用户名: 密码: 验证码:
密度与氮素水平对小黑麦氮代谢及产量、品质的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
综合中国各地推广应用小黑麦的栽培技术可知,大部分引种地区充分利用了小黑麦耐贫瘠、抗性好的特点,但有关小黑麦的具体栽培调控措施仍未引起足够的重视。本研究于2006~2008年度,以八倍体东农5305和六倍体东农96026为材料,设施氮水平(N)和栽培密度(D)两个因子,施氮量0 kg/hm2(N0)、75kg/hm2(N75)、150kg/hm2(N150)、225kg/hm2(N225);密度300万株/hm2(D300)、450万株/hm2(D450)、600万株/hm2(D600)。分析了不同密度和施氮水平下小黑麦生长发育、光合特性、产量形成、子粒品质和氮代谢相关酶活性的变化规律,明确了密度和施氮水平对不同倍性小黑麦产量和子粒品质形成的生理基础,为深化和拓展小黑麦子粒高产、品质改善和指导不同倍性小黑麦优化栽培提供了理论基础和技术途径。
     1适当施肥降低密度,提高小黑麦茎蘖成穗率,促进子粒产量的提高。
     合理的基本苗数的确定,可以控制拔节前无效分蘖的发生,降低高峰茎蘖与最终穗数的比值,提高茎蘖成穗率来实现高产。分蘖至成熟各时期每公顷总茎数随密度增加而增加,但成熟期成穗率东农5305随密度增加而降低,东农96026成穗率随密度增加先增加后下降。各氮素营养水平条件下生育期间总茎数及分蘖成穗率均高于对照N0处理;同一密度条件下两个品种茎蘖成穗率均随施氮量增加呈先上升后下降趋势,其中东农5305以D300N75处理最高,东农96026以D450N150处理最高,此时产量也最高。
     2不同倍性小黑麦要实现高产,应侧重不同主攻方向。
     对于分蘖能力较高的东农5305应适当降低基本苗,少施氮肥,主攻穗粒数和粒重,东农96026在控制适宜群体基础上,适量施氮,协调产量构成三因素,实现二者高产。两品种穗数随密度增大而增大,而穗粒数和粒重与此相反;氮肥的不断增加,两品种公顷穗数和穗粒数有先增加后下降趋势,两品种粒重随氮肥的施加下降。表明增加密度有效穗数显著增加,对穗粒数和粒重起到负作用,密度过高增加的穗数并不能抵消穗粒数和千粒重的降低,产量不升反降;施加氮肥有效穗数和穗粒数的增加弥补了粒重的降低,利于产量提高;密肥对穗粒数的互作影响较粒重明显。
     3适宜的密度及施氮水平有利于小黑麦群体光合能力改善。
     生育前期东农5305中密度处理略高于其它密度处理,东农96026低密度处理叶绿素含量较其它处理高,随生育进程的推迟,高密度处理较低密度处理下降幅度大,叶绿素含量随密度的增高而呈下降趋势,花后28d东农5305低密度处理叶绿素含量显著高于高密度处理;随施氮水平提高叶绿素含量有先增加后降低的趋势,光合速率表现出与叶绿素一致的规律。适宜的密度及施氮一方面提高了光能转换效率和PSⅡ的潜在活性,另一方面抑制了光能的非光化学耗散,过量施氮无助于光合性能的提高。东农5305低密度处理各生育时期光化学淬灭系数均高于中密度和高密度处理,东农96026各施氮水平下中密度处理各生育时期光化学淬灭最高,两品种各施氮处理光化学淬灭系数均较对照N0高,东农5035施氮75kg/hm2时旗叶获得最高的电子传递活性,东农96026施氮150kg/hm2时出现最高的光化学淬灭;东农5305、东农96026各施氮水平下的低密度处理、中密度处理各生育时期非光化学淬灭最低,东农5305施氮75kg/hm2时非光化学淬灭最小,东农96026施氮150kg/hm2时出现最小的非光化学淬灭。
     4降低密度和保证氮肥供应可以提高小黑麦子粒营养品质。
     降低密度和保证氮肥供应提高了子粒蛋白质含量。成熟期东农5305子粒蛋白含量随密度增加而降低,低密300万株/hm2蛋白含量最高;而东农96026则在中密450万株/hm2水平下蛋白含量最高。两品种在各密度水平上,各施氮处理子粒总蛋白含量均高于N0处理,施氮量由150kg/hm2增加到225kg/hm2,子粒蛋白含量下降。降低密度增加了小黑麦子粒清蛋白和球蛋白含量,密度过高醇溶蛋白和谷蛋白含量也有降低趋势;四种蛋白组分含量随氮肥增加先增加后降低,适当增施氮肥能有效增加蛋白组分含量,醇溶蛋白和谷蛋白含量受氮肥的调控作用较清蛋白和球蛋白含量明显,密度和氮肥互作效应较氮肥作用显著。
     东农5305和东农96026各施氮处理氨基酸含量均明显高于对照未施氮处理,超过N150水平的N225处理氨基酸含量反而降低。同一氮素水平下,随密度增加,氨基酸总量有下降趋势,密度间氨基酸含量的差异较施氮处理小。东农5305和东农96026两品种成熟期子粒赖氨酸含量与蛋白质含量均呈极显著正相关,两品种成熟期氨基酸含量与蛋白质含量呈极显著正相关。
     5适当加大密度有利于改善小黑麦子粒烘烤品质,氮肥效应因小黑麦倍性而异。
     东农5305随群体密度的增加,子粒容重呈增加趋势,东农96026变化不显著,施氮显著增加了子粒容重;中高密度湿面筋含量高于低密度水平,施用氮肥湿面筋含量有增加趋势,影响不显著;两品种在高密度下降落值有所降低,施加氮肥东农5305降落值有所增加,而东农96026有下降变化。施氮和增加密度有利于提高子粒容重和湿面筋含量;沉降值大小受栽培措施影响甚微,主要因品种而有所不同;中密度下可以获得高的降落值,氮肥对降落值的改善作用因小黑麦倍性而不同,八倍体施加氮肥有改善作用,而对六倍体则起到负作用。
     6适当施肥降低密度保证了小黑麦子粒高蛋白含量形成的生理基础。
     增施氮肥促进了花后叶片的氮素同化,降低密度蛋白质的降解能力被削弱。增加施氮量旗叶NR和GS活性提高,内肽酶和氨肽酶活性降低;旗叶NR和GS活性随密度的加大而下降,低密度D300处理下活性最高,内肽酶和氨肽酶活性随密度升高而增加;花后各时期,旗叶可溶性蛋白质含量与硝酸还原酶及谷氨酰胺合成酶活性呈极显著相关,与内肽酶及氨肽酶呈极显著负相关。两品种氮素转运量、转运效率、转运氮贡献率以及N收获指数表现为随氮肥施加先增加后下降,氮肥的影响作用均达极显著水平。两品种子粒蛋白含量和产量均与花后氮素积累的相关最佳,通过提高花前贮存氮素转运量可以实现子粒氮的积累,对子粒蛋白质含量和产量的提高有极显著的促进效应;氮素积累和转运与子粒蛋白质组分含量的相关性表明,氮素的积累和运转是提高蛋白组分含量的关键因素,氮素的积累更利于醇溶蛋白含量的提高,氮运转更利于清蛋白含量的提高,清蛋白和醇溶蛋白含量增加是小黑麦子粒蛋白质含量增加的主要原因。
     7质谱鉴定结果进一步验证了适当增施氮肥的正向效应。
     通过MALDI-TOF-MS和生物信息学分析找到7个表达差异蛋白,即与蛋白质合成和信号传导相关的蛋白、与清除自由基有关的酶、与叶绿体的发育和代谢有关蛋白、与植物碳代谢有关的酶、与氮素同化有关的酶。这些蛋白表达量显著增加,进一步说明氮素对光合的影响是通过对光合有关酶的活化来调节植物的光合作用;氮素对于植物衰老的延缓可能与其增强氧自由基清除密切相关;氮素不仅在维持光合性能方面起作用,而且增强了信息传导提高了植物体抗性;氮素的增加直接促进了氮素代谢和同化;氮素对蛋白质合成也有积极影响。氮素对植物生长发育、物质代谢和信号传导影响全面,从蛋白点的鉴定分析来看,功能蛋白是其影响的重点。
From the cultivation techniques of triticale around China, we know most species Introduction region adequately utilizes the characteristics of triticale with strong resistance,However, the concrete control measures about triticale has not been fully explored and explained. The case study was carried out in 2006~2008, two triticale cultivars octaploid Dongnong5305 and sextuploid Dongnong96026 were selected. There were two factors in the experiment: nitrogen application (N) and density treatment (D).Four nitrogen applications were as follow: 0kg/hm2(N0), 75kg/hm2 (N75), 150kg/hm2 (N150), 225kg/hm2 (N225). Three density treatments were namely D300 (3million basic seedling per hectare), D450 (4.5million basic seedling per hectare), D600 (6million basic seedling per hectare).The study analyzed the changing law of triticale growing development, photosynthetic characteristics, grain yield and quality, enzymatic activity about nitrogen metabolism under different density and nitrogen application. Besides, physiological basis of grain yield and quality in different ploidy triticale has been discussed to provide the theory base and technical approach for improving triticale grain yield and quality and giving directions to cultivate different ploidy triticale.
     1. Fertilizing properly and reducing the density can increase the percentage of earbearing tiller and grain yield of triticale.
     Determining the appropriate number of basic seedlings can control the nonbearing tillering being produced before jointing stage and reduce the ratio of peak tillering to final spike number and increase percentage of earbearing tiller to attain the high output. The total number of stems per hectare increased with density increasing from the tillering to the maturity, but the percentage of earbearing tiller of Dongnong5305 decreased with density increasing in mature period, while the percentage of earbearing tiller of Dongnong96026 first increased then declined. The total number of triticale stems and the percentage of earbearing tiller during growth periods were higher than that of control treatment N0.In the same density, percentage of earbearing tiller of the two varieties both presented increased then downward with the nitrogen increased., thereinto the tiptop of the two respectively presented to: D300N75 treatment of Dongnong5305, D450N150treatment of Dongnong96026, and This is when the highest yield attained.
     2. The main direction should be angled In order to attain good harvest in different ploidy triticale. Dongnong5305 which has the higher tiller capability should appropriately reduce the number of basic seedlings and the level of nitrogen and increase grains/ear and kernel weight. Based on the suitable group controlled, Dongnong96026 should apply nitrogen fertilizer properly and coordinate yield component to realize the high production. The spike number of the two varieties increased with the density increasing, however, grains/ear and kernel weight with opposite effect. With the increasing of nitrogen fertilizer application, the spikes per hectare and the number of grains per spike of the two varieties presented increased then downward, and grain weight reduced. The result showed that the number of productive ear increased significantly with the density increasing which produced negative effects to grains/ear and kernel weight. The density was so high that the added spikes could not counteract the reducing of the number of grains per spike and 1000-grain weight, the yield did not rise but lower. The increasing of the number of productive ear and grains/ear made up for the lower grain weigh that beneficial to yield improvement. Density and fertilizer has produced an obvious effect on grains/ear compare to grain weight.
     3 Suitable density and nitrogen fertilizer level were favorable for improving the photosynthetic capacity of triticale.
     In early growth stages, the density treatment in Dongnong5305 was slightly higher than the other treatments. Low density treatment in Dongnong96026 has higher comparing to the other treatments. With the growing process postponed, the decline rate at high density treatment was bigger. Chlorophyll content reduced with density increasing, 28d after flowering Dongnong5305 at low density was significantly higher than high density. With the increased nitrogen rates, the overall trend of chlorophyll content was first increased then declined, photosynthetic rate showed consistent rule with chlorophyll.
     Proper density and nitrogen application improved light conversion efficiency and the potential activity of PSⅡon the one hand, on the other hand, inhibited the non-photochemical dissipation, excessive nitrogen was not conducive to improving photosynthetic characteristics. Dongnong5305 photochemical quenching coefficient at low-density was higher than the medium-density and high-density treatment in growth periods.Dongnong96026 photochemical quenching at the medium-density was highest under different levels of nitrogen fertility treatment in growth periods .The two varieties photochemical quenches coefficients which under various nitrogen treatments was higher than contrast N0,Dongnong5035 flag leaf got the highest electronic transfer activity with N level 75kg/hm2. Dongnong96026 showed the highest photochemical quenching with N level 150kg/hm2. The lowest non-photochemical quenching of the two varieties that under various nitrogen treatments in growth periods respectively presented to: low-density treatment of Dongnong5305, medium-density treatment of Dongnong96026. The smallest non-photochemical quenching of the two varieties were respectively: N level 75kg/hm2 of Dongnong5305, N level 150kg/hm2 of Dongnong96026.
     4 Reducing the density and proper nitrogen application could improve grain quality of triticale. Reducing the density and proper nitrogen application increased grain protein content. Grain protein content of Dongnong5305 brought down with the density increasing during maturity stage, grain protein under 3 million basic seedling per hectare was highest; while grain protein of Dongnong96026 under 4.5 million basic seedling per hectare was highest. Grain total protein content of each nitrogen application treatments were higher than N0 treatment under different density treatment of two varieties. Grain protein content reduced with nitrogen application increased from 150kg/hm2to225kg/hm2. Reducing the density increased grain albumin and globulin content while increasing the density decreased gliadin and glutenin content; four protein components content in grains increased then decreased with nitrogen application increased, increasing nitrogen application properly could effectively increase protein components content, regulative function of nitrogen on gliadin and glutenin content was more obvious than on albumin and globulin content, interaction effects of density and nitrogen fertilizer was better than effect of nitrogen fertilizer.
     Amino acids content of each nitrogen application treatments were higher than N0 treatment in two varieties. Amino acids content of N225was lower than that of N150. Amino acids content reduced with the density increased under the same nitrogen level,difference of amino acids content among nitrogen treatment was more obvious than that among density treatment. There was significantly positive correlation between lysine content and protein content during maturity stage in two varieties, the correlated relationship between amino acids content and protein content showed the same trend.
     5 Increasing the density was favorable to improve grain baking quality of triticale, effect of nitrogen varied from the ploidy of triticale.
     Grain volume wight of Dongnong5305 showed an increasing trend with the density increased, but the change of Dongnong96026 was not significant, nitrogen application significantly increased grain volume wight; wet gluten content of middle and high density were higher than that of low density, wet gluten content showed an indistinctive increasing trend with nitrogen application increased; falling number reduced under high density in two varieties, falling number of Dongnong5305 increased while that of Dongnong96026 decreased when nitrogen application increased. Increasing nitrogen application and density was favorable to enhance grain volume wight and wet gluten content; effect of cultivation measure on sedimentation number was little and varied from varieties; it could obtain higher falling number under middle density, effect of nitrogen on falling number varied from ploidy, increasing nitrogen application had a positive effect on octoploid but a negative effect on sextuploid.
     6 Reducing the density and proper nitrogen application guaranteed physiological basis for formation of high grain protein content.
     Increasing nitrogen application promoted nitrogen assimilation of leaf after flowering, reducing the density weakened degrading ability of protein. Increasing nitrogen application enhanced the activity of NR and GS and decreased the activity of endopeptidase and aminopeptidase in flag leaf; the activity of NR and GS in flag leaf decreased with density increased, the activity of NR and GS under D300 treatment was highest, the activity of endopeptidase and aminopeptidase increased with density decreased; soluble protein content in flag leaf had significant positive correlation with the activity of NR and GS, and had significant negative correlation with the activity of endopeptidase and aminopeptidase after flowering.
     N translocation amount、N translocation rate、translocation N contribution rate and N harvest index increased then reduced with nitrogen application increased in two varieties, effect of nitrogen had reached significant level. Grain protein content and yield showed a significant positive with N accumulation after flowering, enhancing storage N translocation amount before flowering could accumulate N of grain and significantly enhance grain protein content and yield; the correlation between N accumulation and translocation and grain protein components content showed that N accumulation and translocation was the key factor that enhanced protein components content, N accumulation was favorable to increase gliadin content, N translocation was favorable to increase albumin content, albumin and gliadin content was the important reason for increasing grain protein content.
     7 The result of identified by mass spectra verified the positive effect of increasing nitrogen application.
     7 Differential expression proteomes were found by MALDI-TOF-MS and bioinformatics analysis, these were proteome related with synthesis and signal transduction of protein, enzyme related with. Elimination of the free radical, proteome related with chloroplast growth and metabolism, enzyme related with carbon metabolism, enzyme related with nitrogen assimilation.The increasing of proteomes expression amount further showed that the effect of nitrogen on photosynthesis is based on the activation of photosynthesis relevant enzymes to adjust the plant photosynthesis, nitrogen could delay senescence of plant might be closely related with strengthening elimination of oxygen free radical; nitrogen not only played role in keeping photosynthesis performance but also strengthened information conduction and improved the resistance of plant; increasing of nitrogen directly promoted nitrogen metabolize and assimilate; nitrogen had positive impact on protein synthesis; Nitrogen overally affected on growth、substance metabolism and signal conduction of plant, identify and analysis on protein spots showed that the emphasis of its influence was functional proteins.
引文
柏新付. 1997.高肥条件下种植密度对小麦产量及构成因素的影响.烟台师范学院学报,13(3):217~220
    鲍文奎. 1981.八倍体小黑麦育种与栽培.贵州人民出版社
    蔡大同,苑泽圣,杨桂芬等. 1994.氮肥不同时期施用对优质小麦产量和加工品质的影响[J].土壤肥料,(2):19-21
    蔡大同,张春兰,蒋廷惠. 1998.氮、钾肥料对饼干小麦植株各部分干物质和养分含量的作用.土壤肥料,(4):10~15
    曹承富,汪芝寿,孔令聪等. 1997.氮素与密度对优质小麦产量和品质的影响[J].安徽农业科学. 25(2):115~117
    曹翠玲,李生秀. 2003.施氮水平对小麦生殖生长时期旗叶净光合速率、NR活性和核酸含量及产量的影响[J].植物学通报,20(3):319~324
    柴守玺,Kleijer Gert. 2001.赤霉素含毒素代谢物对小黑麦愈伤组织和胚芽生长的影响[J]. 草业学报,10(1):78~85
    柴小清,印莉萍,刘祥林等. 1996.不同浓度的NO3-和NH4+对小麦根谷氨酰胺合成酶及其相关酶的影响.植物学报,38:803~808
    车晋滇. 2002.北京市小黑麦田杂草种类及其为害的调查研究[J].杂草科学,(3):31~33
    陈俊才,邱江,孙敬东等. 2007.不同密度及氮肥运筹对弱筋小麦产量和品质的影响.作物杂志,2:25~28
    陈俊才,周振元,孙敬东. 2007.密度及氮肥运筹对弱筋小麦宁麦13号产量和品质的影响.江苏农业科学,1:29~31
    陈利平,陈绍文,李彦等. 1994.栽培密度对春小麦分蘖利用和产量影响的研究[J].内蒙古农业科技,(1):5~7
    陈天房,李春喜,姬生栋. 1988.播种密度与小麦产量及子粒营养品质关系的初步研究[J].河南职业技术师范学院学报,16(4):45~50
    陈旭晖,R D希尔,夏锦慧. 1999.贵州省几种饲料作物的种植效果与施肥效应.耕作与栽培,2:11~14
    崔红,冀浩,张华等. 2008.不同生态区烟草叶片蛋白质组学的比较.生态学报,28(10):4874~4878
    村田吉南. 1978.几种主要农作物的光合作用与物质积累[M].北京:农业出版社, 7~13
    戴延波,曹卫星,荆奇等. 2003.增铵营养对小麦光合作用及硝酸还原酶和谷氨酰胺合成酶的影响.应用生态学报,14(9):1529~1532
    董彩霞,赵世杰等. 2002.不同浓度的硝酸盐对高蛋白小麦幼苗叶片叶绿素荧光参数的影响.作物学报,28(1):59~64
    董永琴,郭春英,王华芬. 1988.不同播量对小黑麦不同品种的影响[J].贵州农业科学,(1):17~22
    董永琴,英敏,郭春英. 1993.八倍体小黑麦新品种不同追氮量试验.贵州农业科学,1:21~24
    杜金哲,李文雄,胡尚连等. 2001.春小麦不同品质类型氮的吸收、转化利用及与子粒产量和蛋白质含量的关系.作物学报,27(2):254~260
    封超年,郭文善,王甫同等. 1999.小麦高粒叶比建成特点研究[J].中国农业科学,32(6):47~55
    高菊生,秦道珠,申华平等. 2000.湖南冬闲稻田小黑麦高产栽培技术研究.耕作与栽培,(5):8~9
    高玲,叶茂炳,张荣铣. 1998.小麦旗叶衰老期间的内肽酶.植物生理学报,24(2):183~188
    葛鑫. 2003.淮北地区不同类型小麦氮肥施用技术的研究[D].扬州:扬州大学农学院古德温T W,默塞尔E I. 1984.植物生物化学导论.陕西杨陵:天则出版社,342~419
    郭连旺,许大全,沈允钢. 1994.田间棉花叶片光合速率中午降低的原因.植物生理学报,20(4):360~366
    郭伟,于立河,薛盈文等. 2008.不同种植密度下施肥对强筋春小麦品质形成的调控效应. 麦类作物学报,28(1):102~106
    郝建军、康宗利、于洋. 2006.《植物生理学实验技术》.北京:化学工业出版社,107~109
    何峰,李向林,白静仁等. 2005.环境因子和刈割方式对两种冷季型牧草冬季生长速度的影响[J].中国草地,27(5)38~41
    何照范. 1985.粮油子粒品质及其分析技术.北京:农业出版社,31~41,57~59
    洪剑明,柴小清,曾晓光等. 1996.小麦硝酸还原酶活性与营养诊断和品种选育研究.作物学报,22:633~637
    胡承霖,谢家琦,范荣喜. 1994.综合栽培技术对小麦子粒品质的调控作用[J].安徽农业大学学报,21(2):151~156
    黄德明,徐秋明,李亚星. 2007.土壤氮、磷营养过剩对微量元素锌、锰、铁、铜有效性及植株中含量的影响.植物营养与肥料学报,13(5):966~970
    黄勤妮,印莉萍,柴小清等. 1995.不同氮源对小麦幼苗谷氨酞胺合成酶的影响.植物学报,37(11):856~862
    黄祥辉,胡茂兴. 1984.小麦栽培生理[M].上海:上海科学技术出版社,165~170
    黄志仁,许如根,吕超等. 2000.大麦高赖氨酸的遗传与选择研究.大麦品种蛋白质组分及赖氨酸含量的分析.麦类作物学报,20(4):22~26
    贾振华,李华,姜子英. 1988.施肥对小麦产量和品质形成的影响[J].北京农学院学报,3(2):136~138
    江虎琳,,孙元枢. 1992.秦岭山区试种小黑麦获得成功.作物杂志,(3):35~36
    蒋纪云,苏佩. 1993.冬小麦子粒蛋白质组分的形成规律及其调控研究[J].西北农业大学学报,21(3):1~5
    蒋纪云,杨惠侠. 1991.旱肥地小麦高产优质施肥问题的研究[J].西北农业大学学报,19(4):12~17
    蒋家慧,韩伟,衣先众等. 2003.氮肥不同底追比例对强筋小麦子粒品质和产量的影响.莱阳农学院学报,20(2):101~103
    雷彩碧. 1990.植物细胞分裂素对小黑麦的增产效应[J].陕西农业科学,(6):29
    雷鸣,李树云,张石宝. 2009.氮素对红波罗花光合作用和生长的影响.云南植物研究,31(1):82~88
    雷永振,D.C.Ditsch,M.M.Alley. 1994.玉米/冬黑麦轮作氮肥利用率和肥料残留氮在土壤中分布的研究.辽宁农业科学,4:12~19
    李诚,艾尼瓦尔·哈德尔,孔广超等. 2006.不同饲用小黑麦品种在新疆的最佳收草期研究[J].石河子大学学报(自然科学版),24(4):406~409
    李春喜,姜丽娜,代西梅等. 2002.小麦氮素营养与后期衰老关系的研究[J].麦类作物学报,20(2):39~41
    李春喜,石惠恩,姜丽娜. 1999.小麦不同种植密度粒重分布特性的研究.西北植物学报. 19(1):132~137
    李春艳,李诚,孔广超等. 2007.春性饲用小黑麦高产优质特性的综合评价[J].麦类作物学报,27(1)146~148
    李金才,尹钧,魏凤珍. 2005.播种密度对冬小麦茎秆形态特征和抗倒指数的影响[J].作物学报,31(5):662~666
    李连朝,汪沛洪,孙元枢等. 1991.反相高效液相色谱技术鉴定小黑麦品种[J].分析测试通报,10(2):28~33
    李仕贵,林文君,蒋华仁. 1992.四倍体小黑麦的细胞学研究[J].四川农业大学学报,10(2):340~347
    李淑文,文宏达,周彦珍. 2006.不同氮效率小麦品种氮素吸收和物质生产特性.中国农业科学,39(10):1992~2000
    李陶,魏湜. 2008.群体大小和氮素营养对小黑麦子粒产量及品质的影响.作物杂志,2:32~34
    李晓梅,赵开军. 1994.八倍体小黑麦株高结构分析.作物杂志,(6):17~20
    李彦良,贾海瑜,武殿林等. 2008.外引饲草小黑麦在忻州的试验初报.山西农业科学, 36(5):54~56
    李焰焰,董召荣,聂传朋等. 2005.盐胁迫下水杨酸及其衍生物对小黑麦幼苗生理特性的影响[J].生物学杂志,22(3):11~13
    李焰焰,聂传朋,董召荣. 2005.模拟酸雨对小黑麦种子萌发及幼苗生理特性的影响[J]. 生物学杂志,24(4):395~397
    李焰焰,聂传朋,董召荣. 2005.盐胁迫下5-磺基水杨酸、水杨酸对小黑麦种子生理特性的影响[J].种子,24(1):8~11
    李焰焰,聂传朋,董召荣. 2006.氮肥对小黑麦中饲237干物质积累及分配的影响.种子, 25(7):41~43
    李焰焰,聂传朋,董召荣. 2006.氮肥对小黑麦中饲237光合特性的影响.作物杂志, 6:68~70
    李志成,高寿元. 1999.小黑麦在伊犁地区的栽培和饲养试验[J].草原与牧草, 3:37
    李卓夫,金正勋,孙艳丽等. 1994.春小麦品种蛋白质含量与种植密度关系的研究[J].现代化农业,(8):12~14
    林明,马光辉,李新开. 2000.氮肥运筹对优质小麦95-8的调控效应[J].江苏农业研究21(1):16~19
    林琪,侯立白,韩伟等. 2004.不同肥力土壤下施氮量对小麦子粒产量和品质的影响.植物营养与肥料学报,10(6):561~567
    林琪,位东斌,刘培利. 1993.中后期追施氮肥对小麦子粒的面粉面筋含量及品质的影响[J].莱阳农学院学报,10(4):248~252
    林世青,许春晖,张其德等. 1992.叶绿素荧光动力学在植物抗性生理学、生态学和农业现代化中的应用.植物学通报,9(1):1~16
    凌励. 2000.小麦高产群体叶面积的质量特征[J].江苏农业学报,16(2):73~78
    凌启鸿. 1983.小麦小群体、壮个体、高积累、高产栽培途径研究[J].江苏农学院报,4(1): 1~6
    刘慧,张秀玲,李铁晶. 2002.国内外小黑麦酿造啤酒的工艺研究进展[J].食品科学,23(2):158~160
    刘杰璞,王德良,张五九. 2006.以黑小麦为辅料酿造啤酒的初步研究[J].酿酒,33(3):97~99
    刘克礼,高聚林,刘瑞香等. 2003.春小麦氮素吸收、积累与分配规律的研究.麦类作物学报,23(3):97~102
    刘瑞显,王友华,陈兵林. 2008.花铃期干旱胁迫下氮素水平对棉花光合作用与叶绿素荧光特性的影响.作物学报,34(4):675~683
    刘植义,张召铎,沈银柱等. 1992.普通小麦、小黑麦和黑麦花粉及其中表皮结构的扫描电镜观察[J].华北农学报7(2):23~28
    刘自学. 2002.中国草业的现状与展望.草业科学,19(1):6~7
    刘尊英,郭天财,朱云集等. 1999.氮素供应对小麦子粒蛋白质组分及积累动态的影响[J]. 河南农业大学学报,33(4):317~320
    卢从明,张其德,匡廷云. 1994.水分胁迫对小麦光系统Ⅱ的影响.植物学报,36(2):93~98
    陆增根,戴廷波,姜东等. 2007.氮肥运筹对弱筋小麦群体指标与产量和品质形成的影响. 作物学报,33(4):590~597
    吕金印,山仑,高俊凤等. 2003.干旱对小麦灌浆期旗叶光合等生理特性的影响.干旱地区农业研究,21(2):77~81
    吕强,熊瑛,陈明灿等. 2007.氮肥运筹对不同类型小麦子粒品质的影响.河南农业科学,9:17~20
    罗俊,张木清,吕建林等. 2000.水分胁迫对不同甘蔗品种叶绿素a荧光动力学的影响.福建农业大学学报,29(1)18~22
    那冰,余明琨,龚隽等. 2002.小黑麦抗真菌蛋白组分的分离纯化和性质研究[J].生物工程学报,18(5):561~565
    潘庆民,于振文. 2002.追氮时期对冬小麦子粒品质和产量的影响[J].麦类作物学报,22(2):65~69
    彭永欣,郭文善,严六零等. 1992.氮素营养对小麦子粒产量与品质调节效应的研究[A]. 小麦栽培与生理[C].南京:东南大学出版社,127~144
    彭永欣,姜雪忠,郭文善等. 1991.氮素对小麦子粒产量、粒重及容重的调节效应[A].凌启鸿.稻麦研究新进展[C]南京:东南大学出版社,182
    屈生彬,杨世波,霍玉昌等. 2003.密度与施肥对香料烟成熟烟叶中几种酶活性及脯氨酸、丙二醛的影响初探.中国烟草科学,(1):18~22
    邵红雨,孔广超,任丽彤等. 2007. NaCl对吸胀后小黑麦种子发芽和幼苗生长的影响[J]. 安徽农业科学,35(6):1589~1613
    沈建辉,戴廷波,荆奇等. 2004.施氮时期对专用小麦干物质和氮素积累、转运及产量和蛋白质含量的影响.麦类作物学报,24(1):55~58
    生庆海,骆承庠. 1995.小黑麦的品质特性及食品中的应用[J].食品工业,(6):31~32
    石岩,于振文,位东斌等. 1998.土壤水分胁迫对小麦根系与旗叶衰老的影响.西北植物学报,18:196~201
    时丽冉,吕亚慈,刘贵波等. 2008.不同小黑麦品种萌发期抗盐性的比较.种子,10(27):101
    舒焕麟,任正隆,杨足君等. 2003.小黑麦半矮秆突变品系CA577的诱导及其遗传分析[J].中国农业科学,36(8)879~882
    舒焕麟,任正隆. 1996.几个六倍体小黑麦高产品系的细胞学稳定性研究[J].四川农业大学学报,14(3):335~338
    宋慧欣,许永新,王崇旺. 2003.饲草小黑麦干草生产适宜割、晒期研究[J].作物杂志,(6):29~31
    宋建民,田纪春,赵世杰. 1998.植物光合氮和氮代谢之间的关系及其调节.植物生理学通讯, 34(3):230~238
    宋建民,田纪春,赵世杰等. 1999.中午强光胁迫下高蛋白小麦旗叶的光合特性.植物生理学报,25(3):209~213
    宋志强,雒秋江,尹君亮等. 2006.不同日粮组成下高寒地区小黑麦在断奶初期公犊瘤胃内动态降解的研究[J].饲料工业,27(7):28~31
    苏珮,蒋纪云,王春虎. 1993.小麦蛋白质组分的连续提取分离法及提取时间的选择.河南职技师院学报,21(2):1~4
    孙传范. 2002.小麦氮素利用效率的生理生态与氮肥调控研究.南京农业大学
    孙建勇,赵琦,朱新开等. 2006.不同类型小黑麦生物产量的形成特性研究[J].大麦与谷类科学,(4):25~28
    孙卫红,王伟青,孟庆伟. 2005.植物抗坏血酸过氧化物酶的作用机制、酶学及分子特性. 植物生理学通讯,41(2):143~146
    孙旭生,林琪,李玲燕等. 2008.氮素对超高产小麦生育后期光合特性及产量的影响.植物营养与肥料学报,14(5):840~844
    孙一丁,章成,黄兴奇等. 2008.野生稻种子胚乳蛋白的提取及双向电泳条件的确立.西南农业学报. 21(2):313
    孙元枢,曹连莆,武镛祥等. 2002.中国小黑麦遗传育种研究与应用.浙江科学技术出版社,
    孙元枢,王崇义. 1985.小黑麦的营养品质和利用.世界农业,(1,2)
    孙元枢,谢运,王钧睦. 1991.新饲料作物-小黑麦.牧草与饲料,(4):37~40
    孙元枢. 1995.第三届国际小黑麦会议.世界农业,6:54~56
    汤永禄,黄钢,郑家国. 2003.密肥水平对川西平原春(播)小麦产量与品质的影响.耕作与栽培,4:8~11
    唐礼俊,李渤生,唐崇钦等. 1997.华山松叶绿素荧光诱导动力学参数的地理变异及其与树高生长的关系.植物生态学报,21(5):474~479
    唐湘如,官春云,余铁桥. 1999.不同基因型水稻产量和品质的物质代谢研究*.湖南农业大学学报,25(4):279~282
    唐湘如,官春云. 2001.油菜栽培密度与几种酶活性及产量和品质的关系.湖南农业大学学报,227(4):64~267
    唐湘如. 2000.施氮对饲用杂交稻产量和蛋白质含量的影响及其机理研究.杂交水稻,15(2):34~37
    唐选明,郑企成. 1991.小黑麦原生质体的植株再生[J].核农学通报,12(6):257~259
    陶少武,董安书. 2006.六倍体小黑麦花粉诱导普通小麦孤雌生殖的研究[J].东北农业大学学报,37(3):304~406
    田纪春,张忠义,梁作勤. 1994.高蛋白和低蛋白小麦品种的氮素吸收和转运分配差异的研究.作物学报,20(1):76~83
    田灵芝,董召荣,沈洁等. 2004.刈割—追氮对小黑麦抽穗后光合特性的影响[J].安徽农业大学学报,31(1)72~75
    田锡箴,林玉霞,兰开龙等. 1993.小黑麦减数分裂与群体整齐度、结实率的相互关系[J]. 华北农学报,8(3):51~55
    佟桂芝,马野,魏念春等. 2000.小黑麦的饲用价值[J].黑龙江畜牧科技. 2:18~19
    王长年. 2002.高肥条件下密度对济南17小麦群体质量和产量的影响.江苏农业科学,1:18~19
    王长年,苏仕华,成英.2007.不同氮肥用量对小麦产量和品质的影响.现代农业科技,12:99~100
    王金玲,董心久,田成军等. 2006.水分胁迫对小黑麦生理特殊化特征和可溶性蛋白质的影响[J].麦类作物学报,26(5):137~139
    王金玲,周洪华,董心久等. 2006.水分胁迫下小黑麦和生理生特性和基因表达差异[J]. 新疆农业科学,43(4):275~277
    王可玢,许春辉,赵福洪等. 1997.生物物理学报,13(2):273~278
    王历宽,宁文萍. 2005.冬牧70黑麦和中秦二号小黑麦在高寒牧区试种效果[J].草地学报,22(4):30~32
    王龙俊,陈维新,唐明臻. 1996.小麦高产群体质量栽培的应用研究.江苏农业科学,2:12~15
    王龙俊,郭文善,封超年等. 2000.小麦高产优质栽培技术.上海:科学技术出版社
    王萍,陶丹,宋海星等. 1999.品种、播期和密度对冬小麦生育后期和产量的影响[J].沈阳农业大学学报,30(6):602~605
    王庆华. 2008.粮饲兼用型作物小黑麦的适应性.安徽农业科学,36(6):2279~2286
    王荣栋,唐慧江. 1994.新疆春大麦干物质积累、分配和产量形成的研究.大麦科学,(4):21~23
    王瑞清,曹连莆,闫志顺等. 2007. 6个小黑麦品种产量构成性状的基因效应和配合力分析[J].麦类作物学报,27(3):428~432
    王瑞清,李诚,邵红雨等.2007.小黑麦产量性状的配合力分析[J].安徽农业科学,35(13):3795~3796
    王瑞清,闫志顺,李诚等. 2007.小黑麦种子外观品质性状的遗传研究[J].麦类作物学报,27(1):41~44
    王小燕,于振文. 2005.不同小麦品种主要品质性状及相关酶活性研究.中国农业科学,38(10):1980~1988
    王月福,姜东,于振文等. 2003.氮素水平对小麦子粒产量和蛋白质含量的影响及其生理基础[J].中国农业科学,36(5):513-520
    王月福,于振文,李尚霞等. 2002.氮素营养水平对冬小麦氮代谢关键酶活性变化和子粒蛋白质含量的影响.作物学报,28:743~748
    王月福,于振文,李尚霞等. 2002.施氮量对小麦子粒蛋白质组分含量及加工品质的影响[J].中国农业科学,35(9):1071~1078
    王月福,于振文,李尚霞等. 2003.土壤肥力和施氮量对小麦氮素吸收运转及子粒产量和蛋白质含量的影响.应用生态学报,14,(11):1868~1872
    王振林,贺明荣等. 1997.晚播小麦灌浆期光合同化物分配及群体调节效应[J].作物学报,23(3):257~261
    王之杰,郭天财. 2001.种植密度对超高产小麦生育后期光合特性及产量的影响.麦类作物学报,21(3):64~67
    魏凌基,孔广超,艾尼瓦尔. 2003.蔗糖对小黑麦离体培养穗粒的调节作用[J].种子,(2):9~10
    魏亦农,孔广超,曹连莆. 2002.新小黑麦1号光合速率及叶绿素荧光特性的研究[J].麦类作物学报,22(4):91~93
    魏亦农,孔广超,曹连莆. 2003.干旱胁迫对春小麦与小黑麦光合特性影响的比较[J].干旱地区农业研究,21(3):134~136
    魏亦农,孔广超. 2002.六倍体小黑麦与普通小麦对干旱胁迫反应的比较研究[J].石河子大学学报(自然科学版),6(1):8~10
    魏亦农. 2004.水分胁迫对小黑麦旗叶光合特性的影响[J].种子,23(8)30~31
    魏亦农. 2004.小黑麦不同基因型光合特性的比较[J].种子,23(9):39~40
    肖凯,谷俊涛,张荣铣等. 1999.氮素营养对小麦群体光合碳同化作用的影响及其调控机制.植物营养与肥料学报,5(3):235~243
    肖凯,张荣铣,钱维朴. 1998.氮素营养调控小麦旗叶衰老和光合功能衰退的生理机制.植物营养与肥料学报,4(4):371~378
    谢运,孙元枢,王钧睦等. 1993.北京市奶牛青粗饲料开发饲用小黑麦示范推广工作总结[J].中国奶牛,5:26~27
    邢先贵,朱旭彤. 1996.优质小麦品种在不同栽培条件下的产量和品质的表现[J].华中农业大学学报,15(2):117~121
    徐恒永,赵振东,刘爱峰等. 2001.氮肥对优质专用小麦产量和品质的影响Ⅱ.氮肥对小麦品质的影响[J].山东农业科学,(2):13~17
    徐阳春,蒋廷惠,蔡大同等. 1999.氮肥用量对安农9192面包小麦加工品质的影响[J].南京农业大学学报,22(4):49~52
    许大全,张玉忠,张荣酰. 1992.植物生理学通报,28(4):237~243
    闫翠萍,张永清,张定一. 2008.播期和种植密度对强、中筋冬小麦蛋白质组分及品质性状的影响.应用生态学报,19(8)1733~1740
    杨根海,张启刚,陈佑良. 1986. 15N示踪研究小麦品质.I:后期肥对冬小麦产量和蛋白质含量的影响.北京农业大学学报,12(1):39~46
    杨萍果,周进财,张定一等. 2002.氮肥施用量对冬小麦产量和品质的影响[J].山西农业大学学报(自然科学版),22(3):206~208
    杨晴,李雁明,肖凯等. 2002.不同施氮量对小麦旗叶衰老特性和产量性状的影响[J].河北农业大学学报,25(4):20~24
    杨善元. 1983.关于测定叶绿素含量及a:b值等若干问题.植物生理通讯,4:61~62
    姚国才. 1998.不同密度和施氮量对宁麦8号产量及其构成因素的影响.江苏农业科学,3:7~8
    姚晓敏,蒋士龙,张佩琦. 1999.小黑麦麦芽乳汁饮料的研制[J].食品研究与开发,20(2):26~29
    叶桃林,肖小平,肖春芳等. 2005.双季稻和产区冬闲期绿色覆盖作物与保护性种植模式研究Ⅰ.饲用小黑麦新品种引进筛选及适应性研究[J].作物研究,19(3):165~167
    印莉萍,刘祥林,吴晓强等. 1993.小麦谷氨酞胺合成酶的器官分布及光照对基因表达的影响.首都师范大学学报,14(4):35~40
    由海霞. 2005.不同密度小麦群体的光合作用特性研究[J].中国农学通报,(4):170~173
    于丽娟,孟阳,张国艳. 1996.小黑麦的品质特性及在焙烤制品中的应用[J].食品工业,(6):29~30
    于振文,田奇卓,潘庆民等. 2002.黄淮麦区冬小麦超高产栽培的理论与实践.作物学报, 28(5):577~585
    于振文,岳寿松,沈成国等. 1995.不同密度对冬小麦开花后叶片衰老和粒重的影响.作物学报,21(4):412~417
    于振文. 1984.不同密度条件对冬小麦小花发育的影响.作物学报. 10(3):185~194
    余玲,田增荣,朱建峰等. 1996.小麦、黑麦及小黑麦的耐盐性研究[J].西北农业学报,5(3):39~42
    喻树迅,黄祯茂,姜瑞云等. 1993.短季棉子叶荧光动力学及SOD酶活性的研究.中国农业科学,26(3):14~20
    岳海,孙敏,吴忠华. 2004.不同肥料处理对小黑麦幼苗生长状况及生理功能的影响[J]. 山西师范大学学报(自然科学版),18(3):81~85
    曾寒冰,李文雄. 1980.小麦叶片生长规律和叶面积动态及其与产量的关系.东北农业大学学报,(1):68~78
    张宝军,蒋纪云. 1996.施氮时期对小麦不同种子粒蛋白质的影响[J].西北农业大学学报, 24(1):32~36
    张保军,由海霞等. 2002.面条专用小麦生长发育和产量及品质的密度效应研究.西北农业学报,11(3):29~32
    张彩霞,柴守诚,郑炜君. 2005.六倍体小黑麦T型细胞质雄性不育体系杂种优势与配合力的研究[J].西北植物学报,25(5)898~902
    张婵娟,贾志海,王润莲等. 2006.小黑麦干草在肉羊日粮中适宜添加水平的研究[J].中国畜牧杂志,42(19):38~40
    张成琦. 1980.小黑麦在我省的适应性及存在问题的商榷.贵州农业科学, 5:14~17
    张海娜,李存东,肖凯. 2008.氮素对不同衰老特性棉花品种光合特性和细胞保护酶活性的影响.华北农学报,23(5):170~174
    张红,苏荣存,李冬梅等. 2006.新引进小黑麦的醇溶蛋白遗传多样性分析[J].德州学院学报,22(3):104~107
    张红,苏荣存,刘丽云等. 2005.小黑麦种子醇溶蛋白的聚丙烯酰胺凝胶电泳技术研究[J]. 德州学院学报,21(2):104~107
    张红,苏荣存,苏慧凤等. 2006.对引进小黑麦的农艺性状及细胞学鉴定[J].内蒙古农业科技(3):11~12
    张雷明,上官周平,毛明策等. 2003.长期施氮对旱地小麦灌浆期叶绿素荧光参数的影响. 应用生态学报,14(5)∶695~698
    张莉,陈艳花,黄建成. 2008.春性小黑麦新品系的引种试验.中国种业, 2:50~51
    张林生,张保军,汪沛洪等. 2002.施氮水平对小麦子粒发育过程中氨基酸含量的影响.西北植物学报,22(3):646~650
    张其德,张建华,刘合芹等. 2000.限水灌溉和不同施肥方式对冬小麦旗叶某些光合功能的影响.植物营养与肥料学报,6(1):24~29
    张强,戴其根,许轲等. 2004.氮素对小麦子粒品质影响的研究进展.安徽农业科学,32(1):139~140
    张庆江. 1997.春小麦品种氮的吸收积累的运转特征及子粒蛋白质含量的关系.作物学报, 27(6):45~49
    张秋英,李发东,刘孟雨等. 2003.不同水分条件下小麦旗叶叶绿素a荧光参数与子粒灌浆速率.华北农学报, 18(1):26~28
    张晓龙. 1982.小麦品种子粒灌浆研究[J].作物学报,8(2):87~93
    张绪成,上官周平. 2007.施氮对不同抗旱性小麦叶片光合及生长特性的影响.中国生态农业学报,15(6):59~63
    张永丽,蓝岚,李雁鸣. 2008.种植密度对杂种小麦C6-38 /Py85-1群体生长和子粒产量的影响.麦类作物学报,28(1):113~116
    张玉清,金晓梅. 1997.饲用小黑麦蛋白质含量的研究.黑龙江畜牧兽医. 7:19~20
    张玉清,金晓梅,安秀敏等. 1995.用小黑麦产量与播量、施肥关系的研究.黑龙江畜牧科技,2:11~13
    张志良、瞿伟菁. 2006.《植物生理学实验指导》.北京:高等教育出版社,41~44
    赵春,焦念元,宁堂原. 2006.不同环境条件下小麦氮代谢关键酶活性及子粒品质.应用生态学报,1717(10):1866~1870
    赵广才,常旭虹,刘利华等. 2006.施氮量对不同强筋小麦产量和加工品质的影响[J].作物学报,5:723~727
    赵广才,万富世,常旭虹. 2006.不同试点氮肥水平对强筋小麦加工品质性状及其稳定性的影响.作物学报,32(10):1498~1502
    赵会杰,任琴,郭天财等. 2001.大穗型小麦兰考906分蘖发育的生理特征及其调控.麦类作物学报,21(4):67~71
    赵会杰,薛延丰. 2004.密度及追氮时期对大穗型小麦旗叶及子粒碳水化合物代谢的影响. 河南农业大学学报,38(1):1~4
    赵俊晔,于振文. 2004.小麦子粒淀粉品质与蛋白质品质关系的初步研究.中国粮油学报, 19(4):17-20
    赵开军,鲍文奎. 1993.八倍体小黑麦体细胞耐盐变异体发生机制初步研究[J].中国农业科学,26(5):25~31
    赵万春. 1999.小麦组织氮的积累与分配及其相关性研究.西北农业大学学报,27(6):38~42
    郑丕尧,周殿玺译. 1983.作物形态与机能[M].北京:农业出版社,220~224
    郑子英,苏拉,杨生生等. 1998.土壤含盐量与牧草引种施肥.新疆畜牧业,4:35~38
    周福平,孙黛珍,王曙光等. 2006.六倍体小黑麦种质资源遗传多样性的分析[J].华北农学报,21(6):33~36
    周如美,陆成彬,范金平等. 2007.密度、氮肥及其运筹对弱筋小麦扬麦15子粒产量和品质的影响.农业科技通讯,11:48~49
    周玉刚,祝小龙,陈莉. 2007.适合江淮地区种植的饲用小黑麦品种筛选研究.安徽农学通报,13(15):80~82
    朱国立. 1993.蓖麻干物质积累与分配规律[ J].中国油料,(4):25~28
    朱红梅,荣湘民,刘强等. 2001.不同基因型水稻子粒蛋白质含量差异的研究I两个常规早稻品种子粒蛋白质含量差异.湖南农业大学学报(自然科学版),27(1):13~16
    朱新开,郭文善,周君良. 2003.氮素对不同类型专用小麦营养和加工品质调控效应[J]. 中国农业科学,36(6):640~645
    朱新开,周君良,封超年等. 2005.不同类型专用小麦子粒蛋白质及其组分含量变化动态差异分析.作物学报,31(3):342~347
    朱玉国,董召荣,陈程等. 2006.追氮量对小黑麦再生草生长和草产量的影响[J].安徽农业大学学报,33(4):547~550
    朱志明,徐玉鹏,闫旭生. 2001.北方农区苜蓿、小黑麦+玉米青贮生产模式效益分析[J]. 草地学报,18(4):14~17
    庄益芬,安宅一夫,张文昌. 2003.添加物以黑小麦草青贮的细胞壁成分和体外干物质消化率和影响及其与小麦、黑麦草青贮的比较[J].内蒙古民族大学学报(自然科学版)18(2):129~131
    宗会,温华东. 2004.氮肥形态、用量和种植密度对香料烟光合作用的影响.烟草科技, (1):33~35
    邹铁祥,戴廷波,姜东等. 2007.氮、钾水平对小麦花后旗叶光合特性的影响.作物学报,2007,33(10):1667~1673
    Aaron J. Schwarte, Lance R. 2005. Gibson, Douglas L. Karlen, Planting Date Effects on Winter Triticale Dry Matter and Nitrogen Accumulation, Agronomy Journal,1333~1341
    activities in different organs ofwheat after flowering.PlantPhysiol Commun,39(3):209~210
    Amane Makino,Barry Osmond. 1991. Effects of Nitrogen Nutrition on Nitrogen Partitioning between Chloroplasts and Mitochondria in Pea and Wheat .Plant Physiology,96:355~362
    Amaya A. 1991. Triticale industrial quality improvement at CIMMYT:past,present and future. In:Proc. Of 2nd I T S. Brazil,412~421
    Annick Morant-Manceau,Elisabeth Pradier,Gérard Tremblin.2004.Osmotic adjustmentgas exchanges and chlorophyll fluorescence of a hexaploid triticale and its parental species under salt stress,J. Plant Physiol. 161:25~33
    Arnon D I. 1949. Plant Physiolgy,(24):1~15
    AyoubM, Guertin S,Fregeau R J,et al. 1994.Nitogen fertilizer effect on breamaking quality of hard red springwheat in eastern Canada[J].Crop Science,34:1346~1352
    Bao Wenkui,Yan Yurui. 1993. Octoploid triticale in China. Advances in Science of China,Biology,13:55~76
    B Geleta, M Atak, P S Baenziger, L A Nelson,et al.2002.Seeding rate and genotype effect on agronomic performance and end-use quality of winter wheat[J]. Crop Science,43(3):827~832
    Bradford M M. 1976. Arapid and sensitive metbod for the quantification of microgram quantities utilizing the principle of protein dye binding. Analytical Biochemistry,72:248~254
    BUCHANAN B B,GRUISSEM W,JONES R L.2004.Photosynthesis.In:Biochemistry & Molecular Biology of Plants(植物生物化学与分子生物学)[M].瞿礼嘉,顾红雅,白书农等译.北京:科学出版社,131~483
    Candiano G, Bruschi M, Musante L, et al. 2004. Blue silver:A very Sensitive Colloidal Coomassie G-250 Staining for Proteome Analysis[J]. Electrophoresis. 25:1327-1333
    Callis Judy. 1995. Regulation of Plant degradation.The Plant Cell,(7):845~857
    Ce′dric Naud,David Makowski,Marie-He′le`ne Jeuffroy. 2009. Leaf transmittance measure- ements can improve predictions of the nitrogen status for winter wheat crop, Field Crops Research110 :27–34
    ChaiX-Q,Yin L-P,Liu X-L et al. 1996. Influence ofdifferent consent rations ofNO3-and NH4+ on the activity ofglutamine synthetase and other relevant enzymes of nitrogenmetabolism in wheat roots.Acta Bot Sin,38(10):803~808
    Chen GH, Huang LT, Yap MN et al. 2002. Molecular characterization of a senescence-associated gene encoding cysteine proteinase and its gene expression during leaf senescence in sweet potato.Plant Cell Physiology,43(9):984~991
    Charles R,Frank J,Michael B.1998.Identification of two cytosolic ascorbate peroxidase cDNAs from soybean leaves and characterization of their products by functional expression in E. coli. Planta,204:120~126
    Cren M, Hirel B. 1999. Glutamine synthetase in higher plants: regulation of gene and protein expression from the organ to the cell. Plant Cell Physiology,40:1187~1193
    Cristina Ugarte, Daniel F. Calderini, Gustavo A. 2007.Slafer, Grain weight and grain number resp -onsiveness to pre-anthesis temperature in wheat, barley and triticale, Field Crops Research 100:240~248
    Cyran M,Rakouska M. 1996. Relationship between the Pentosans of triticale flour and bread loaf volume. In:Piomto H G,ed. Triticale: Today and Tomorrow. Netherlanda: Kluwer Academic Publishers,771~777
    Dalling M J, Boland G, W illson JH. 1976. Relation between acidproteinase activity and redistribution of nitrogen during grain devel-opment in wheat.Aust J Plant Physiol,3:721~730
    Damerval C,Vienne D D,Zivy M,Thiellement H. 1986. Technical improvements in two dimen sional electrophoresis increase the level of genetic variation detected in wheat seedling proteins.Electrophoresis,7:52~54
    Dechard E L. 1978. Nitrate reductase assays as prediction teat for crosses and lines in soring wheat,Crop Sci,18: 289~294
    Demmig-Adams B,Adams W WⅢ,Barker D H,et al. 1996. Physiol. Plant, 98: 253~264
    Demmig-Adams B, Adams W W III. 1992. Photoprotection and other responses of plants to high light stress. Ann Review Plant Physiol Plant Mol Biol. 43:599~626
    Domska, D,Warechowska M. 2006. Uniwersytet Warminsko-Mazurski, Effect of triticale cultivation technic on protein yield production value, Universitatis Agriculturae Stetinensis,(no. 247(100)) p. 45~48
    Ericsson T. 1995. Growth and shoot-root allocation of seedlings in relation to nutrient availability Plant soil,168:205~214
    Evans LT. 1975. Crop physiology[M]. Cambridge university press,(1):32~36
    Fernandez-Figaresa I,Marinettoa J,Royob C et al.2000. Ami-no-Acid composition and protein and carbohydrate accumulation in the grain of Triticale grown under terminal water stress simulated by a senescing agent[J]. Journal of Cereal Science,32(3):249~258
    Gao L,Ye M-B,Zhang R-X et al. 1998. Endopeptidases in wheat flag leaves during aging.Acta Phyto-physiologica Sinica,24(2):183~188
    Gaspar Estrada-Campuzano,Daniel J. 2008.Miralles,Yield determination in triticale as affected by radiation indifferent development phases,Europ. J. Agronomy 28:597~605
    Genty B E,Briantais M J,Baker N R. 1989. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence.Biochemistry Biop- hysics Acta,990:87~92
    Genty B, Briantais J-M, Baker N R, 1989.Biochim. Biophys. Acta900:87~92
    Gooding M J, Pinyosinwat A, Ellis R H. 2002. Responses of wheat grain yield and quality to seed rate[J]. Journal of Agricultural Science,138: 317~331
    Gibson L R, Nance C D, Karlen D L . 2007. Winter Triticale Response to Nitrogen Fertilization when Grown after Corn or Soybean, Agronomy Journal,99:49~58
    Gibson S I. 2000. Plant sugar/response pathway. Part of a complex regulatory web [J]. Plant Physiol,124:1532~1539
    Giunta F,Motzo R,Deidda M. 1993. Effect of drought on yield and yield components of durum wheat and triticale in Mediterranean environment[J]. Field Crops Research,33(4):399~409
    Giunta F,Motzo R. 2004. Sowing rate and cultivar affect total biomass and grain yield of spring triticale (Triticose-caleWittmack) grown in a Mediterranean-type environ-ment[J]. Field Crops Research,87(2-3):179~193
    Gyssels G,Poesen J,Nachtergaele J,et al. 2002. The impact of sowing density of small grains on rill and ephemeral gully erosion in concentrated flow zones[J]. Soil and Tillage Research,64:189~201
    Harmoney, K. R., Thompson, C. A. 2005. Fertilizer rate and placement alters triticale forage yield and quality,Forage and Grazinglands, (No. May):1~9
    HuangQ-N ,Yin L-P ,ChaiX-Q et al. 1995. Influence ofnitrogen sourceson glutamine synthetase in wheatseedling.ActaBotSin,37(11):856~862
    Huang Z A, Jiang D A et al. 2004.Effects of nitrogen deficiency on gaexchange, chlorophyll fluo-res cence, and antioxidant enzymes in leaves of rice plants. Photosynthetica,42(3):357 ~364
    Hussain M L,Shan S H,Sajjad H,ed. 2002. Growth,yield and quality response of three wheat(Triticum aestivumL)varieties to different levels of N,P and K. Int J Agric Biol,4(3):362 ~364
    Hikosaka K.2004.Interspecific difference in the photosynthesis-nitrogen relationship patterns phy- sicological causes,and ecological importance.Journal of Plant Research.117(6):481~494
    Jaime L, Josep M, Javier V,et al. 2004. Seeding rate influence on yield and yield components of irrigated winter wheat in a Mediterranean climate[J]. Agronomy Journal,96:1258~1265
    J.H.Mombili. 1992. Spring rye for winter forage in the Southwest [J]. Agronomy Journal,51:9~12
    Johnson V A.Dreier A F,Grabouski P H.1973.Yield and protein responses to nitrogen fer- lilizer of two wheat varielies differing in inherent prolein of their grain.Agron,65:259~262
    Johnson V A. 1987.Wheat, rye and tricale. In: Vclouer D,eds. Nutritional Quality of CerealGrains and Agronomic Improvement.Press Vienna
    Johannes Ravn J?rgensen, Lise C. Deleuran, Bernd Wollenweber.2007.Prospects of whole grain crops of wheat, rye and triticale under different fertilizer regimes for energy production, Biomass and Bioenergy 31:308~317
    Jozefiak D,Rutkowski A,Jensen B B etal. 2007. Effects of di-etary inclusion of triticale,rye and wheat and xylanase supplementation on growth performance of broiler chick-ens and fermentation in the gastrointestinal tract[J]. Animal Feed Science and Technology,132(1-2):79~93
    Khorasani G R,Janzen R A,McGill W B et al. 1997. Site and extent of mineral absorption in lactating cows fed whole-crop cereal grain silage or alfalfa silage[J]. J Anim Sci,75:239~248
    Khorasani G R,Okine E K,Kennelly J J et al. 1993. Effect of whole crop cereal grain silage substituted for alfalfa si-lage on performance of lactating dairy cows[J]. J Dairy Sci,76(11):3536~3546
    King B J. 1992. Studies of the uptake of nitrate in barley, v. Estimation of root cytoplasmic nitrate concentration. Using nitrate reductase activity-implication for nitrate influx. Plant Physiol,99:1582~1589
    Kleinhofs A,Warmer R L. 1991. Advances in nitrogen assimilation. In Mifflin B J,Lea P J,Intermediary Nitrogen Metabolism.San Dieqo:Academic,89~120
    Koshkin EL. 1991.春小麦产量与库源关系[J].国外农学:麦类作物,(3):34~36
    Krause GH,Weis E. 1988. In: Lichtenthaler, HK ed. Applications of Chlorophyll luorescence in Photosynthesis Research,Stress Physiology,Hydrobiology and Remote Sensing. Dordrecht: Kluwer Academic Publishers:pp 3~11
    Lamattina L,Lezica R P,Conde R D. 1985. Protein metabolism in senescing wheat leaves, Determination of synthesis and degrada-tion rates and effects on protein loss,Plant Physiol,77:587~590
    Lawlor D W, Kontturi M, YoungA T. 1989.Photosynthesis by flag leaves of wheat in relation to protein, ribulose bisphosphate carboxylase activity and nitrogen supply.Expt. Bot. 40: 43~52
    Lei J-J ,Zhao Q,Chen X-W et al. 2007. Effects of sowing date and planting density on yield and quality ofwinterwheat.XinjiangAgricul turalSciences,44(1)75~79
    Lea P J, Ireland R J. 1999. Plant amino acids. In: Singh B K. Nitrogen Metabolism in Higher Plants. New York: Marcel Dekker,1~47
    Lloveras J, Lopez A, Ferran J, Espachs S, Solsona J. 2001. Bread-making wheat and soil nitrate as affected by nitrogen fertilization in irrigated mediterranean conditions. Agronomy Journal,93:1183~1190
    Li J-R,LiW-X, Zeng H-B. 1993. The study on the relationship between nitrate reductase in leaves and protein quality in seedsofspringwheat.Heilongjiang Agric Sci,(1):5~8
    LiC-F,Ma F-M, ZhaoY et al. 2003. Effects ofnitrogen forms on key enzyme activities and related products in sugar and nitrogen metabolism of sugar beet (Beta vulgarisL. ).Acta Agron Sin,29(1):128~132
    LiC-X, Zhang G-F,ShiH-E. 1995. Effects ofnitrogen on the dynamic change ofnitrate reeducates activity and grain protein contentofwheat.ActaBotBoreali-Occident Sin,15(4):276~281
    Liu D L,Helyar K R,Conyers M K et al. 2004. Response of wheat,triticale and barley to lime application in semi-arid soils[J]. Field Crops Research,90(2-3)287~301
    LiuX-B,LiW-X. 1996. Preliminary studies on the accumulation ofgrain starch and protein during grain filling in wheat.Acta Agron Sin,22(7):726~740
    Lichtenthaler H K. 1991.Application of chlorophyll fluorescence in research stress physiolog y,hydrobiology and remote sensing.Kluwer Academic Punlishers, Dordrecht,253-258
    Lu Q T,Li W H,Jiang G M et al. 2001. Studies on the characteristics of chlorophyll fluore- scence of winter wheat flag leaves at different developing stages.Acta Botanica Sinica,43(8):801~804
    Lupton F G H. 1988.北京农业大学小麦遗传育种室译.小麦育种的理论基础[M].北京:北京农业大学出版社,292~294
    Ma J F,Shin T,Yi-Chie C et al. 1999. Biosynthesis of phyto siderophores in several triticeae species with different genomes[J]. Journal of Experimental Botany,50:723~726
    Ma X-M,WangZ-Q, WangX-C et al. 2004. Effects ofdifferent types ofnitrogen fertilizer on leaves N-metabolism and grain protein ofwheat cultivars with specialized end-uses.SciAgric Sin,37(7):1076~1080
    Ma X-M,Li L,Zhao P et al. 2005. Effectofwater controlon activitiesofnitrogen assimilation enzymes and grain quality in winterwheat. Acta PhytoecolSin,29(1): 48~53
    Majoul T., Bancel E., 2004. Proteomic analysis of the effect of heat stress on hexaploid wheat grain: characterization of heat-responsive proteins from non-prolamins fraction, Proteomics, 4:505~513
    Myer R O,Brendemuhl J H,Barnett R D. 1996. Crystalline lysine and threonine supplementation of soft red winter wheat or triticale,low-protein diets for growing-finishing swine[J]. J Anim Sci,74:577~583
    Mooney B P,Thelen J J. 2004. High-throughput peptide mass finger-printing of soybean seed proteins,automated wekflow and utility of Unigene expressed sequence tag database for protein identification. Phytochemistry,120:1~12
    Niu j y, Gan Y T, Zhang J W, et al. 1998. Postanthesis dry matter accumulation and redistri- bution in spring wheat mulched with plastic film. Crop Science,38:1562~1568
    Palta J A,Kobata T,Turner N C,Fillery I R. 1994. Remobilization of carbon and nitrogen in wheat as influenced by postanthesis water deficit.Crop Science,34:118~124
    Pena P J. 1996. Factors affecting triticale as a food crop. In: pinto H G,ed. Triticale Today and Tomorrow. Kluwer Academic Publishers,Netherlanda:753~762
    Pomeranz Z Y,Burkhare B. 1970. A, Moon L CTriticale in malting and brewing In:Proc of Am Soc Chem. 40~46
    Pratap A,Sethi G S,Chaudhary H K. 2005. Relative efficiency of different gramineae generafor haploid induction in triticale and triticale x wheat hybrids through the chromosome elimination technique[J]. Plant Breeding,124(2):147~153
    Qgren E. 1991. Planta. 184:538~544
    Rerkasem B,Sunisa N,Sansanee J. 2004. Increasing boron efficiency in international bread wheat,durum wheat,triticale and barley germplasm will boost production on soils low in boron. Field[J]. Crops Research,86(2-3):175~184
    Rosenberger A,Kaula H P,Sennb T et al. 2002. Costs of bio-ethanol production from winter cereals: the effect of growing conditions and crop production intensity levels [J]. Industrial Crops and Products,15(2):91~102
    Royo C,Blanco R. 1998. Use of potassium iodide to mimic drought stress in triticale[J]. Field Crops Research,59(3):201~212
    Royo C,Insa J A,Boujenna A et al. 1994. Yield and quality of spring triticale used for forage and grain as influenced by sowing date and cutting stage[J]. Field Crops Research,37(3):161~168
    Royo C,Pares D. 1996. Yield and quality of winter and spring triticales for forage and grain[J]. Grass and Forage Sci-ence,51(4):449~455
    Sanjeev K,Rajender K,Harbir S. 2002. Influence of time sowing and NP fertilization on grain quality of macaronl wheat (Triticum durum). HaryanaAgric Univ J Res,32(1):31~33
    Sayre K D. 1997. Application of Raised Bed-planting Systemto Wheat[R]. CIMMYT Wheat Special Report
    Schreiber U,Bilger W,Neubauer G.1994. In: Ecophysiology of Photosynthesis.(eds Schu- lze,E-D and Caldwell,MM.),Springer-Verlag,Berlin
    Schwarte A J,Lance R G,Douglas L K et al. 2005. Planting date effects on winter triticale dry matter and nitrogen accumulation[J]. Agron J,97:1333~1341
    Shen S., Jing Y., 2003. Proteomics approach to identify wound-response related proteins from rice leaf sheath,Proteomics,3:527~535
    Simonetta Fois,Rosella Motzo,Francesco Giunta. 2009.The effect of nitrogenous fertilizer ap- plication on leaf traits in durum wheat in relation to grain yield and development,Field Crops Research 110:69~75
    Singh A K,Jain G L. 2000. Effect of sowing time,irrigation and nitrogen on grain yield and quality of durum wheat(Triticum durum).Indian J AgricSci,70(8):532~533
    Sirkka I,Jonathan R. 2000. Stress treatments and ficoll for improving green plant regeneration in triticale anther culture[J]. Plant Science,150(1):77~84
    Steven G H. 1990.Use of triticale as a replacement for wheatmiddlings in diets for Atlantic salmon[J]. Aquaculture,90(2):173~178
    Streit L,Feller U.1982. Changing actives of nitrogen assimilation enzymes during growth and senescence of dwarf beans(Phaseolus vulgaris.L)Z.Pflanzen. Physiol,108:273~281
    Sun Yuanshu,Wang Congyi. 1986. Triticale Breeding in China. In:Procof lst Int. Triticale Symp. Sydney,50~59
    Tadahiko Mae,Koji Ohira. 1981. The Remobilization of Nitrogen Related to Leaf Growth and Senescence in Rice Plants (Oryza sativa L.).Plant and Cell Physiology,22(6):1067~1074
    Tams S H,Bauer E,Oettler G et al. 2006. Prospects for hybrid breeding in winter triticale:II. Relationship betwee parental genetic distance and specific combining ability [J]. Plant Breeding,125(4):331~336
    Tams S H,Melchinger A E,Bauer E. 2005. Genetic similarity among European winter triticale elite germplasms assessed with AFLP and comparisons with SSR and pedi-gree data[J]. Plant Breeding,124(2):154~160
    Tanacs L,Matuz J,Gero L,et al.1994.A NPK mutragyazas es evjarst hatasa abuzafajtak valo- rigrafos minosegere[J].Novenytermeles,43:193~203
    Unger P W. 2001. Alternative and opportunity dryland crops and related soil conditions in the southern Great Plains[J]. Agron J,93:216~226
    VAN WIJK K J.2000.Proteomics of the chloroplast:Experimentation and prediction[J].Trends Plant Sci,5(10):420~425
    Vernon A W. 1979.Ribulose bisphosphate carboxylase and protenlytie a ctivity in wheat leafs from anthesis through senescence. Plant Physiol,64:884~887
    Vicky Buchanan-Wollaston. 1997. The molecular biology of leaf senescence.Journal of Experemental Botany,48(2):181~199
    Villegas M E,Bauer R. 1974. Protein and lysine content of improved triticale. In:Tsen CC,ed. Firse Man-Made Cereal. Amer Asso Cerel,Chem,150~156
    WangX-Z, Zhang S-Q . 1999. Study on the relation ofNRA and nitrogen accumulation in leaves ofdifferentprotein content wheat.Acta Bot Boreali-Occident Sin,19(2):315~320
    WangY-F,Yu Z-W. 2002. Effect of nitro-gen nutrition on the change of key enzyme activity during the nitro-gen metabolism and kernel protein content in winter wheat.ActaAgron Sin,28(6):743~748
    WangY-F,Yu Z-W ,Li S-X et al. 2003. Comparison of nitrate reductase and glutamine synthetics on the activity ofglutamine synthetase and other relevant enzymes of nitrogenmetabolism in wheat roots.Acta BotSin,38(10); 803~808
    Wang Q ,Xun CY. 2005. Affects of nitrogen and phosphorus on plant leaf photosynthesis and carbon partitioning [J].Shandong Forestry Science and Technology,160: 59~62
    WANG W-Q,LI Bin,MENG Q-W et al. 2002.The sequence of Lycopersicon esculentum thylakoid-bound ascorbate peroxidase gene TtAPX.植物生理与分子生物学学报,28(6):491~492
    Wu G-N,Liu B-R,Zhang J-Y. 1985. Proteinase in rice leaves-some chemical and physical properties and actibities in relation to senescence. Jiangsu Journal of Agricultural Science,1(1):1~10
    YAMAGU CHI K,SUBRAMANIAN A R.2000.The plastid ribosomal proteins.Identification of all the proteins in the 50S subunit of an or ganelle ribosome(chloroplast)[J].J.Biol.Chem,275(37):28 466~28 482
    Zebblin M S,Mark S H,Lance R G etal. 2007. Effects of trit-icale-based diets on finishing pig performance and pork quality in deep-bedded hoop barns[J]. Meat Science,76(3):428~437
    Zhu D-Q, Zhu X-L,WangY et al. 1991. Several physiological parameters in relation to grain pro- tein content in winterwheat (Triticum aestivum ). Acta Agron Sin,17(2):135~144
    Zillinsky E J,Borlaug N E. 1971. Progress in developing triticale as an economic crop. CIMMYT Reseach Bulletin,17:1~27
    Zillinsky F J. 1974. The development of triticale[J]. Adv Agron,26:315
    Zymes and grain quality in winterwheat.Acta PhytoecolSin,29(1):48~53
    ΓaM3aeB HΓ,方永安. 1986.饲用小黑麦的最适播种期[J].草原与草坪,(5):48

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700