用户名: 密码: 验证码:
小叶杨遗传资源评价及重要性状的SSRs关联分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小叶杨(Populus simonii)是我国北方地区的主要乡土树种,具有耐瘠薄、抗逆性强、适应性广、易繁殖、寿命长和杂交可配性好等特点,是目前我国“三北”地区的主要绿化生态建设树种以及培育优良抗逆无性系的重要亲本材料。由于干旱缺水、沙漠化和滥砍滥伐等自然灾害和人为因素的影响,我国的小叶杨遗传种质资源正在急剧减少,迫切需要对现有的小叶杨种质资源进行评价与保存。为此,在对小叶杨基因遗传资源进行踏查的基础上,对我国小叶杨主要分布区内11个省(市)自治区的16个群体进行了资源收集,共收集保存了528个基因型个体。在此基础上,在表型性状、生理生化和分子水平上系统研究了小叶杨自然群体的遗传多样性,揭示了在不同种源的遗传变异规律,最终构建了小叶杨核心种质保存的样本方案,为保护现存的小叶杨遗传资源提供了理论依据。同时,利用基于自然群体的连锁不平衡作图策略,进行了SSR分子标记位点与表型及生理生化共25个性状的联合遗传学研究,研究结果为筛选优良等位变异、发掘和创新种质资源及制定遗传改良策略提供了科学理论依据,具有重要的应用价值。主要研究结果如下:
     (1)在表型水平上对小叶杨自然群体进行了遗传多样性研究,结果显示,小叶杨15个表型性状在种源间和种源内均存在丰富的遗传变异。叶、茎和根三类表型性状的变异系数分别为22.91%、35.68%和40.90%,其中以叶面积变异系数(48.79%)最高,叶柄长(45.32%)次之,叶厚(12.89%)和侧脉角(7.38%)最低,叶片生长性状高于其它生长性状;种源内的表型变异系数最大的为河北张家口(32.15%),河南洛宁(31.89%)次之,山东沂水(25.13%)和青海都兰(24.80%)最小;各地区种源以分布中心区的华北(31.92%)和华中地区(29.99%)种源变异系数最高,其它边缘群体西北(28.36%)、东北(28.25%)和西南(26.96%)次之,华东地区(25.13%)最小。重复力计算表明叶、茎和根表型性状主要受中度和强度遗传与固定环境效应控制,变异范围为0.456-0.798;各种源重复力均值差异不大,多在0.5-0.6范围内波动。表型分化系数为0.4518,种源内变异(54.82%)高于种源间变异(45.18%),建议种源内无性系间的遗传差异是小叶杨遗传多样性的主要来源。相关分析显示仅有叶宽等3个性状与海拔等4个生理生态因子存在显著或极显著关系。UPGMA聚类结果可将16个小叶杨种源划分成四个主要类群,河北张家口和陕西洛川各自形成一个类群,青海的互助、祁连和都兰形成第三类群,其余种源构成第四类群。
     (2)在生理生化水平上,对小叶杨10个生理性状在自然群体中的遗传多样性研究表明,在种源间和种源内存在丰富的遗传变异。光合、呼吸和抗逆3种类型生理性状变异系数分别为22.94%、36.61%和40.25%,其中以丙二醛含量变异系数(56.47%)最高,苯丙氨酸解氨酶(54.48%)次之,叶绿素A(22.01%)和类胡萝卜素(20.31%)最低;各种源平均变异系数差异不大,多数在20%-30%之间,其中以陕西洛川(40.71%)和陕西富县(36.61%)最高,青海互助(24.78%)最低;同样,以小叶杨分布中心区的华北(35.63%)、华中(34.39%)及东北地区(34.59%)变异系数最大,其它边缘地区次之,西北种源变异最小(33.74%)。所有生理指标都受强度遗传与固定环境效应控制,各个生理指标的重复力大小为0.694-0.986;各种源重复力差异不明显,多在0.8-0.9范围内,以山西宁武(0.929)和四川康定(0.925)最高,内蒙通辽(0.840)和辽宁朝阳(0.826)最低。生理分化系数为23.93%,即小叶杨生理变异中种源内贡献占76.07%,说明种源内遗传资源比种源间丰富。相关分析中,过氧化氢酶等4个生理指标与除经度外的多数地理生态因子呈显著或极显著相关。UPGMA聚类结果可将16个小叶杨种源分为四个主要类群,其中山西宁武和辽宁朝阳分别组成前两个类群,青海互助、青海祁连和陕西洛川3个种源组成第三类群,青海都兰与甘肃迭部等13个种源形成第四类群。
     (3)在分子水平上对小叶杨自然群体进行了遗传变异研究,利用20对SSR引物共扩增出306SSR标记位点,每一SSR可扩增出8~28个多态性位点,所有位点观察等位基因数(Na)、有效等位基因数(Ne)、观察杂合度(Ho)、期望杂合度(He)、多态信息量(PIC). Nei's基因多样性(h)、Shannon信息指数(I)、固定指数(Fit)和近交指数(Fis)分别为6.981、3.877、0.511、0.691、0.637、0.677、1.443、0.348和0.244。群体内遗传多样性十分丰富,各遗传参数分别为Na=6.981, Ne=3.877, Ho=0.511,He=0.691, PIC=0.637,h=0.677,I=1.443,基因流(Nm)=1.588。分子方差分析结果显示群体内差异是遗传变异的主要来源,群体内方差分量占85%以上,群体间不足15%。各群体Nei's无偏遗传距离和遗传一致度的变化范围为0.442~0.818和0.115-0.542;聚类结果显示小叶杨主要分为3个类群,山东沂水群体单独形成一类,青海群体、陕西富县及山西宁武群体聚为第二类,其它地区群体形成第三类。
     (4)对小叶杨表型、生理和DNA分子标记3个层次的研究内容进行耦合,结果显示三者在揭示小叶杨遗传多样性水平方面有一定的差异,仅在群体遗传结构和分化、种群遗传多样性变异及群体聚类等方面有一定的吻合。表型与生理遗传多样性参数不相关,而与SSR分子标记具有相关性;群体内差异是遗传变异的主要来源,群体内遗传多样性大于群体间遗传多样性;陕西中部与河南西北伏牛山区等的遗传变异最为丰富,遗传多样性最高,山东沂蒙、青海都兰和互助等地区的遗传变异最小,遗传多样性最低;青海互助和祁连、内蒙通辽及吉林通榆等群体的表型、生理和SSR标记多样性聚类结果比较一致。
     (5)结合表型、生理生化和分子标记3方面的研究结果,通过综合比较拟合出小叶杨群体间及群体内个体间的样本策略,即在小叶杨全分布区内随机抽取12个以上的群体,每群体保存36个以上的单株。同时,营建了小叶杨异地保存初级核心种质资源库,对充分保护小叶杨资源遗传多样性、防止基因丢失及筛选优异种质具有重要的理论和实践意义。
     (6)在对小叶杨自然群体进行遗传亚结构分析的基础上,进行了SSR标记基因型与表型及生理生化性状的连锁分析。对于表型性状,共检测到17个SSR标记位点与其显著连锁。与每一性状显著连锁的SSR标记位点数为1-8个,每一位点可解释表型变异的1.84%-23.39%:而对于生理生化性状,关联分析仅检测到与叶绿素B等4个性状显著连锁的6个SSR标记位点,每性状关联位点数为1-3个,关联位点对生理生化表型变异的贡献率为11.33%~26.46%;关联分析中存在“一因多效”及“多效一因”现象。
     (7)以携带“无效等位基因(null allele)”材料表型均值为对照,进一步分析了与性状关联位点的等位变异,估计了等位变异的潜在表型效应增量(减量),并利用该信息估计了位点增效(减效)等位变异的平均效应。结果表明,关联位点正、负效应等位变异均值间有差异;多性状关联位点的等位变异在不同性状间具有各自表型效应的方向和大小;等位变异在相关性状效应上方向、大小的异同解释了性状间正、负相关的遗传原因;研究鉴别出了一批与表型及生理性状关联的优异位点和等位变异及携带优异等位变异的载体材料。
Populus simonii, indigenous to north China, is one of key forest resources for shelterbelt with a lot of characteristics, such as higher tolerance with drought, low temperature and sterile soil and other adaptability. It is propagating easily, and has long life and higher ability to reproduce with hybridization and other characteristics. Therefore, it is the main tree species in ecological protection and the important parent materials for cultivation of excellent resistance germplasm in "Three North" area of China. The genetic resource of P. simonii is being reducing dramatically owing to the reasons of natural disasters, including drought, water shortage, desertification, deforestation, and man-made factors. Thus, it is urgent to evaluate and conservate the genetic resource of natural population in P. simonii. For this purpose, in this thesis, a total of 528 individuals were collected from 16 provenances, covering 11 provinces or autonomous regions, and then established ex situ conservation pool of P. simonii. The genetic diversity of natural populations of P. simonii were systematically studied at the phenotype, physiology and biochemistry, and DNA levels, and the law of genetic variation of different sources and diversity of the state is revealed, while a sample of the core genetic resource conservation programs is constructed. The results provide the necessary theoretical basis and reference for the rescue and protection of existing P. simonii resources. Interestingly, the association between SSR genotypes and phenotypes of 25 economic traits were conducted by the linkage disequibrium mapping based on natural population in P. simonii. The SSR markers significantly associated with commercial traits provide the solid foundation for screening good alleles, discovering and developing genetic resource and making genetic of policies and strategies in P. simonii. The main research results were as follows:
     1. The genetic diversity of natural population of P. simonii was studied at the phenotypic level, and the result indicated that variation of 15 phenotypic traits of P. simonii is significant different among provenances and among clones within provenances. The phenotypic coefficients of variation of leaves, stems and roots were 22.91%,35.68% and 40.90%, respectively; In which, coefficient of variation for leaf area (48.79%) was the highest, followed by petiole length (45.32%), leaf thickness (12.89%) and the lateral veins angle (7.38%) were the lowest, and leaf growth characteristics is higher than the others; As for the phenotypic coefficient of variation, the largest one is located in Zhangjiakou (32.15%), and the second one is located in Henan Luoning (31.89%), the minimum one from Shandong Yishui (25.13%) and Qinghai Dulan (24.80%) provenances; the variation of measured characteristics is as following among provenances:North China where are the distribution center (31.92%) and Central China (29.99%) were the highest and other marginalized groups in the Northwest (28.36%), Northeast (28.25%) and Southwest (26.96%) were followed, East China (25.13%) was minimum. Repeatability values showed that leaf, stem and root phonotypical trait is mainly affected by fix environment and gene in moderate and high degree. The scope of variation is 0.456-0.798; the average of all repeatability is no substantial difference which ranged from 0.5 to 0.6. Phenotypic differentiation coefficient is 0.4518; variation (54.82%) among provenances is higher than variation (45.18%) among clones with in provenances, which indicates that clones within provenances, is the major source of genetic diversity of P. simonii. Correlation analysis showed those only 3 traits of leaf width and 4 physiological and ecological factors of elevation have significant relationships. Clustering of 16 P. simonii provenances can be divided into four main groups though UPGMA testing, Zhangjiakou in Hebei and Luochuan in Shanxi each form a separate group, Huzhu, Qilian and Dulan in Qinghai form the third group, and the remaining species constitute the fourth source group.
     2. The genetic diversity of natural population of P. simonii also detected at the physiological and biochemical levels, and the results revealed that the genetic variation was significant different among population and among clones within provenances for 10 physiological traits of P. simonii. Coefficients of variation of photosynthesis, respiration, and stress resistance was 22.94%,36.61% and 40.25% respectively, of which malondialdehyde (own coefficients of variation 56.47%) is the highest, phenylalanine ammonia lyase (54.48%) followed, chlorophyll A (22.01%) and carotenoids (20.31%) is minimum; various original average coefficient of variation is insignificant, the majority is between 20% and 30%, of which Luochuan (40.71%) and Fuxian (36.61%) in Shanxi province is the highest, Huzhu in Qinghai (24.78%) is minimum; Similarly, the coefficient of variation were the highest among North China which are the distribution center (35.63%), Central China (34.39%) and the northeast (34.59%), other marginalized groups followed, northwest (33.74%) was minimum. All the physiological indicators were mainly affected by fix environment and gene in high degree. The repeatability of each physiological indicator was 0.694-0.986; each original repeatability is no big difference which ranged from 0.8 to 0.9, of which Ningwu in Shanxi (0.929) and Kangding (0.925) in Sichuan was the highest, Tongliao (0.840) in Inner Mongolia and Chaoyang (0.826) in Liaoning is the lowest. Physiological differentiation coefficient was 23.93%,that was P. simonii physiological variation accounted for 76.07% among clones within population, indicating the genetic resource among clones within population is richer than among population. Correlation analysis showed that four physiological indices including catalase and the geographical and ecological factors excepting longitude were highly significant correlation. Clustering of 16 P. simonii provenances can be divided into four main groups though UPGMA testing:Ningwu in Shanxi and Chaoyang in Liaoning formed the first two groups, Huzhu and Qilian in Qinghai and Luochuan in Shaanxi formed the third group, other 13 kinds of provenances including Dulan in Qinghai and Diebu in Gansu was the fourth group; Mantel's tests show phenotype relationship is not significant between Euclidean distance and geographical distance
     3. The genetic diversity of natural population of P. simonii was studied at the molecular level. In total,306 polymorphic SSR loci were detected using 20 pairs of SSR primers, of which each SSR marker produced polymorphic loci alleles ranged from 8 to 28, and all sites observed number of alleles, effective number of alleles, observed heterozygosity, expected heterozygosity, polymorphism information content, Nei's gene diversity, Shannon information index, fixation index and inbreeding index were 6.981,3.877,0.511,0.691,0.637,0.677,1.443,0.348 and 0.244, respectively. It was very rich in genetic diversity within populations, the genetic parameters were Na = 6.981, Ne= 3.877, Ho= 0.511, He= 0.691, PIC= 0.637, h= 0.677,I= 1.443, Nm= 1.588. Analysis of molecular variance showed that differences in populations was the main source of genetic variation, variance within groups accounted for more than 85%, less than 15% between groups. Nei's unbiased genetic distance and genetic identity varied from 0.442-0.818 and 0.115-0.542 in each group; P. simonii was divided into three groups by clustering, Yishui in Shangdong provenance formed a group of individual, provenances of Qinghai, Fuxian and Ningwu in Shaanxi, were the second group, others formed the third; Mantel test showed that P. simonii genetic distance and geographic distance was no correlation.
     4. Though three levels of the research content of coupling for P. simonii in phenotype, physiology and DNA molecular markers, it was found that the threes had certain differences in the levels of genetic diversity, it only had a certain agreement that the population genetic structure and differentiation, genetic variation and population diversity cluster, etc. Phenotype of genetic diversity and physiological parameters are not correlated but the SSR markers; the difference among population was the major source of genetic variation, populations greater the genetic diversity within populations was more than among populations; there were abundant genetic variations and the highest genetic diversity in the middle of Shaanxi and Funiu mountains of the Northwest of Henan and so on. However, it opposites in Yimeng of Shandong, Dulan and Huzhu of Qinghai and so on. Huzhu of Qinghai, Qilian, Inner Mongolia and Tongyu of Jilin and so on were consistent on phenotype, physiological and clustering results of SSR marker diversity. The genetic diversity of three markers of the reflection had focused on the situation but complement each other.。
     5. Combining with the data of genetic diversity at the phenotypic, physiology and molecular levels, the sampling strategy for establishing core germplasm of P. simonii was plotted within populations and between the populations, i.e., samples of more than 12 groups were chose randomly in the whole distribution area in P. simonii, each group kept more than 36 plants. Meanwhile, the genetic resource was constructed for protecting the primary core offsite collection, which has important theoretical and practical significance in the full protecting P. simonii genetic diversity, preventing gene loss and screening of elite germplasm.
     6. Considering sub-structure of natural population of P. simonii, the association studies between SSR genotypes and phenotypic data of phenotype, physiological and biochemical traits were performed. The results showed that 17 SSR markers associated with 8 traits, including leaf length/width, etc. For each trait, the numbers of associated loci is 1 to 8, related loci on the phenotype of rate of explanation is 1.84%-23.39%; physiological trait association mapping only detected the 6 related loci of 4 trait including chlorophyll B, each trait loci is 1 to 3, explain rate of related loci on the physiological traits'change is large ranging from 11.33% to 26.46%; there was "pleiotropic effects" and "a result of multi-effect" phenomenon in association mapping.
     7. The alleles of SSR markers associated with phenotype were further analysis through comparing with the phenotype average date of null allele. Alleles potential phenotypic effects of increment (decrement) was estimated, and using the information estimated the average effect of alleles of the site efficiency (less effective). The results showed that there were different among loci positive and negative effects, the average of alleles; the alleles variation of multiple trait loci has their own phenotypic direction and size among different traits. Alleles variation on the direction of effects in the relevant traits, the size of the similarities and differences between characteristics explained the positive and negative correlation of genetic causes; study identified a number of phenotypic and physiological characteristics with excellent sites and the associated alleles and carrying outstanding alleles of the carrier material.
引文
白根本,董玉芝,朱小虎,等.胡杨远缘杂交亲子代过氧化物同工酶分析[J].八一农学院学报,1993,16(3):41-45.
    曹琳,赵广杰.毛白杨微纤丝角在株内的变异[J].北京林业大学学报,2009,31(增刊1):67-70.
    常学礼,赵文智.樟子松、小叶杨水分生理及林地水分状况的研究[J].中国沙漠,1990,10(4):18-24.
    陈伯望,洪菊生,施行博.杉木和秃杉群体的叶绿体微卫星分析[J].林业科学,2000,36(3):46-51.
    陈成彬,齐力旺,张守攻,等.三倍体杨树核型分析[J].武汉植物学研究,2004,22(6):565-567.
    陈成彬,张守攻,李秀兰,等.杨属派间核型比较研究[J].广西植物,2005,25(4):338-340.
    陈伏生,曾德慧,范志平,等.沙地不同树种人工林土壤氮素矿化过程及其有效性[J].生态学报,2006,26(2):341-348.
    陈嵘.中国树木分类学[M].上海:上海科技出版社,1953.
    陈甜,孙向阳,刘克林,等.毛白杨叶片营养元素含量季节变化及年变化研究[J].西北林学院学报,2009,24(2):42-45.
    陈云明,侯喜禄,刘文兆.黄土丘陵半干旱区不同类型植被水保生态效益研究[J].水土保持学报,2000,14(3):57-61.
    成向荣,黄明斌,邵明安.沙地小叶杨和柠条细根分布与土壤水分消耗的关系[J].中国水土保持科学,2008,6(5):77-83.
    程红,严善春,隋祥,等.黑龙江省主栽杨树品系干部单宁含量与青杨脊虎天牛危害的关系[J].东北林业大学学报,2006,34(2):32-34.
    程积民,万惠娥,王静.黄土丘陵区小叶杨林地土壤水分过耗动态[J].水土保持学报,2003,17(3):70-73.
    程立超,迟德富,谢兴,等.青杨脊虎天牛对杨树皮挥发物的行为反应[J].生态学杂志,2009,28(1):45-50.
    程立超,迟德富.10种杨属植物树皮挥发油的化学成分分析[J].林业科学研究.2007,20(2):267-271.
    程淑婉,王影,李林果.小叶杨原生质体培养中的激素和氮含量变化[J].林业科学,1995,31(5):1-7.
    澹台湛,李鹏,赵忠.白杨派杂种无性系生根特性研究[J].西北植物学报,2005,25(5):911-916.
    丁宝章,王遂义,高增义.河南植物志[M].郑州:河南人民出版社,1981,164-196.
    董天慈.小叶杨与胡杨亚属间有性杂交[J].遗传,1980,2(1):25-28.
    董艳,姜彬慧,于梅,等.五十年辽河三角洲湿地气候变化对植物种群的影响[J].沈阳化工学院学报,2008,22(1):29-34.
    董玉芝,白根本.用同工酶研究胡杨天然群体遗传结构[J].东北林业大学学报,1998,26(5):16-20.
    杜建玲,刘红霞,于淑平.杨树不同种(品种)间抗溃疡病差异的比较[J].河北林果研究,2000,5(1):55-60.
    付贵生,杨自湘,马金昌,等.小叶杨基因资源异地保存及苗期生物学特性分析[J].林业科技,2005,30(1):1-4.
    冯夏莲.滇杨遗传多样性研究[D].北京林业大学硕士论文,2006.
    高爱琴,余仲东,王建国.美洲黑杨无性系对杨叶锈病的抗性研究[J].西北林学院学报,2004,19(4):100-102.
    高建社,李科友,符军,等.毛白杨优良无性系过氧化物同工酶酶谱分析[J].陕西林业科技,1993(3),1:1-5
    高俊凤.植物生理学实验指导[M].北京:高等教育出版社,2006.
    葛颂,洪德元.遗传多样性及其检测方法[M].北京:中国科学技术出版社,1994.
    葛颂,王海群,张灿明,等.八面山银杉林的遗传多样性和遗传分化[J].植物学报,1997,39(3):266-271.
    葛颂,王明麻,陈岳武.用同工酶研究马尾松群体的遗传结构[J].林业科学,1988,24(4):399-409.
    顾万春.统计遗传学[M].北京:科学出版社,2004.
    管兰华,潘惠新,黄敏仁,等.美洲黑杨×欧美杨F1无性系遗传变异[J].浙江林学院学报,2004,21(4):376-381.
    管兰华,潘惠新,黄敏仁,等.美洲黑杨×欧美杨F1无性系的多性状联合选择[J].南京林业大学学报(自然科学版),2005,29(2):6-10.
    韩蕊莲,侯庆春.小叶杨“小老树”生长季内水分特征及光合能力[J].西北林学院学报,1996,11(3):36-40.
    韩素英,张守攻,汪泉,等.小叶杨⊿1-吡咯琳-5-羧酸合成酶(P5CS)基因克隆及在杂种落叶松中的转化[J].生物技术通报,2006,3(3):88-92.
    韩素英,张守攻,汪泉,等.构建脱水反应元件(DRE)报告子用于小叶杨DRE转录因子的克隆[J].农业生物技术学报,2007,15(3):446-450.
    郝建军,康宗利.植物生理学[M].北京:化学工业出版社,2005.
    郝再彬,苍晶,徐仲.植物生理实验[M].哈尔滨:哈尔滨工业大学出版社,2004.
    何承忠.毛白杨遗传多样性及起源研究[D].北京林业大学博士论文,2005.
    何志斌,赵文智.半干旱区流沙固定初期不同植被类型的土壤湿度特征[J].水土保持学报,2003,17:164-167.
    河南农学院园林系杨树研究组.毛白杨类型的研究[J].中国林业科学,1978,1(2):14-20.
    贺尧,苏芳莉,郭成久,等.基于主成分分析法的煤矸石山植被水土保持功能评价[J].水土保持研究,2009,16(1):74-77.
    胡晓丽,周春江,岳良松.三倍体毛白杨无性系的AFLP分子标记鉴定[J].北京林业大学学报,2006,28(2):9-14.
    胡振华,王电龙,呼起跃.雁北沙地樟子松、油松和小叶杨生长规律及蒸腾特性研究[J].山西农业大学学报(自然科学版),2007,27(3):245-249.
    华北树木志编写委员会.华北树木志[M].北京:中国林业出版社,1983.
    黄金田,郑宏奎,高晓霞,等.三种杨木的pH值、缓冲容量及其对脲醛树脂胶固化时间的影响[J].四川农业大学学报(木材研究专辑),1998,16(1):150-153.
    黄秦军,苏晓华,张香华.SSR分子标记与林木遗传育种[J].世界林业研究,2002,15(3):14-20.
    黄荣凤,鲍甫成,张冬梅.杨树材性成熟龄模型的建立及树体内幼龄材的分布[J].林业科学,2005,41(3):103-109.
    黄荣凤,古川郁夫,鲍甫成,等.毛乌素沙地杨树年轮结构对气候因子的响应[J].北京林业大学学报,2005,27(3):24-29.
    黄少伟,谢维辉.实用SAS编程与林业试验数据分析[M].广州:华南理工大学出版社,2001.
    黄智慧.毛白杨无性系地理变异的研究[J].北京林业大学学报,1992,14(3):33-42.
    姜萍,郭芳,罗跃初,等.辽西半干旱区典型人工林生态系统的水土保持功能[J].应用生态学报,2007,18(12):2905-2909.
    J.萨姆布鲁克(JosephSambrook), D.W.拉塞尔(DavidW.Russell),黄培堂等译.分子克隆实验指南[M].北京:科学出版社,2002.
    焦峰,温仲明,焦菊英,等.黄土丘陵区人工小叶杨生长空间差异及其土壤水分效应[J].西北植物学报,2005,25(7):1303-1308.
    解奇明,苗锡臣,胡伟民,等.杨树不同品种的过氧化物同工酶分析[J].林业科技,1997,22(3):13-16.
    李火根,黄敏仁,阮锡根.美洲黑杨新无性系木材细胞次生壁S2层微纤丝角株内变异的初步研究[J].西北林学院学报,1997,12(1):61-65.
    李金花,张绮纹,苏晓华等.美洲黑杨与不同种源青杨杂种苗叶片和生长性状多水平变异研究[J].林业科学研究,2002,15(1):76-82.
    李金花,姜英淑,宋红竹,等.美洲黑杨与不同种源青杨杂种子代无性系遗传变异和初步选择研究[J].林业科学研究,2004,17(3):368-373.
    李宽钰,黄敏仁,王明麻.用RAPD探讨毛白杨起源[J].植物分类学报,1997,35(1):24-31.
    李宽钰,黄敏仁,王明麻,等.白杨派、青杨派和黑杨派的DNA多态性及系统进化研究[J].南京林业大学学报,1996,20(1):6-11.
    李宽钰,黄敏仁,王明庥,等.青杨的DNA多态性及遗传分化-I.青杨的DNA多态性[J].科学通报,1997,42(9):969-972.
    李宽钰,黄敏仁,杨白湘,等.青杨的遗传分化[J].植物学报,1997,39(8):753-758.
    李玲.植物生理学模块实验指导[M].北京:科学出版社,2009.
    李启任,李尹,秦瑞.美洲黑杨与滇杨杂交亲本和杂种的同工过氧化物酶比较[J].云南大学学报(自然科学版),1994,16(1):71-75.
    李善文,张有慧,张志毅,等.杨属部分种及杂种AFLP分析[J].林业科学,2007,43(1):37-41.
    李善文,张志毅,何承忠,等.中国杨树杂交育种研究进展[J].世界林业研究,2004,17(2):37-4].
    李世峰,张博,陈英,等.美洲黑杨种质资源遗传多样性的SSR分析[J].南京林业大学学报,2006,30(4):10-14.
    李淑玲,侯建治,马浩,等.毛白杨不同无性系苗木抗锈性的初步研究[J].河南农业大学学报,1994,28(2):124-127.
    林剑,赵广杰,张文博.真菌侵蚀木材的微细构造与应力松弛[J].北京林业大学学报,2009,31(增刊):62-66.
    刘成志,尚鹤,姚斌,等.柴河铅锌尾矿耐性植物与优势植物的重金属含量研究[J].林业科学研究,2005,1 8(3):246-249.
    刘建平,李志军,何良荣,等.胡杨、灰叶胡杨种子萌发期抗盐性的研究[J].林业科学,2004,40(2):165-169.
    刘克林,孙向阳,赵铁蕊,等.三倍体毛白杨不同无性系叶片营养元素质量分数差异[J].浙江林学院学报,2007,24(3):297-301.
    刘慎谔,等.东北木本植物图志[M].北京:科学出版社,1955.
    刘鑫,满秀玲,陈立明,等.坡位对小叶杨人工林生长及土壤养分空间差异的影响[J].水土保持学报,2007,2 1(5):76-81.
    刘鑫,满秀玲.毛乌素沙地梁地上小叶杨根系分布特征[J].中国水土保持科学,2008,6(4):48-53.
    刘亚萍,计巧灵,葛春辉,等.不同萌发率胡杨种子萌发前后同工酶动态变化分析[J].种子,2005,24(11):41-47.
    刘艳萍,郭志富,刘玉东,等.应用SRAP标记分析新疆地区主要杨属树种的遗传多样性[J].植物生理学通讯,2008,44(2):225-228.
    刘颖慧,高琼,贾海坤.半干旱地区3种植物叶片水平的抗旱耐早特性分析—两个气孔导度模型的应用和比较[J].植物生态学报,2006,30(1):64-70.
    刘玉媛,符军,高建社,等.毛白杨优良无性系抗寒性的研究[J].陕西林业科技,1994,2(2):1-3.
    刘增文,段而军,刘卓玛姐,等.陕北半干旱风沙区人工纯林土壤性质极化研究[J].北京林业大学学报,2009,31(2):1-9.
    刘增文,刘卓玛姐,段而军,等.黄土高原半湿润丘陵区林下植物群落数量特征研究[J].西北农林科技大学学报(自然科学版),2008,36(10):74-80.
    卢孟柱,谢红丽,张辉,等.利用叶绿体DNA变异研究胡杨系统发育[J].西北植物学报,2000,20(6):1148-1154.
    吕文.中国北方小叶杨[M].银川:宁夏人民出版社,2002.
    罗青红,李志军,伍维模,等.胡杨、灰叶胡杨光合及叶绿素荧光特性的比较研究[J].西北植物学报,2006,26(5):983-988.
    马磊,吴小芹.九种外生菌根菌与杨树苗木的菌根化研究[J].南京林业大学学报(自然科学版),2007,31(6):29-33.
    潘惠新,黄敏仁,李火根,等.美洲黑杨新无性系干形性状遗传变异初步研究[J].南京林业大学学报,1999,23(5):1-6.
    潘瑞炽.植物生理学[M].北京:高等教育出版社,2008.
    祁如英,严进瑞,王启兰.青海小叶杨物候变化及其对气候变化的响应[J].中国农业气象,2006,27(1):41-45.
    祁如英,樊萍.青海小叶杨叶芽开放期变化及其对气候变化的响应[J].气象,2005,39(1):87-89.
    齐力旺,张守攻,韩素英,等.杨属青杨组种(品种)间核型比较[J].云南植物研究,2004,26(5):537-542.
    齐力旺,张守攻,韩素英,等.杨属白杨组种间核型比较[J].园艺学报,2005,32(5):849-853.
    茹广欣,李淑玲,李耀堂,等.毛白杨无性系同工酶分析[J].河南科学,1998,16(1):77-81.
    生光,阿不都外力·阿不都热依木,马相汝,等.RAPD标记研究新疆胡杨五个地理种群的遗传分化[J].生物技术,2008,18(5):18-21.
    史全良,诸葛强,黄敏仁,等.用ITS序列研究杨属各组之间的系统发育关系[J].植物学报,2001,43(3):323-325.
    史瑞,迟德富,张晟铭.10种杨树酶活性与抗性的关系[J].东北林业大学学报,2008,36:74-75.
    宋炳煜,杨劫,郭广芬,等.皇甫川流域人工杨树林地的生理生态用水[J].水土保持学报,2004,18(6):159-162.
    宋红竹,张绮纹,周春江,等.杨树部分种的AFLP遗传多样性分析[J].林业科学,2007,43 (12):64-69.
    宋留高,陈志秀,刘国彦,等.35个白杨派树种过氧化物同工酶数量分类研究[J].河北林果研究,1996,11(增刊):7-10.
    宋婉,张志毅,续九如.毛白杨无性系木材基本密度遗传变异研究[J].林业科学,2000,36(增刊1):125-129.
    苏晓华,黄秦军,张香华,等.中国大青杨基因资源研究[J].林业科学研究,2001,14(5):472-478.
    苏晓华,张绮纹,张望东,等.大青杨及其近缘种的遗传变异和系统关系研究[J].林业科学,1996,32(2):118-125.
    苏晓华,张绮纹,郑先武,等.利用RAPD分析大青杨天然群体的遗传结构[J].林业科学,1997,33(6):504-512.
    汤玉喜,刘友全,吴敏.淹水胁迫下美洲黑杨无性系生理生化指标的变化[J].中国农学通报,2008,24(8):156-161.
    唐德瑞,张燕.陕西黄土高原沟壑区小叶杨生长规律初步研究[J].西北林学院学报,2000,15(1):15-19.
    王孟本,柴宝峰,李洪建,等.黄土区人工林的土壤持水力与有效水状况[J].林业科学,1999,35(2):7-14.
    王孟本,李洪建,柴宝峰.晋西北小叶杨林水分生态的研究[J].生态学报,1996,16(3):232-237.
    王孟本,李洪建,柴宝峰.树种蒸腾作用、光合作用和蒸腾效率的比较研究[J].植物生态学报,1999,23(5):401-410.
    王孟本,李洪建,柴宝峰,等.黄土区树种抗旱性指数的研究[J].植物研究,1999,19(3):341-346.
    王青宁,唐静,衣学慧.基于多元统计评价毛白杨无性系的抗旱性[J].西北林学院学报,2005,20(4):21-26.
    王荣焕,王天宇,黎裕.关联分析在作物种质资源分子评价中的应用[J].植物遗传资源学报,2007,8(3):366-372.
    王尚义,李素清,曹志敏,等.山西岚县皇姑梁小流域人工植物群落生态[J].生态学报,2007,27(12):5098-5109.
    王彦珍,张继华,马荣才,等.130份优良无性系毛白杨遗传多样性的AFLP分析[J].安徽农业科学,2009,37(5):1939-1941,1947.
    王艳,李韶山.不同无性系杨树叶片的超氧物歧化酶(SOD)同功酶谱比较研究[J].华南师范大学学报(自然科学版),1995,3(3):63-70.
    王毅,刘立新,徐欣.小叶杨小孢子母细胞减数分裂中细胞器的区域分布[J].电子显微学报,1994,53(5):374.
    王毅,娄成后.棉花和小叶杨小孢子母细胞中超数核仁的形成及动态变化[J].北京农业大学学报,1993,19(3):13-17.
    王影,黄敏仁,陈道明,等.杨树细胞悬浮培养及体细胞胚胎发生的研究[J].南京林业大学学报,1991,15(3):31-37.
    王战.中国植物志(二十卷)[M].北京:科学出版社,1984.
    卫尊征,郭琦,李百炼,等.小叶杨GA20氧化酶基因的克隆、表达及单核苷酸多态性分析[J].林业科学,2009,45(4):19-26.
    卫尊征,张金凤,马海渊,等.青白杨派间杂交的胚珠培养研究[J].防护林科技,2007,9(6):19- 20,34.
    温仲明,从怀军,焦峰,等.黄土丘陵沟壑区小叶杨林生长的空间差异分析—以吴旗县为例[J].水土保持通报,2005,25(1):15-24.
    乌凤章.辽南地区毛白杨抗逆无性系选育[J].东北林业大学学报,2005,33(5):5-7.
    吴元芝,黄明斌,韩世涛.黄土丘陵沟壑区乔灌木植物系数计算与适应性评价[J].干旱地区农业研究,2008,26(2):144-149.
    武维华.植物生理学[M].北京:科学出版社,2008.
    西北植物研究所.秦岭植物志[M].北京:科学出版社,1974.
    向碧霞,黄敏仁,王明庥.分子标记在杨树遗传改良中的应用[J].南京林业大学学报,1998,22(2):83-87.
    徐煲铧,杨晓慧,李百炼,等.毛白杨纤维素合酶基因PtCesA4的克隆、表达及单核苷酸多态性分析[J].林业科学,2009,45(5):1-9.
    徐克章.植物生理学[M].北京:中国农业出版社,2007.
    徐莉,赵桂仿.微卫星DNA标记技术及其在遗传多样性研究中的应用[J].西北植物学报,2002,122(3):7 1 4-722.
    徐纬英.杨树[M].哈尔滨:黑龙江人民出版社,1988.
    徐锡增,唐罗忠,程淑婉.涝渍胁迫下杨树内源激素及其它生理反应[J].南京林业大学学报,1999,23(1):1-5.
    徐云碧,朱立煌.分子数量遗传学[M].北京:中国农业出版社,1994.
    续九如.重复力及其在树木育种中应用[J].北京林业大学学报,1998,10(3):97-102.
    杨丽桃,侯琼.内蒙古东部地区小叶杨物候变化与气象条件的关系[J].气象与环境学报,2008,24(6):39-44.
    杨敏生,李艳华,梁海永,等.盐胁迫下白杨无性系苗木体内离子分配及比较[J].生态学报,2003,23(2):271-277.
    杨敏生,李艳华,梁海永,等.白杨派杂种无性系及其亲本光合和生长对盐胁迫的反应[J].林业科学,2006,42(4):19-26.
    杨敏生,裴保华,程志鹏.白杨杂种无性系抗寒性生理指标动态分析[J].植物生态学报,1997,21(4):367-375.
    杨敏生,裴保华,于冬梅.水分胁迫对毛白杨杂种无性系苗木维持膨压和渗透调节能力的影响[J].生态学报,1997,17(4):364-370.
    杨晓慧,张有慧,张志毅,等.毛白杨干细胞决定基因Wuschel的克隆及其单核苷酸多态性分析[J].林业科学,2009,45(1):43-49.
    杨尧军,李毅,张生华,等.箭胡毛杨及其亲本酯酶和过氧化物酶的同工酶分析[J].甘肃农业大学学报,2006,41(2):46-51.
    杨自湘,顾万春,李玲.毛白杨种内过氧化物同工酶变异[J].林业科学研究,1990,3(4):335-340.
    杨自湘,李钢铁,高志华.中国西北小叶杨资源概述[J].世界林业研究,1999,12(5):49-53.
    杨自湘,王守宗,韩玉兰.不同产地青杨抗寒性变异的研究[J].林业科学研究,1996,9(5):475-480.
    杨自湘,王守宗,徐红,等.用叶片特征区别不同产地不同单株青杨的研究[J].林业科技通讯,1995,2(2):17-18,43.
    杨自湘,王守宗,徐红,等.不同产地青杨的幼树木材材性变异的研究[J].林业科学研究,1995, 8(4):437-441.
    殷继艳.新疆额尔齐斯河流域杨属系统发育和种间关系研究[D].北京:中国林业科学研究院,2006.
    尹春英,彭幼红,罗建勋,等.杨属遗传多样性研究进展[J].植物生态学报,2004,28(5):711-722.
    尹佟明,孙晔,易能君,等.美洲黑杨无性系AFLP指纹分析[J].植物学报,1998,40(8):778-780.
    尹伟伦.不同种类杨树苗木的生长和光合性能的比较研究Ⅰ叶、茎、根的生长和相互关系[J].北京林学院学报,1982,4(4):93-105.
    尹伟伦.不同种类杨树苗木的生长和光合性能的比较研究Ⅱ净光合速率、光呼吸和反应等光合性能指标[J].北京林业大学学报,1983,6(2):41-55.
    游光霞,张学勇.基于选择牵连效应的标记/性状关联分析方法简介[J].遗传,2007,29(7):881-888.
    张博,潘惠新,黄敏仁.美洲黑杨欧美杨新无性系苗期木材密度的遗传变异[J].南京林业大学学报,2001,25(2):47-50.
    张德强,张志毅,杨凯.分子标记技术在杨树遗传变异及系统分类中的应用[J].北京林业大学学报,2001,23(1):76-80.
    张德强,张志毅,杨凯.杨树分子标记研究进展[J].北京林业大学学报,2000,22(6):79-84.
    张冬梅,鲍甫成,张志毅,等.毛白杨无性系湿心材比例的遗传分析[J].林业科学,2005,41(4):140-144.
    张冬梅,张志毅,黄荣凤.毛白杨无性系纤维特性及微纤丝角的遗传分析[J].林业科学,2007,43(4):129-133.
    张继澎.植物生理学[M].北京:高等教育出版社,2006.
    张金凤,张志毅,朱之悌.黑白杨派间杂种苗的形态学和同工酶研究[J].北京林业大学学报,1999.21(3):20-25.
    张金然,尚洁,王秋玉.山杨杂种无性系的SSR分子标记遗传多样性[J].植物研究,2006,26(4):447-460.
    张立非,姜笑梅,苏晓华,等.大青杨等天然群体幼苗基本材性变异研究[J].林业科学研究,1996,9(5):517-520.
    张绮纹,苏晓华,李金花,等.美洲黑杨基因资源收存及其遗传评价的研究[J].林业科学,1999,35(2):31-37.
    张守攻,韩素英,汪泉,等.小叶杨胆碱单氧化物酶(CMO)基因的克隆与转化杂种落叶松及表达[J].分子植物育种,2006,4(4):483-488.
    张守攻,齐力旺,韩素英,等.杨属(Populus)黑杨组(Aigeiros)种(品种)间核型比较[J].园艺学报,2005,32(1):70-73.
    张婷,张文辉,郭连金,等.黄土高原丘陵区不同生境小叶杨人工林物种多样性及其群落稳定性分析[J].西北植物学报,2007,27(2):340-347.
    张亚东,胡兴宜,宋丛文.利用新型分子标记EST-SSR鉴定湖北省内的主栽黑杨品种[J].分子植物育种,2009,7(1):105-109.
    张艳丽,贾志斌.皇甫川流域不同土地利用对群落结构和植物多样性的影响[J].内蒙古大学学报(自然科学版),2008,39(3):325-331.
    张益望,程积民,贺学礼.半干旱区人工林生长与水分生态研究[J].水土保持通报,2006,26(3):18-22.
    张玉宝,李金国,安堃,等.不同杨树品系还原糖含量与青杨脊虎天牛危害的关系[J].东北 林业大学学报,2006,34(2):35-37.
    张志良,瞿伟菁.植物生理学实验指导[M].北京:高等教育出版社,2003.
    张志毅.毛白杨同工酶遗传变异的研究[D].北京:北京林业大学图书馆,1990.
    赵凤君,沈应柏,高荣孚,等.黑杨无性系间长期水分利用效率差异的生理基础[J].生态学报,2006,26(7):2079-2085.
    赵广东,王兵,苏铁成,等.煤矸石山废弃地不同植物复垦措施及其对土壤化学性质的影响[J].中国水土保持科学,2005,3(2):65-69.
    赵淑芳,樊军锋,高建社,等.银白杨与84K杨、毛白杨杂交及苗期测定[J].东北林业大学学报,2009,37(1):4-5.
    赵晓平,荣威恒,刘玲玉,等.5种杨树种间及品种间同工酶的比较分析[J].安徽农业科学,2008,36(6):2262-2264.
    郑彩霞,邱箭,姜春宁,等.胡杨多形叶气孔特征及光合特性的比较[J].林业科学,2006,42(8):20-24.
    智颖飙,王再岚,王中生,等.公路绿化植物油松{Pinustabulaeformis)和小叶杨{Populus simonii)对重金属元素的吸收与积累[J].生态学报,2007,27(5):1863-1872.
    周海光,刘广全,焦醒,等.黄土高原水蚀风蚀复合区几种树木蒸腾耗水特性[J].生态学报,2008,28(9):4568-4574.
    周海光,刘广全,焦醒,等.黄土高原水蚀风蚀区林木光合特征研究[J].西北林学院学报,2008,23(5):12-17.
    周海燕,赵爱芬.科尔沁沙地环境对小叶杨和杂交杨生理状况的影响[J].中国沙漠,1999,19(增刊):72-74.
    周永学,樊军锋,蔺林田,等.美洲黑杨×青杨杂种无性系引种育苗试验[J].西北林学院学报,2004,19(1):58-60.
    朱景乐,王军辉,张守攻,等.毛白杨材性指标预测及选择[J].林业科学,2008,44(7):24-28.
    邹喻苹,葛颂,王晓东.系统与进化植物学中的分子标记[M].北京:科学出版社,2001.
    Abdurakhmonov IY and Abdukarimov A. Application of Association Mapping to Understanding the Genetic Diversity of Plant Germplasm Resources[J]. International Journal of Plant Genomics,2008,2008:1-18.
    Andersen JR, Schrag T, Melchinger AE, et al..Validation of Dwarf8 polymorphisms associated with flowering time in elite European inbred lines of maize (Zea mays L.)[J]. Theoretical and Applied Genetics,2005,111:206-217.
    Aranzana MJ, Kim S, Zhao KY, et al..Genome-wide association mapping in Arabidopsis identifies previously known flowering time and pathogen resistance genes[J]. Plants Genet,2005,1: e60.
    Avise JC. Molecular markers, natural history and evolution [M]. New York:Chapman & Hall, 2000.
    Balloux F, Lugon-Moulin N.The estimation of population differentiation with microsatellite markers[J]. Molecular Ecology,2002,11:155-165.
    Barbier EB, Schulz CE. Wildlife.biodiversity and trade[J]. Environment and Development Economics,1997,2:145-172.
    Barrett JW, Rajora OP, Yeh FC, et al. Mitochondrial DNA variation and genetic relationships of Populus species[J].Genome,1993,36:87-93.
    Borne M, Marques-Garciavl, Uren T, et al. Conservation and genetic diversity of microsatellite
    loci in the genus Eucalyptus[J]. Australian Journal of Botany,1996,44:331-341.
    Bradshaw HD, Stettler RF. Molecular genetics of growth and development in Populus I. Triploidy in hybrid poplars[J].Theor. Appl Genet,1993,86:301-307.
    Breseghello F and Sorrells ME. Association mapping of kernel size and milling quality in wheat (Triticum aestivum L.) cultivars[J]. Genetics,2006,172:1165-1177.
    Brondani RPV, et al. Development, characterization and mapping bymicrosatllite markers in Eucalyptus grand is and Europhylla [J]. Theo Appl Genet,1998,97:816-827.
    Byrne M,Marques-Garcia MI, et al. Conservation and genetic diversity of microsatellite loci in the genus Eucalyptus[J]. Aust J Bot,1996,44:331-341.
    Camus-Kulandaivelu C, Veyrieras JB, Madur D, et al. Maize Adaptation to Temperate Climate: Relationship Between Population Structure and Polymorphism in the Dwarf8 Gene[J]. Genetics,2006,172:2449-2463.
    Cardon LR, Palmer LJ.Population stratification and spurious allelic association[J]. The Lancet, 2003,361:598-604.
    Castiglione S, Wang G, Damiani G et al. RAPD fingerprints for identification and for taxonomic studies of elite poplar(Populus spp.) clones [J]. Theoretical and Appiled Genetics,1993, 87:54-59.
    Castillo T and Padro A. Short note:electrophorestic characterization of the euramerican poplar clones'I-214'and'Campeador'.Silvae[J]. Genetica,1987,36:250-251.
    Catherine MCI, Thomas RW and David MM. Genetic Discontinuity Revealed by chloroplast microsatellite in eastern north American Abies(Pinaceae)[J]. American Journal of Botany, 2000,87:774-782.
    Cervera MT, Storme V, Soto A, et al. Intraspecific and interspecific genetic and phylogenetic relationships in the genus Populus based on AFLP markers[J]. Theoretical and Applied Genetics,2005,111:1440-1456.
    Chowdhury MKV. Molecular analysis of organelle DNA of different subspecies of rice and the genomic stability of mtDNA in tissue cultured cells of rice [J]. Theor Appl Genet,1998, 76:533-539.
    D'Ovidio R. Nucleotide sequence of a 5.8S rDNA gene and of the internal transcribed spacers from Populus deltoids[J]. Plant Molecular Biology,1992,19:1069-1072.
    Dayanandan S, Rajora OP, Bawa KS. Isolation and characterization of microsatellites in trembling aspen(Populus tremuloides)[J].Theoretical and Applied Genetics 1998,96:950-956.
    Doerge RW, Mapping and analysis of quantitative trait loci in experimental populations[J]. Nat. Rev. Genet.,2002,3:43-52.
    Excoffier, Laval LG, Schneider S. Arlequin ver.3.0:An integrated software package for population genetics data analysis[J]. Evolutionary Bioinformatics Online,2005,1:47-50.
    Flint-Garcia SA, Thornsberry JM, Buckler ES. Structure of linkage disequilibrium in plants[J]. Annu. Rev. Plant Biol,2003,54:357-374.
    Flint-Garcia SA, Thuillet A, Yu J, et al. Maize association population:a high-resolution platform for quantitative trait locus dissection[J]. Plant J,2005,44:1054-1064.
    Frankel OH. Genetic perspectives of germplasm conservation. In:Genetic manipulation:Impact on man and society[M].(Edited by Arber W et al.).Cambridge:Cambridge University Press, 1984:161-170.
    Fujioka S, Yamane H, Spray C R, et al. The dominant non-gibberellin-responding dwarf mutant(D8) of maize accumulates native gibberellins[J]. Proc Natl Acod Sci USA,1988,85: 9031-9035.
    Gallo LA and Geburek TH. Genetics of isozyme variants in Populus tremula, P. tremuloides and their hybrids[J]. Euphytica,1991,53:225-233.
    Gaut BS and Long AD. The lowdown on linkage disequilibrium[J]. Plant Cell,2003,15:1502-1506.
    Gilchrist EJ, Haughn GW, Ying CC, et al.. Use of ecotilling as an efficient SNP discovery tool to survey genetic variation in wild populations of Populus trichocarpa[J].Mol Ecol,2006,15: 1367-1378.
    Glaubitz J.C. CONVERT:A user-friendly program to reformat diploid genotypic data for commonly used population genetic software packages[J]. Molecular Ecology Notes,2004, 4:309-310.
    Gorelick R and Laubichler MD. Decomposing multilocus linkage disequilibrium[J]. Genetics, 2004,166:1581-1583
    Goudet J.FSTAT, A Program to Estimate and Test Gene Diversities and Fixation Indices (version 2.9.3). http://www.unil.ch/izea/softwares/fstat.html.2001.
    Hamzeh M and Dayanandan S. Phylogeny of Populus (Salicaceae) based on nucleotide sequences of chloroplast TRNT-TRNF region and nuclear rDNA[J]. American Journal of Botany, 2004,91:1398-1408.
    Hamzeh M, Perinet P, Dayanandan S. Genetic relationships among species of Populus (Salicaceae) based on nuclear genomic data[J]. The Journal of the Torrey Botanical Society,2006,133: 519-527.
    Hansen M, Kraft T, Ganestam S, et al.. Linkage disequilibrium mapping of the bolting gene in sea beet using AFLP markers[J]. Genome research,2001,77:61-66.
    Hardy, OJ, and Vekemans X. SPAGeDi:A versatile computer program to analyse spatial genetic structure at the individual or population levels[J]. Mol. Ecol. Notes,2002,2:618-620.
    Hastbacka J, Chapelle A, Kaitila I, et al.. Linkage disequilibrium mapping inisolated founder populations:diastrophic dysplasia in Finland[J]. Nat.Genet,1992,2:204-211.
    Hauser MT, Harr B, Schlotterer C. Trichome distribution in Arabidopsis thaliana and its close relative Arabidopsis lyrata:molecular analysis of the candidate gene GLABROUS1[J]. Mol Biol EVOL,2001,18:1754-1763.
    Higgins DG, Thompson JD and Gibson TJ. Using CLUSTAL for multiple sequence alignments[J]. Methods Enzymol,1996,266:383-402.
    Ines S, Fernando A, Mikkel G, et al.. Variability of chloroplast DNA in the genus Passiflora L[J]. Euphytica,1999,106:15-26.
    Ingvarsson PK, Garcia MV, Luquez V, et al..Nucleotide Polymorphism and Phenotypic Associations Within and Around the phytochrome B2 Locus in European Aspen (Populus tremula, Salicaceae) [J]. Genetics,2008,178:2217-2226.
    Ingvarsson PK. Nucleotide polymorphism and linkage disequilibrium within and among natural populations of European aspen (Populus tremula L.,Salicaceae)[J].Genetics,2005,169:945-953.
    Ivandic V, Hackett CA, Nevo E, et al.. Analysis of simple sequence repeats(SSRs) in wild barley from the fertile crescent:associations with ecology, geography and flowering time[J]. Plant Molecular Biology,2002,48:511-527.
    Jeffrey LJ, Andrew JB and Scott TK. Isolation by distance, web service[J]. BMC Genetics,2005,6: 13,1-6.
    Johnsson H. Two newspaper cuttings on the giant aspen[J]. Skogen,1948,35:107.
    Jorde JB. Linkage disequilibrium and the search for complex disease gene[J]. Genome Res,2000, 10:1435-1444.
    Joseph JA, Lexer C. A set of novel DNA polymorphisms within candidate genes potentially involved in ecological divergence between Populus alba and P. tremula, two hybridizing European forest tress[J]. Molecular Ecology Resources,2008,8:188-192.
    Khalil MAK. Genetics of Cone Mohology of Black Spruce [Picea mariana(Mill). B. S. P] in Newfoundland, Canada[J]. SilvaeGenetica,1984,33:101-109.
    Knowler WC, Williams RC, Pettit DJ, et al.. Gm3;5,13,14 and type 2 diabetes mellitus:an association in American Indians with genetic admixture[J]. Am J Hum Genet,1988,43:520-526.
    Kraakman A T, Nike R E, Berg P M, et al.. Linkage disequilibrium mapping of yield and yield stability in modern spring barley cultivars. Genetics,2004,168:435-446.
    Kruglya K S, Durrettr T, Schug M D, et al.. Equilibrium distributions of microsatellite repeat length resulting from a balance between slippage events and point mutations[J]. Proc Natl Acad Sci,1998,95:1074-1078.
    Legionnet A and Lefevre F. Genetic variation of the riparian pioneer trees species Populus nigra L.I. Study of population structure based on isozymes[J]. Heredity,1996,77:629-637.
    Liang KY, Hsu FC, Beaty TH, et al.. Multipoint linkage-disequilibrium-mapping approach based on the case-parent trio design[J]. Am J Hum Genet,2001,68:937-950.
    Liesebach H, Schneck V and Ewald E.Clonal fingerprinting in the genus Populus L. by nuclear microsatellite loci regarding differences between sections, species and hybrids[J]. Tree Genetics and Genomes,2010,6:259-269.
    Liu Z, Funnier GR. Comparison of allozyme, RFLP and RAPD markers for revealing genetic variation within and between trembling aspen and bigtooth aspen[J]. Theor Appl Genet,1993, 87:97-105.
    Mackay I, Powel W. Methods for linkage disequilibrium mapping in crops[J]. Trend in Plant Science,2006,12:57-63.
    Madan S, Rajagopal NJ, Chauhan N, et al.. Length and sequence heterogeneity in 5S rDNA of Populus deltoids[J].Genome,2002,45:1181-1188.
    Mantel N. The detection of disease clustering and a generalized regression approach [J]. Cancer Research,1967,27:209-220.
    Neale DB and Savolainen O.Association genetics of complex traits in conifers[J]. Trend Plant Sci,2004,9:325-330.
    Nei M and Kumar S. Molecular Evolution and Phylogenetics[M]. Oxford University Press.2000.
    Palaisa KA, Morgante M, Williams M, et al.. Contrasting effects of selections on sequence diversity and likage disequilibrium at two phytoene synthase loci[J]. Plant Cell,2003,15: 1795-1806.
    Palmer JD and Herbon LA. Plant mitochondrial DNA evolves rapidly in structure, but slowly in sequence[J]. Journal of Molecular Evolution,1988,28:87.
    Park SDE. Trypanotolerance in West African Cattle and the Population Genetic Effects of Selection[D]. University of Dublin.2001.
    Peakall R, Smouse PE. GenALEx6:Genetic analysis in Excel. Population genetic software for teaching and research[J]. Molecular Ecology Notes.2006,6:288-295.
    Price AH. Believe it or not, QTLs are accurate![J]. Trends Plant Sci.2006,11:213-216.
    Przeworski M. The signature of positive selection at randomly chosen loci[J]. Genetics,2002,160: 179-189.
    Pushpendra KG, Sachin R and Pawan LK. Linkage disequilibrium and association studies in higher plants:Present status and future prospects [J]. Plant Molecular Biology,2005,57:461-485.
    Rafalski J A, Vogel J M, Morgante M, et al. Generating and using DNA markers in plants [C]//Birren B, Lai E.Nonmammalian genomic analysis, a practical guide. San Diego: Academic Press.1996:75-134.
    Rahaman MH, Rajora OP. Microsatellite DNA fingerprinting differentiation and genetic relationship of clones, cultivars, and varieties of six poplar species from three sections of the genus Populus[J].Genome,2002,45:1083-1094.
    Rahaman MH, Daysmandan S, Rajora OP. Microsatellite DNA markers in Populus tremuloids[J]. Genome,2000,43:293-297.
    Rajagopal J, Das S, Khurana DK, et al. Molecular characterization and distribution of a 145bp tandem repeat family in the genus Populus[J]. Genome,1999,42:909-918.
    Rajora OP and Dancik BP. Allozyme variation and inheritance in leaves of Populus deltoides, P. nigra, P. maximowiczii, and P.×canadensis in comparision to those in root tips[J]. Silvae Genetica,1992a,41:289-292.
    Rajora OP and Dancik BP. Genetic characterization and relationship of Populus alba, P. tremula, and P. ×canadensis, and their clones[J]. Theor Appl Genet,1992b,84:291-298.
    Rajora OP and Dancik BP. Chloroplast DNA variation in Populus. Ⅰ.Intraspecific restriction fragment diversity within Populus deltoids, P. nigra and P.maximowiczii[J]. Theor Appl Genet,1995a,90:317-323.
    Rajora OP and Dancik BP.Chloroplast DNA variation in Populus.Ⅱ. Intraspecific restriction fragment polymorphisms and genetic relationships among Populus deltoids, P.nigra, P.maximowiczii, and P.×anadensis[J]. Theor Appl Genet,1995b,90:324-330.
    Rajora OP and Dancik BP.Chloroplast DNA variation in Populus.Ⅲ. Novel chloroplast DNA variants in natural Populus.×canadensis hybirds[J].Theor Appl Genet,1995c,90:331-334.
    Rajora OP and Mulmmmad HR.Microsatellite DNA and RAPD fingerprinting, identification and genetic relationships of hybrid poplar (Populus xcanadensis) cultivars[J].Theor Appl Genet,2003,106:470-477.
    Rajora OP, Zsuffa L and Dancik BP. Allozyme and leaf morphological variation of eastern cottonwood at the northern limits of its range in Ontario[J].Forest Science,1991,37:688-702.
    Rekha D,Trivedi P, Nath et al.. Characterization of petB and petD Genes of the Populus deltoides Chloroplast psbB Operon[J].Plant Molecular Biology Reporter,2002,20:357-368.
    Remington DL, Thornsberry JM, Matsuoka Y, et al. Structure of linkage disequilibrium and phenotypic associations in the maize genome[J]. Proc Natl Acad Sci USA,2001,98:11479-11484.
    Rohlf FJ.NTSYS-PC:Numerical Taxonomy and Multivariate Analysis System Version 1.80. Setauket New York:Distribution by Exeter Software.1994.
    Rotenberg A, Nevo E, Zohary D.Genetic variability in sexually dimorphic and monomorphic populations of Populus euphratica(Salicaceae)[J].Canada Journal Forest Resarch,2000,30: 482-486.
    Rousset F. Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance [J].Genetics,1997,145:1219-1228.
    Ruth EM. Gene mapping by linkage and association analysis[J]. Molecular Biotechnology,1999,3: 113-122.
    SaitoY, Shiraishi S, Tanimoto T, et al..Genetic diversity of Populus euphratica populations in northwestern China determined by RAPD DNA analysis[J]. New Forests,2002,23:97-103.
    Schoot JVD, Pospiskova M, Vosman B, et al.. Development and characterization of microsatellite markers in black poplar(Populus nigra L.).Theor Appl Genet,2000,101:317-322.
    Sharbel TF, Haubold B, Mitchell-olds T.Genetic isolation by distance in Arabidopsis thaliana: biogeography and postglacial colonization of Europe[J]. Mol Ecol,2000,9:2109-2118.
    Slatkin M and Barton NH. A comparison of three indirect methods for estimating average levels of gene flow[J].Evolution,2000,43:1349-1368.
    Steven TL, Furnier GR and Mohn CA. Isozyme varivation in quaking aspen in Minnesota[J]. Canadian Journal of Forest Reserch,1992,22:521-524.
    Szalma SJ, Buckler ES, Snook ME, et al.. Association analysis of candidate genes for maysin and chlorogenic acid accumulation in maize silks[J].Theor Appl Genet,2005,110:1324-1333.
    Tamura K, Dudley J, Nei M and Kumar S. MEGA4:Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0[J].Molecular Biology and Evolution,2007,24:1596-1599.
    Tautz D. Hyper variability of simple sequences as a general source of polymorphic DNA markers[J]. Nucleic Acids Res,1989,17:6463-6471.
    Thornsberry JM, Goodman MM, Doebley J, et al. Dwarf8 polymorphisms associate with variation in flowering time[J].Nat. Genet,2001,28:286-289.
    Tixier MH, Sourdille P, Roder M, et al..Detection of wheat microsatellites using a non-radioactive silvernitrate staining method[J]. J Genet Breed,1997,51:175-177.
    Tuskan GA, DiFazio S, Jansson S, et al. The genome of black cottonwood Populus trichocarpa (Torr & Gray)[J]. Science,2006,313:1596-1604.
    Valdes AM, Slatkin M, Freimer NB. Allele frequencies at microsatellite loci:the stepvise mutation model revisited[J]. Genetics,1993,133:737-749.
    Vornam B, Herzog S, Preisig-Muller R. Restriction fragment length polymorphisms of chloroplast photosystem Ⅱ gene from poplar and their use for species identification[J]. Genome,1994,37: 747-754.
    Ward BL, Anderson RA and Bendic AJ. The mitochondrial genome is lager and variable in a family of plants(Cucurbitaceae)[J]. Cell,1981,25:793.
    Weber JC, Stettler RE. Isoenzyme variation among ten [riparian] populations of Populus trichocarpa Torret Gray in the Pacific Northwest[J]. Silvae Genetica,1981,30:82-87.
    Weir BS. Genetic data analysis II[M]. Sinauer, Sunderland, MA.USA.1996.
    Whitt SR, Wilson LM, Tenaillon MI, et al. Genetic diversity and selection in the maize starch pathway[J]. Proc Natl Acnd Sci USA,2002,99:12959-12962.
    Wilson LM, Whitt SR, Ibanez AM, et al. Dissection of maize kernel composition and starch production by candidate gene association[J]. Plant Cell,2004,16:2719-2733.
    Wright S. Evolution and the Genetics of Populations, Volume 3:Experimental Results and Evolutionary Deductions [M]. University of Chicago Press, Chicago.1977.
    Wyman J, Bruneau A and Tremblay MF. Microsatellite analysis of genetic diversity in four populations of Populus tremuloids in Quebec[J]. Can J Bot,2003,81:360-367.
    Yeh FC, Boyle TJB. Population genetic analysis of codominant and dominant markers and quantitative traits[J]. Belgian Journal of Botany,1997,129:157.
    YU J, Buckler ES. Genetic association mapping and genome organization of maize[J]. Curr Opin Biotech,2006a,17(2):155-160.
    Yu J, Pressoir G, Briggs WH, et al. A unified mixed-model method for association mapping that accounts for multiple levels of relatedness[J]. Nat Genet,2006b,38:203-208.
    Zhang DQ, Yang XH, Zhang ZY et al. Expression and nucleotide diversity of the poplar COBL gene[J]. Tree Genetics and Genomes,2010,6:331-344.
    Zhu CS, Gore M, Buckler ES. Status and Prospects of Association Mapping in Plants[J]. The plant genome,2008,1:5-20.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700