, et al. Prediction of magnetising current waveform in a single-phase power transformer under DC bias[J]. IET Science, Measurement &Technology,2007, 1(1):2-5.
    [82]O.Biro, GBuchgraber, G.Leber, et al. Prediction of Magnetizing Current Wave-Forms in a Three-Phase Power Transformer Under DC Bias[J]. IEEE Transactions on Magnetics,2008,44(6): 1554-1557.
    [83]E.F.Fuchs, Y.You, D.J.Roesler. Modeling and simulation, and their validation of three-phase transformers with three legs under DC bias[J]. IEEE Transaction on Power Delivery,1999,14(2): 443-449.
    [84]W.Enright, N.Watson, O.B.Nayak. Three-phase five-limb unified magnetic equivalent circuit transformer models for PSCADV3[C]. IPST'99 Proceedings, Budapest,1999,462-467.
    [85]赵小军,李琳,程志光,等.应用谐波平衡有限元法的变压器直流偏磁现象分析[J].中国电机工程学报,2010,30(21):103-108.
    [86]Xiaojun Zhao, Junwei Lu, Lin Li, et al. Analysis of the DC Bias Phenomenon by the Harmonic Balance Finite-Element Method[J]. IEEE Transactions on Power Delivery,2011,26(1):475-485.
    [87]李慧奇,崔翔,候永亮,等.直流偏磁下变压器励磁电流的实验研究及计算[J].华北电力大学学报,2007,34(4):1-6.
    [88]F.H.Wang, J.Zhang, Z.J.Jin, et al. Experimental Study of the Effects of DC-bias Current on the Power Transformer[C]. Asia-Pacific Power and Energy Engineering Conference,2010:1-4.
    [89]Hua Li, Fuchang Lin, Zhong Gui. Model test for harmonic characteristics of converter transformer under DC bias[C]. International Conference on Electrical Machines and Systems,2008: 4436-4439.
    [90]钟连宏,陆培均,仇志成,等.直流接地极电流对中性点直接接地变压器影响[J].高电压技术,2003,29(8):12-13.
    [91]曹林,何金良,张波.直流偏磁状态下电力变压器铁心动态磁滞损耗模型及验证[J].中国电机工程学报,2008,28(24):141-146.
    [92]朱林,韦晨,余洋.单相变压器的直流偏磁励磁电流问题及其对保护的影响分析[J].电力系统保护与控制,2010,38(24):158-162.
    [93]Linsuo Zeng. Zhanxin Zhu, Baodong Bai, et al. Research on Influence of DC Magnetic Bias on a Converter Transformer[C]. Proceeding of International Conference on Electrical Machines and Systems, Seoul, Korea,2007:1346-1349.
    [94]Y.Yao, C.S.Koh, G.Ni, et al.3-D Nonlinear transient eddy current calculation of online power transformer under dc bias[J]. IEEE Transactions on Magnetics,2005,41(5):1840-1843.
    [95]Yang Yu, Zhi-guo Hao, Bao-hui Zhang, et al. The effect research on transformers and protections under HVDC monopole ground operation mode[C].43rd International Universities Power Engineering Conference,2008:1-8.
    [96]郭满生,梅桂华,张喜乐,等.直流偏磁条件下单相三柱电力变压器的损耗计算[J].电工技术学报,2010,25(7):67-71.
    [97]C.A.Baguley, B.Carsten, U.K.Madawala. The Effect of DC Bias Conditions on Ferrite Core Losses[J]. IEEE Transactions on Magnetics,2008,44(2):246-252.
    [98]C.A.Baguley, U.K.Madawala, B.Carsten. A New Technique for Measuring Ferrite Core Loss Under DC Bias Conditions[J]. IEEE Transactions on Magnetics,2008,44(11):4127-4130.
    [99]C.A.Baguley, U.K.Madawala, B.Carsten. The Impact of Vibration Due to Magnetostriction on the Core Losses of Ferrite Toroidals Under DC Bias[J]. IEEE Transactions on Magnetics,2011,47(8): 2022-2028.
    [100]J.Muehlethaler, J.Biela, J.W.Kolar, et al. Core Losses under DC Bias Condition based on Steinmetz Parameters[C]. International Power Electronics Conference,2010:2430-2437.
    [101]蒯狄正,万达,邹云.直流偏磁对变压器的影响[J].中国电力,2004,37(8):41-43.
    [102]陈青恒,马宏彬,何金良.直流偏磁引起的500kV电力变压器振动和噪声的现场测量与分析[J].高压电器,2009,45(3):93-96.
    [103]蒋跃强,李红雷,周行星,等.变压器直流偏磁的振动特性研究[J].华东电力,2009,37(1):132-135.
    [104]KuaiDizheng, Wan Da, Zou Yun. The Analysis and Handling of the Impact of Ground Current in DC Transmission on Power Grid Equipment[C]. IEEE/PES Transmission and Distibution Conference and Exhibition, Asia and Pacific,2005:1-4.
    [105]H.C.Tay, G.W.Swift. On the Problem of transformer ovetheating due to geomagnetically induced currents[J]. IEEE Transactions on Power Apparatus and Systems,1985,104(1):212-219.
    [106]P.Picher, L.Bolduc, A.Dutil, et al. Study of the Acceptable DC current Limit in Core-Form Power Transformers[J]. IEEE Transactions on Power Delivery,1997,12(1):257-265.
    [107]骆志坚,叶杰宏.直流单极运行时谐波对并联电容器的影响[J].电力电容器与无功补偿,2009,30(5):58-61.
    [108]鲁海亮,文习山,蓝磊,等.变压器直流偏磁对无功补偿电容器的影响[J].高电压技术,2010,36(5):1124-1130.
    [109]杨汾艳,徐柏榆,梅桂华,等.交直流混合电网中变电站电容器组串联电抗率选择[J].电力自动化设备,2009,29(6):29-34.
    [110]李长云,李庆民,李贞,等.直流偏磁条件下电流互感器的传变特性[J].中国电机工程学报,2010,30(19):127-132.
    [111]李长云,李庆民,李贞,等.直流偏磁和剩磁同时作用下保护用电流互感器的暂态特性研究[J].电力系统保护与控制,2010,38(23):107-111.
    [112]Changyun Li, Qingmin Li, Jinxin Huang, et al. Research on the temporary performance of the protective current transformers with DC bias excitation[C]. Proceedings of the 44th International Universities Power Engineering Conference,2009:1-5.
    [113]钱家骊,关永刚,徐国政,等.剩磁对保护型电磁式电流互感器误差影响的仿真研究[J].高压电器,2005,41(1):26-28.
    [114]Liu Shun-Tsai, Huang Sy-Ruen, Chen Hung-Wei, et al. Current transformer module basing the Jiles-Athert on hysteresis model in EMTP/ATP simulation[C]. The 7th International Power Engineering Conference, Singapore,2005:653-656.
    [115]J.G.Kappenman, V.D.Albertson, N.Mohan. Current Transformer and Relay Performance in Presence of Geomagnetically-Induced Currents[J]. IEEE Transactions on Power Apparatus and Systems,1981,100(3):1078-1088.
    [116]苑舜,王天施.电力变压器直流偏磁研究综述[J].高压电器,2010,46(3):83-87.
    [117]李占元,赵伟,丁健,等.国华台山发电厂主变直流偏磁问题分析与治理[J].电网技术,2009,33(6):33-38.
    [118]赵杰,曾嵘,黎小林,等HVDC输电系统地中直流对交流系统的影响及防范措施研究[J].高压电器,2005,41(5):324-326,329.
    [119]尚春HVDC地中电流对交流变压器影响的抑制措施[J].高电压技术,2004,30(11):52-54.
    [120]皇甫成,阮江军,张宇,等.变压器直流偏磁的仿真研究及限制措施[J].高电压技术,2006,32(9):117-120.
    [121]蒋伟,黄震,胡灿,等.变压器接小电阻抑制直流偏磁的网络优化配置[J].中国电机工程学报,2009,29(16):89-94.
    [122]朱艺颖,蒋卫平,曾昭华,等.抑制变压器中性点直流电流的措施研究[J].中国电机工程学 报,2005,25(13):1-7.
    [123]赵杰,黎小林,吕金壮,等.抑制变压器直流偏磁的串接电阻措施[J].电力系统自动化,2006,30(12):88-91.
    [124]覃国茂,付海涛,肖荣.直流偏磁对葛洲坝电站主变压器的影响及抑制措施[J].水力发电,2007,33(12):79-81.
    [125]张露,潘卓洪,雷鸣,等.水电站主变的直流偏磁的评估与抑制[J].电机与控制学报,2010,14(7):29-35.
    [126]冯远程,吴忠明,朱旭东,等.一种抑制变压器直流偏磁现象的新方法[J].变压器,2009,46(8):17-20,29.
    [127]骆洁艺,欧阳旭东.变压器直流偏磁电流监测技术研究[J].广东电力,2010,23(10):96-98,113.
    [128]冯远程,吴忠明.地中直流对交流变压器的影响与防范[J].华东电力,2008,36(7):56-58.
    [129]M.A.Eitamarm, R.A.Whlling, H.Huynh, et al. Alternatives for blocking direct current in AC system neutrals at the Radisso/LG2 complex[J]. IEEE Transactions on Power Delivery,1992,7(3): 1328-1337.
    [130]蒯狄正,万达,邹云.直流输电地中电流对电网设备影响的分析与处理[J].电力系统自动化,2005,29(2):81-82.
    [131]杜忠东,董晓辉,王建武,等.直流电位补偿法抑制变压器直流偏磁的研究[J].高电压技术,2006,32(8):69-72.
    [132]蒯狄正,万达,邹云.变压器中性点注入反向抗偏磁直流的应用分析[J].华东电力,2005,33(6):44-46.
    [133]潘卓洪,梅桂华,张露,等.抑制变压器直流偏磁的电流注入法[J].电力系统自动化,2009,33(20):88-91,108.
    [134]R.Zeng, Z.Yu, J.He, et al. Study on Restraining DC Neutral Current of Transformer During HVDC Monopolar Operation[J]. IEEE Transactions on Power Delivery,2011,26(4):2785-2791.
    [135]Ben Niu, Rong Zeng, Bo Zhang, et al. Research and Design of the Neutral Series Resistor to Restrain the HVDC Ground Current Flowing into Transformer[C]. International Conference on Power System Technology, Chongqing, China,2006.
    [136]Sheng Wang, Chengxiong Mao, Jiming Lu, et al. Influence of HVDC Ground Electrode Current on AC Transmission System and Its Restraining Measure[C]. International Conference on Power System Technology,2006:1-5.
    [137]Sheng Wang, Chengxiong Mao, Jiming Lu, et al. Influence of HVDC ground electrode current on AC transmission system and development of restraining device[C]. Third International Conference on Electric Utility Deregulation and Restructuring and Power Technologies,2008:2151-2156.
    [138]Yonghua Yin, Jinping Zhang, Hui Zhang, et al. Development of Transformer Neutrals DC Current Blocking Device in High Power System[C]. International Conference on Power System Technology, Chongqing, China,2006.
    [139]L.Boldue, M.Granger, J.Saintonge, et al. Development of a DC current blocking device for transformer neutrals[J]. IEEE Transactions on Power Delivery.2005,20(1):163-168.
    [140]梅桂华,梁文进,刘艳村,等.变压器直流偏磁电流阻容抑制装置的开发应用[J].高电压技术,2009,35(10):2581-2585.
    [141]W.C.Viana, R.J.Micaleff, S.Young, et al. Transformer design considerations for mitigating geomagnetic induced saturation[J]. IEEE Transactions on Magnetics,1999,35(5):3532-3534.
    [142]Y.You, E.F.Fuchs, D.Lin, et al. Reactive Power Demand of Transformers with DC Bias[J]. IEEE Industry Applications Magazine,1996,2(4):45-52.
    [143]王明新,张强.直流输电系统接地极电流对交流电网的影响分析[J].电网技术,2005,29(3):9-14.
    [144]袁春峰,周行星,顾承昱,等.多回直流输电系统地下电流场对长三角地区电网的影响[J].华东电力,2008,36(11):29-32.
    [145]H.X.Chen, B.X.Sun, J.L.He, et al. Analysis on Common Ground Electrode Technology [C]. International Conference on Power System Technology, Chongqing, China,2006.
    [146]孙帮新.高压直流输电共用接地极电气接线研究[J].科技信息,2009,(31):698-699.
    [147]龙霏,蔡泽祥,李晓华,等.含多馈入直流的广东电网EMTDC仿真建模[J].电力系统自动化,2010,34(3):53-57.
    [148]Yuan Shi-chao, Zhang Dan-yang, Su Fei, et al. Research on Common Grounding Electrode in HVDC[C].4th International Conference on DRPT,2011:456-460.
    [149]赵婉君.高压直流输电工程技术[M].北京:中国电力出版社,2004.
    [150]程志光,高桥则雄,博扎德·弗甘尼,等.电气工程电热磁场模拟与应用[M].北京:科学出版社,2009.
    [151]赵先德.输电线路基础[M].北京:中国电力出版社,2006.
    [152]滕吉文.固体地球物理学概论[M].北京:地震出版社,2003.
    [153]雷祥义.黄土高原地质灾害与人类活动[M].北京:地质出版社,2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700