用户名: 密码: 验证码:
星机双基地SAR系统总体与同步技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
双基地SAR具有隐蔽性强、抗干扰、信息获取丰富、可前视成像等诸多优点,是目前雷达技术领域的主要研究热点之一。早期研究以对称体制为主,如:卫星发射/卫星接收、飞机发射/飞机接收等。随着这类系统的不断发展,非对称体制的双基地SAR也逐渐成为一种新的研究方向。
     本文以低轨道雷达卫星发射、飞机接收的组合——星机双基地SAR为研究对象,在未来雷达卫星星座的支持下,该系统可将星载SAR覆盖面大、安全性好和机载SAR机动灵活、分辨率高的优点结合在一起,具有广阔的应用前景。星机双基地SAR在理论和技术上都面临很多挑战。首先,目前相对更成熟的机载双基地SAR、星载双基地SAR的很多理论无法直接应用,需重新研究;第二,由于雷达卫星的速度远快于飞机,收、发波束足迹的空间同步是关系到星机双基地SAR能否具有实用价值的最核心技术。这里的空间同步涉及两方面:一是如何尽可能地提高场景长度,二是如何实现空间同步误差的补偿;第三,与其它类型的双基地SAR类似,时间、频率、相位同步也是必须解决的关键技术。
     本文针对上述问题,开展了较为系统的研究,完成的主要工作和贡献如下:
     1)较全面地研究了星机双基地SAR的系统理论。研究了主要技术指标所能取得的量级、飞机飞行参数的约束条件、工作模式、距离史、多普勒参数、信号模型等内容。
     2)分析了空间、时间、频率、相位四种同步误差对系统性能指标的影响,明确了各种同步机制的必要性,推导了对“剩余同步误差”的量化指标要求。
     3)针对已有文献中一种基于“双向滑动聚束式”空间同步方法(DSS方法)所做的几条影响实用性的假设:卫星沿直线匀速飞行、地球表面是一个平面、飞机与卫星平行飞行,对原方案的控制模型进行了改进,使该方法更加实用化。
     4)针对DSS方法场景长度偏短的缺点,提出了一种基于“卫星宽波束/飞机反向滑动聚束式”的空间同步方法。该方法可在方位分辨率相等的前提下,获得更长的场景长度。
     5)针对DSS方法所需成像算法复杂的缺点,提出了一种基于“双宽波束式”的空间同步方法。由于收、发双方均无需波束指向控制,成像算法简单。“宽波束接收式”是“双宽波束式”中卫星波束展宽倍数等于1的一种特例,由于无需改动卫星波束,可应用于非合作式系统。
     6)对已有文献中一种只能用于“双向滑动聚束式”的空间同步误差补偿方法进行了改进,改利用直达波栅瓣为利用主瓣,使之可应用于另外两种模式。
     7)对已有文献中一些基于直达波的时间、频率同步方法进行了改进,无需借助其它技术手段就能估计出直达波的多普勒质心,从而可直接估计出时间、频率同步误差;对已有文献中一种专为星地双基地SAR设计的时间对齐方法进行了改进,使之可应用于星机双基地SAR。
     本文针对星机双基地SAR的“系统理论”、“空间同步”、“时间同步”、“频率及相位同步”等关键技术开展了较为深入和系统的研究,取得了一定的成果。下一步,在条件允许的情况下,希望开展一些地面成像实验,为将来实际系统的研制打下更坚实的基础。
In recent years bistatic SAR has been gaining more and more interest because ofsuch specific advantages as reduced vulnerability in military system, anti-disturbingcapability, providing additional information about the target and imaging in flightdirection. Most of the previous studies focused on the systems with symmetricalstructure like spaceborne or airborne bistatic SAR. With the development of thesesystems, bistatic systems with asymmetrical structure are emerging as a new researchtopic.
     This dissertation carries out research on spaceborne/airborne hybrid bistatic SAR(SA-BSAR), which consists of a radar satellite as the illuminator and a receivermounted on an aircraft. Under the support of the future radar satellite constellation,SA-BSAR may combine high invulnerability and wide coverage provided by thespaceborne transmitter with the great maneuverability and the high resolution providedby the airborne receiver. However, SA-BSAR faces a lot of theoretical andtechnological challenges as well as possessing great potential. First, many correlatedbasis theories must be studied since many of the existing theories, developed forspaceborne or airborne bistatic SAR, are unsuitable for SA-BSAR. Second, the biggestchallenge is the space-time synchronization of the antenna footprints due to the extremeplatform velocity differences. There are two aspects involved: (1) how to improve thescene extension as much as possible, (2) how to compensate the spatial synchronizationerror. Third, similar as other types of bistatic systems, time, frequency and phasesynchronization are also the key techniques to be solved.
     Focusing on the above challenges, systematical studies have been performed andthe main work and the contributions are presented as follows:
     1) A relatively comprehensive study on the correlated basis theories are carried out.The research subjects include: the quantitative levels of the main technical parameters,the constraints of the aircraft flying parameters, operation modes, range history, Dopplerparameters, signal model, and etc.
     2) The influences of the synchronization errors on the imaging performance are analyzed. The necessities of the spatial, time, frequency and phase synchronizationmeasures are confirmed. The requirements on the residual errors are derived.
     3) Based on an existing spatial synchronization approach relying on 'double slidingspotlight mode' (hereafter referred as DSS approach), a mathematical model for beamsteering is presented and a set of concerned formulae is derived to cancel suchassumptions in DSS approach like fiat-earth geometry, straight-line trajectories, andparallel trajectories between the platforms.
     4) A new spatial synchronization approach based on 'wide-beam illumination andinverse sliding spotlight receiving mode' is proposed. This approach provides, with thesame azimuth resolution, a longer scene extension than the length achieved by DSSapproach.
     5) A new spatial synchronization approach based on 'double wide-beam mode' isproposed. This approach avoids a complicated imaging algorithm since it does not needbeam steering. 'wide-beam receiving mode', a special case of'double wide-beam mode',can be applied to a non-cooperative SA-BSAR because satellite beam pattern has not tobe altered.
     6) An existing approach dedicatedly designed for 'double sliding spotlight mode'and used to compensate the spatial synchronization error, is modified to adapt for theother two operation modes. Grating lobes of the direct-path signal are substituted withmain lobes in the modified approach.
     7) Several modified and more practical approaches via direct-path signal for timeand frequency synchronization are proposed. The modified approaches directly estimatethe synchronization errors without the assisted means to estimate Doppler centroid ofdirect-path signal. An existing approach used to temporally align the echo data with theorbit data in space-surface bistatic SAR is modified to be suitable for SA-BSAR.
     Systematic studies are carried out for several key techniques of SA-BSAR,including: 'system theories', 'spatial synchronization', 'time synchronization', and'frequency and phase synchronization'. In the next step, some imaging experiments onthe ground are expected to be performed.
引文
[1] Cumming I G, Wong F H. Digital processing of synthetic aperture radar data: algorithms and implementation. London: Artech House, 2005, 1-221
    [2] Curlander J C, McDonough R N. Synthetic aperture radar: systems and signal processing. New York: John Wiley & Sons, 1991, 1-185
    [3] Carrara W G, Goodman R S, Majewski R M. Spotlight synthetic aperture radar: signal processing algorithms. Boston: Artech House, 1995, 1-154
    [4] Soumekh M. Synthetic aperture radar signal processing with MATLAB algorithms. New York: John Wiley & Sons, 1999, 1-136
    [5] 皮亦鸣,杨建宇.合成孔径雷达成像原理.成都:电子科技大学出版社,2007,1-65
    [6] 魏钟铨.合成孔径雷达卫星.北京:科学出版社,2001,1-152
    [7] 保铮,邢孟道,王彤.雷达成像技术.北京:电子工业出版社,2005,1-120
    [8] 刘永坦.雷达成像技术.哈尔滨:哈尔滨工业大学出版社,2001,1-190
    [9] 袁孝康.星载合成孔径雷达导论.北京:国防工业出版社,2003,1-185
    [10] Krieger G, Moreira A. Spaceborne bi- and multistatic SAR: potential and challenges, IEE Proc. Radar Sonar Navigation, 2006, 153(3): 184-198
    [11] Krieger G, Fiedler H, Moreira A. Bi- and multi-static SAR: potentials and challenges. European Conference on Synthetic Aperture Radar(EUSAR), Ulm, Germany, 2004: 365-369
    [12] Willis N J. Bistatic Radar. Boston: Artech House, 1991, 1-264
    [13] Hsu Y S, Loreti D C. Spaceborne bistatic radar - an overview. IEE Proc. Radar Sonar Navigation, 1986, 133(7): 642-648
    [14] Callaghan G D, Longstaff I D. Wide-swath spaceborne SAR and range ambiguity. Proc. of IEE Radar, Edinburgh, UK, 1997: 248-252
    [15] Massonnet D. Capabilities and limitations of interferometric cartwheel. IEEE Transaction on Geoscience and Remote Sensing, 2001, 39(3): 506-520
    [16] Walterscheid I, Klare J, Brenner A R, et al. Challenges of a bistatic spaceborne/airborne SAR experiment. European Conference on Synthetic Aperture Radar(EUSAR), Dresden, Germany, 2006, CDROM
    [17] Yuhsyen S, Shaffer S J, Jordan R L. Shuttle radar topography mission (SRTM) flight system design and operations overview. Proc. of SPIE, Sendai, Japan, 2000, Vol. 4152: 167-178
    [18] Rosen P A, Hensley S, Joughin I R, et al. Synthetic aperture radar interferometry. Proc. of IEEE, 2000, 88(3): 333-382
    [19] Martin M, Klupar P, Kilberg S, et al. Techsat 21 and revolutionizing space missions using microsatellites. Proc. of 15th American Institute of Aeronautics and Astronautics Conference on Small Satellites, Utah, USA, 2001: 1-10
    [20] 汤子跃,张守融.双站合成孔径雷达系统原理.北京:科学出版社,2003,1-106
    [21] Caputi J. Image processing for bistatic image radar. US Patent, 4246580, January 20, 1981
    [22] Caputi J. Bistatic imaging radar processing for independent transmitter and receiver flightpaths. US Patent, 4325065, April 13, 1982
    [23] Powell N F, Mallean H G. Autonomous synchronization ofa bistatic synthetic aperture radar (SAR) system. US Patent, 5113193, May 12, 1992
    [24] Auterman J L. Phase stability requirements for a bistatic SAR. Proc. of IEEE National Radar Conference, Atlanta, USA, 1984: 48-52
    [25] Das A, Cobb R, Stallard M. Techsat 21: A revolutionary concept in distributed space based sensing. Proc. of AIAA Defense and Civil Space Programs Conference, Huntsville, USA, 1998: AIAA-98-5255
    [26] Martin M, Stallard M. Distributed satellite missions and technologies - the Techsat 21 program. Proc. of AIAA Space Technology Conference, Albuquerque, USA, 1999: AIAA-99-4479
    [27] Fiedler H, Krieger G, Jochim F, et al. Analysis of bistatic configurations for spacebome SAR interferometry. European Conference on Synthetic Aperture Radar(EUSAR), Cologne, Germany, 2002: 29-32
    [28] Errico M D, Grassi M, Vetrella S. A bistatic SAR mission for earth observation based on a small satellite. Acta Astronautica, 1996, 39(9-12): 837-846
    [29] Lee P F, James K. The RADARSAT-2/3 topographic mission. International Geoscience and Remote Sensing Symposium(IGARSS), Sydney, Australia, 2001, Vol. 1: 499-501
    [30] Horne A M, Yates G, Malvern Q Q. Bistatic synthetic aperture radar. Proc. of Radar Conference, Edinburgh, UK, 2002: 6-10
    [31] Yates G, Horne A M, Blake A P, et al. Bistatic SAR image formation. European Conference on Synthetic Aperture Radar(EUSAR), Ulm, Germany, 2004: 581-584
    [32] Yates G, Home A M, Blake A P, et al. Bistatic SAR image formation. IEE Proc. Radar Sonar Navigation, 2006, 153 (3):208-213
    [33] Wendler M, Krieger G, Horn R. Results of a bistatic airborne SAR experiment. Proc. of International Radar Symposium, Dresden, Germany, 2003:247-253
    [34] Wendler M, Krieger G, Rodriguez M, et al. Analysis of bistatic airborne SAR data. European Conference on Synthetic Aperture Radar(EUSAR), Ulm, Germany, 2004:571-572
    [35] Dubois-Fernandez P, Cantalloube H, Vaizan B, et al. ONERA-DLR bistatic SAR campaign: planning, data acquisition, and first analysis of bistatic scattering behaviour of natural and urban targets. IEE Proc. Radar Sonar Navigation, 2006, 153(3):214-223
    [36] Wlterscheid I, Brenner A, Ender J H G Geometry and system aspects for a bistatic airborne SAR experiment. European Conference on Synthetic Aperture Radar(EUSAR), Ulm,Germany, 2004:567-570
    [37] Ender J H G, Wlterscheid I, Brenner A. New aspects of bistatic SAR: processing and experiments. International Geoscience and Remote Sensing Symposium(IGARSS), Alaska,USA, 2004, Vol.3:1758-1762
    [38] Wlterscheid I, Ender J H G, Brenner A, et al. Bistatic SAR processing and experiments. IEEE Transaction on Geoscience and Remote Sensing, 2006,44(10):2710-2717
    [39] Moreira A, Krieger G, Hajnsek I, TanDEM-X: A TerraSAR-X add-on satellite for single-pass SAR interferometry. International Geoscience and Remote Sensing Symposium(IGARSS), Alaska, USA, 2004, Vol.2:1000-1003
    [40] Keydel W. Perspectives and visions for future SAR systems. IEE Proc. Radar Sonar Navigation, 2003, 150(3):97-103
    [41] Guttrich G L, Sievers W E, Tomljanovich N M. Wide area surveillance concepts based on geosynchronous illumination and bistatic unmanned airborne vehicles or satellite reception. Proc. of Radar Conference, Syracuse, USA, 1997:126-131
    [42] Sanz-Marcos J, Lopez-Dekker P, Mallorqui J J, et al. SABRINA: a SAR bistatic receiver for interferometric applications. IEEE Geoscience and Remote Sensing Letters, 2007,4(2):307-311
    [43] Lopez-Dekker P, Mallorqui J J, Serra-Morales, et al. Phase and temporal synchronization in bistatic SAR systems using sources of opportunity. International Geoscience and Remote Sensing Symposium(IGARSS), Barcelona, Spain, 2007:97-100
    [44] Cherniakov M. Space-surface bistatic synthetic aperture radar - prospective and problems. Proc. of Radar Conference, Edinburgh, UK, 2002:22-25
    [45] Cherniakov M, Saini R, Zuo R, et al. Space surface bistatic SAR with space-borne non-cooperative transmitters. European Radar Conference, Paris, France, 2005:9-12
    [46] Cherniakov M, Antoniou M, Saini R, et al. Space-surface BSAR- analytical and experimental study. European Conference on Synthetic Aperture Radar(EUSAR), Dresden, Germany, 2006,CDROM
    
    [47] Cherniakov M, Saini R, Zuo R, et al. Space-surface bistatic synthetic aperture radar with global navigation satellite system transmitter of opportunity - experimental results. IEE Proc.Radar Sonar Navigation, 2007, 1(6):447-458
    
    [48] Antoniou M, Saini R, Cherniakov M. Results of a space-surface bistatic SAR image formation algorithm. IEEE Transaction on Geoscience and Remote Sensing, 2007,45(11):3359-3371
    
    [49] Ender J H G, Klare J, Walterscheid, et al. Bistatic exploration using spaceborne and airborne SAR sensors: a close collaboration between FGAN, ZESS and FOMAAS. International Geoscience and Remote Sensing Symposium(IGARSS), Denver, USA, 2006:1828-1831
    [50] Walterscheid I, Ender JHG, Klare J, et al. Bistatic image processing for a hybrid SAR experiment between TerraSAR-X and PAMIR. International Geoscience and Remote Sensing Symposium(IGARSS), Denver, USA, 2006:1934-1937
    
    [51] Espeter T, Walterscheid I, Klare J, et al. Synchronization techniques for the bistatic spaceborne/airborne SAR experiment with TerraSAR-X and PAMIR. International Geoscience and Remote Sensing Symposium(IGARSS), Barcelona, Spain, 2007:2160-2163
    [52] Klare J. Bistatic SAR experiments with the TerraSAR-X satellite and the airborne SAR -sensor PAMIR. http://www.fhr.fgan.de/fhr/site/c628_f7_en.pdf
    [53] Gabriel A K, Goldstein R M. Bistatic images from SIR-B. International Geoscience and Remote Sensing Symposium(IGARSS), Amherst, USA, 1985:112-112
    [54] Goldstein R, Rosen P, Werner C. ERS-1 bistatic radar images. International Geoscience and Remote Sensing Symposium(IGARSS), Pasadena, USA, 1994:1-7
    [55] Martinsek D, Goldstein R. Bistatic radar experiment. European Conference on Synthetic Aperture Radar(EUSAR), Friedrichshafen, Germany, 1998:31-34
    
    [56] Cherniakov M, Zeng T, Plakidis E. Ambiguity function for bistatic SAR and its application in SS-BSAR performance analysis. Proc. of IEEE Radar Conference, Huntsville, USA, 2003:343-348
    [57] Zeng T, Cherniakov M, Long T. Generalized approach to resolution analysis in BSAR. IEEE Transaction on Aerospace and Electronic Systems, 2005,41(2):461-474
    [58] Cherniakov M, Saini R, Antoniou M, et al. Experiences gained during the development of a passive BSAR with GNSS transmitters of opportunity. International Journal of Navigation and Observation, 2008, Vol.2008:1-12
    [59] Gebhardt U, Loffeld O, Nies H, et al. Bistatic airborne/spaceborne hybrid experiment: basic consideration. Proc. of SPIE International Symposium on Remote Sensing, Brugge, Belgium,2005:479-488
    [60] Gebhardt U, Loffeld O, Nies H, et al. Bistatic airborne/spaceborne hybrid experiment: simulation and analysis. European Conference on Synthetic Aperture Radar(EUSAR), Dresden, Germany, 2006, CDROM
    [61] Gebhardt U, Loffeld O, Nies H, et al. Bistatic space borne/airborne experiment: geometrical modeling and simulation. International Geoscience and Remote Sensing Symposium (IGARSS), Denver, USA, 2006:1832-1835
    [62] Gebhardt U, Loffeld O, Nies H. Hybrid bistatic SAR experiment TerraPAMIR - geometric description and point target simulation. European Conference on Synthetic Aperture Radar(EUSAR), Friedrichshafen, Germany, 2008:53-56
    [63] Espeter T, Walterscheid I, Klare J, et al. Progress of hybrid bistatic SAR: synchronization experiments and first imaging results. European Conference on Synthetic Aperture Radar(EUSAR), Friedrichshafen, Germany, 2008:217-220
    [64] Weip M. Synchronization of bistatic radar systems. International Geoscience and Remote Sensing Symposium(IGARSS), Alaska, USA, 2004, Vol.3:1000-1003
    [65] Weip M. Time and frequency synchronization aspects for bistatic SAR systems. European Conference on Synthetic Aperture Radar(EUSAR), Ulm, Germany, 2004:395-398
    [66] Weiss M. Determination of baseline and orientation of platforms for airborne bistatic radars. International Geoscience and Remote Sensing Symposium(IGARSS), Seoul, Korea, 2005,Vol.3: 1967-1970
    [67] Weiss M, Marino G Position and orientation estimation of two airborne platforms towards each other. International Geoscience and Remote Sensing Symposium(IGARSS), Barcelona,Spain, 2007:115-118
    [68] Ortiz A M, Loffeld O, Wang R, et al. Motion compensation in bistatic SAR for the hybrid experiment. European Conference on Synthetic Aperture Radar(EUSAR), Friedrichshafen, Germany, 2008:213-216
    [69] Knedlik S, Loffeld O, Gebhardt U. On position and attitude determination requirements for future bistatic SAR experiments. International Geoscience and Remote Sensing Symposium(IGARSS), Denver, USA, 2006: 1216-1219
    [70] Klare J, Walterscheid I, Brenner A R, et al. Evaluation and optimisation of configurations of a hybrid bistatic SAR experiment between TerraSAR-X and PAMIR. International Geoscience and Remote Sensing Symposium(IGARSS), Denver, USA, 2006: 1208-1211
    [71] kalkuhl M, Droste P, Wiechert W, et al. Modular SAR simulator for bi- and multistatic constellations. International Geoscience and Remote Sensing Symposium(IGARSS), Denver, USA, 2006: 1212-1215
    [72] Walterscheid I, Espeter T, Ender J H G. Performance analysis of a hybrid bistatic SAR system operating in the double sliding spotlight mode. International Geoscience and Remote Sensing Symposium(IGARSS), Barcelona, Spain, 2007: 2144-2147
    [73] Baumgartner S V, Rodriguez-Cassola M, Nottensteiner A. Bistatic experiment using TerraSAR-X and DLR's new F-SAR system. European Conference on Synthetic Aperture Radar(EUSAR), Friedrichshafen, Germany, 2008: 57-60
    [74] Horn R, Nottensteiner A, Scheiber R. F-SAR - DLR's advanced airborne SAR system onboard DO228. European Conference on Synthetic Aperture Radar(EUSAR), Friedrichshafen, Germany, 2008: 195-198
    [75] Tsao T, Slamani M, Varshney P, et al. Ambiguity function for a bistatic radar. IEEE Transaction on Aerospace and Electronic System, 1997, 33(3): 1041-1051
    [76] Cardillo G P. On the use of the gradient to determine bistatic SAR resolution. Proc. of Antennas and Propagation Society International Symposium, Dallas, USA, 1990: 1032-1035
    [77] Ender J H G. The meaning of k-space for classical and advanced SAR techniques. Proc. of Physics in Signal and Image Processing, Marseilles, France, 2001: 23-38
    [78] Krieger G, Fiedler H, Hounam D, et al. Analysis of system concepts for bi- and multi-static SAR missions. International Geoscience and Remote Sensing Symposium(IGARSS), Toulouse, France, 2003, Vol. 2: 770-772
    [79] 刘建平,梁甸农,何峰.主星带伴随小卫星编队SAR系统的模糊性分析.系统工程与电子技术,2004,26(10):1429-1431
    [80] 何峰,梁甸农,董臻.星载双基地SAR系统模糊性.国防科技大学学报,2006,28(2):80-84
    [81] Gierull C H. Bistatic synthetic aperture radar. Defence R&D Canada - Ottawa, Tech. Rep. DRDC-OTTAWA-TR-2004-190, http://cradpdf.drdc.gc.ca/PDFS/unc34/p523308.pdf
    [82] Loffeld O, Nies H, Gebhardt U, et al. Bistatic SAR - some reflections on Rocca's smile. European Conference on Synthetic Aperture Radar(EUSAR), Ulm, Germany, 2004: 379-383
    [83] Jackson M C. The geometry of bistatic radar systems. IEE Proc. Communications, Radar and Signal Processing, 1986, 133(7): 604-612
    [84] Belcher D P, Baker C J. Hybrid strip-map/spotlight SAR. Proc. of IEE Colloquium on Radar and Microwave Imaging, London, UK, 1994: 2/1-2/7
    [85] Loffeld O, Nies H, Peters V, et al. Models and useful relations for bistatic SAR processing. IEEE Transaction on Geoscience and Remote Sensing, 2004, 42(10): 2031-2038
    [86] Li F K, Held D N, Curlander C, et al. Doppler parameter estimation for spaceborne synthetic aperture radars. IEEE Transaction on Geoscience and Remote Sensing, 1985, 23(1): 47-56
    [87] Raney R K. Doppler properties of radars in circular orbits. International Journal of Remote Sensing, 1986, 7(9): 1153-1162
    [88] Wang Z S, Wang Z Q, Xu J. The effects of the attitude of circular orbiting SAR on Doppler properties. International Journal of Remote Sensing, 1994, 15(11): 2313-2322
    [89] 来驰攀,刘光炎,林幼权,等.卫星姿态对星载SAR多普勒参数的影响.现代雷达,2006,28(9):15-17
    [90] 王睿,杨汝良.椭圆轨道下雷达多普勒特性统计.电子与信息学报,2004,26(1):107-111
    [91] 何峰,梁甸农,刘建平.星载双基地SAR空间几何关系和信号模型.系统工程与电子技术,2004,26(102):1327-1330
    [92] 李燕平,张振华,邢孟道,等.星机双基地SAR的目标二维频谱计算.自然科学进展,2007,17(12):1699-1706
    [93] Zhe Liu, Jianyu Yang, Xiaoling Zhang, et al. Frequency domain imaging algorithm for spaceborne/airborne hybrid bistatic SAR. International Geoscience and Remote Sensing Symposium(IGARSS), Barcelona, Spain, 2007: 842-845
    [94] Liu Zhe, Yang Jian-yu, Zhang Xiao-ling, et al. An approximated analytical solution for two-dimensional spectrum of spaceborne/airborne hybrid bistatic SAR. International Conference on Communications Circuits and Systems(ICCCAS), Kokura, Japan, 2007: 822-825
    [95] 陈杰,周荫清,李春升.合成孔径雷达卫星姿态指向稳定度与图像质量关系的研究.电子学报,2001,29(12A):1785-1789
    [96] 曹鹏志,顾建政,徐荣庆.星载SAR姿态误差及偏航调整对多普勒特性的影响.哈尔滨工业大学学报,1999,31(1):38-42
    [97] Geudtner D, Zink M, Gierull C, et al. Interferometric alignment of the X-SAR antenna system on the space shuttle radar topography mission. IEEE Transaction on Geoscience and Remote Sensing, 2002, 40(5): 995-1006
    [98] 张秋玲,郑卫平,王岩飞.分布式卫星InSAR系统中天线指向误差分析.测试技术学报,2004,18(2):151-155
    [99] Errico M D, Moccia A. Attitude and antenna pointing design of bistatic radar formations. IEEE Transaction on Aerospace and Electronic System, 2003, 39(3): 949-959
    [100] 刘建平,梁甸农.主星带伴随分布式小卫星雷达系统的波束同步分析.国防科技大学学报,2006,28(2):54-58
    [101] 黄海风,梁甸农.非合作式星载双站雷达波束同步设计.宇航学报,2005,26(5):606-611
    [102] 张永胜,梁甸农,孙造宇,等.时间同步误差对星载寄生式InSAR系统干涉相位的影响分析.宇航学报,2007,28(2):507-512
    [103] Yongsheng Z, Diannong L, Zhen D. Analysis of time and frequency synchronization errors in spaceborne parasitic InSAR system. International Geoscience and Remote Sensing Symposium(IGARSS), Denver, USA, 2006: 3047-3050
    [104] Zhang Xiaoling, Li Hongbo, Wang Jianguo. The analysis of time synchronization error in bistatic SAR system. International Geoscience and Remote Sensing Symposium(IGARSS), Seoul, Korea, 2005, Vol. 7: 4619-4622
    [105] 黄钰林.机载双基地SAR关键技术研究:[博士学位论文].成都:电子科技大学,2008,1-114
    [106] Wang W Q. Clock timing jitter analysis and compensation for bistatic synthetic aperture radar systems. Fluctuation and Noise Letters, 2007, 7(3): L341-L350
    [107] Wang W Q, Ding C B, Liang X D. Time and phase synchronisation via direct-path signal for bistatic synthetic aperture radar systems. IEE Proc. Radar Sonar Navigation, 2008, 2(1): 1-11
    [108] Ting Lei, Tao Zeng, Cheng Hu. Effect of time and frequency synchronization errors on bistatic SAR image formation. European Conference on Synthetic Aperture Radar(EUSAR), Dresden, Germany, 2006, CDROM
    [109] Lewandowski W, Thomas C. GPS time transfer. Proc. of IEEE, 1991, 79(7): 991-1000
    [110] Hahn J, Bedrich S. Common view clock synchronization of remote atomic clocks using GPS and PRARE onboard ERS-2. European Frequency and Time Forum, Brighton, UK, 1996: 393-398
    [111] Dach R, Beutler G, Hugentobler U. Time transfer using GPS carrier phase: error propagation and results. Journal of Geodesy, 2003, 77(1): 1-14
    [112] Larson K M, Levine J. Carrier-phase time transfer. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 1999,46(4):1001-1012
    [113] Kirchner D. Two-way time transfer via communication satellites. Proc. of IEEE, 1991,79(7):983-990
    [114] Krieger G, Younis M. Impact of oscillator noise in bistatic and multistatic SAR. IEEE Geoscience and Remote Sensing Letters, 2006, 3(3):424-428
    [115] Krieger G, Cassola M R, Younis M, et al. Impact of oscillator noise in bistatic and multistatic SAR. International Geoscience and Remote Sensing Symposium(IGARSS), Seoul, Korea, 2005,Vol.2:1043-1046
    [116] Wang W Q. Analytical modeling and simulation of phase noise in bistatic synthetic aperture radar systems. Fluctuation and Noise Letters, 2006, 6(3):L297-L303
    [117] 张永胜,王敏,梁甸农,等.星载寄生式InSAR系统频率同步误差分析.信号处理,2007, 23(6): 927-931
    [118] Yongsheng Zhang, Diannong Liang, Zhen Dong. Analysis of frequency synchronization error in spaceborne parasitic interferometric SAR system. European Conference on Synthetic Aperture Radar(EUSAR), Dresden, Germany, 2006, CDROM
    [119] Liu Rui, Xiong Jintao, Huang Yulin. Analysis of bistatic SAR frequency synchronization. International Conference on Communications Circuits and Systems(ICCCAS), Guilin, China,2006:822-825
    [120] Shengkang Zhang, Ruiliang Yang. Analysis of oscillator phase noise effects on bistatic SAR. European Conference on Synthetic Aperture Radar(EUSAR), Dresden, Germany, 2006,CDROM
    [121] Christoph G, Corey P, Francois P. Mitigation of phase noise in bistatic SAR systems with extremely large synthetic apertures. European Conference on Synthetic Aperture Radar(EUSAR), Dresden, Germany, 2006, CDROM
    [122] Younis M, Metzig R, Krieger G. Performance prediction of a phase synchronization link for bistatic SAR. IEEE Geoscience and Remote Sensing Letters, 2006, 3(3):429-433
    [123] Younis M, Metzig R, Krieger G, et al. Performance prediction and verification for the synchronization link for TanDEM-X. International Geoscience and Remote Sensing Symposium(IGARSS), Barcelona, Spain, 2007:5206-5209
    [124] Wang W Q. Approach of adaptive synchronization for bistatic SAR real-time imaging. IEEE Transaction on Geoscience and Remote Sensing, 2007, 45(9):2695-2700
    [125] Eineder M. Oscillator clock drift compensation in bistatic interferometric SAR. International Geoscience and Remote Sensing Symposium(IGARSS), Toulouse, France, 2003, Vol. 3: 1449-1451
    [126] Weiβ M. Experimental bistatic radar for air surveillance. International Geoscience and Remote Sensing Symposium(IGARSS), Toulouse, France, 2003, Vol. 7: 4335-4337
    [127] 张永胜,梁甸农,董臻.星载寄生式SAR系统频率同步分析.国防科技大学学报,2006,28(2):85-87
    [128] Wang W Q, Liang X D, Ding C B, et al. A phase synchronization approach for bistatic SAR systems. European Conference on Synthetic Aperture Radar(EUSAR), Dresden, Germany, 2006, CDROM
    [129] Nies H, Loffeld O, Natroshvili, et al. Parameter estimation for bistatic constellations. International Geoscience and Remote Sensing Symposium(IGARSS), Seoul, Korea, 2005, Vol. 2: 1038-1042
    [130] Suess M, Riegger S, Pitz W, et al. TerraSARX - design and performance. European Conference on Synthetic Aperture Radar(EUSAR), Cologne, Germany, 2002: 49-53
    [131] Ender J H G, Brenner A R. PAMIR - a wideband phased array SAR/MTI system. IEE Proc. Radar Sonar Navigation, 2003, 150(3): 165-172
    [132] Suchail J L, Buck C, Guijarro J, et al. The envisat-1 advanced synthetic aperture radar instrument. International Geoscience and Remote Sensing Symposium(IGARSS), Hamburg, Germany, 1999, Vol. 2: 1441-1443
    [133] Pottier E, Famil L F. Polarimetric airborne SAR sensors, http://earth.esa.int/polsarpro/manuals/021_polarimetric_airborne_sensors.pdf
    [134] Greidanus H, Hoogeboom P. PHARUS as a research platform for tropical forest radar monitoring. Proc. of INDREX Final Results Workshop, Jakarta, Indonesia, 1999: 73-81
    [135] Torres R, Simpson D. The TerraSAR-L system. European Conference on Synthetic Aperture Radar(EUSAR), Ulm, Germany, 2004: 41-44
    [136] Christensen E L, Dall J. EMISAR: A dual-frequency, polarimetric airbome SAR. International Geoscience and Remote Sensing Symposium(IGARSS), Toronto, Canada, 2002, Vol. 3: 1711-1713
    [137] 郝祖金.弹载星载应用雷达有效载荷.北京:航空工业出版社,2005,172-242
    [138] 张祖稷,金林,束咸荣.雷达天线技术.北京:电子工业出版社,2005,1-169
    [139] 章仁为.卫星轨道姿态动力学与控制.北京:北京航空航天大学出版社,1998,1-184
    [140] Zhou Peng, Pi Yiming. Precise analytical formulae of spacebome SAR's Doppler parameters in elliptical orbits. Chinese Journal of Electronics, 2008, 17(3): 579-582
    [141] Johnson W T K. Magellan imaging radar mission to Venus. Proc. of IEEE, 1991, 79(6): 777-790
    [142] Elachi C, Im E, Roth L E, et al. Cassini titan radar mapper, Proc. of IEEE, 1991, 79(6): 867-880
    [143] 曲卫,贾鑫,吴彦鸿.基于通信卫星信号的星地双(多)基地雷达及关键技术.装备指挥技术学院学报,2004,15(6):68-71
    [144] Li F K, Johnson W T K. Ambiguities in spaceborne synthetic aperture radar systems. IEEE Transaction on Aerospace and Electronic System, 1983, 19(3): 389-397
    [145] Rutman J. Characterization of phase and frequency instabilities in precision frequency sources: fifteen years of progress. Proc. of IEEE, 1978, 66(9): 1048-1075
    [146] Rutman J, Walls F L. Characterization of frequency stability in precision frequency sources. Proc. of IEEE, 1991, 79(7): 952-960
    [147] D. W. Allan. Time and frequency characterization, estimation and prediction of precision clocks and oscillators. IEEE Transaction on Ultrasonics, Ferroelectronics, and Frequency Control, 1987, 34(6): 647-654
    [148] Vannicola V C, Varshney P K. Spectral dispersion of modulated signals due to oscillator phase instability: white and random walk phase model. IEEE Transactions on Communications, 1983, 31(7): 886-895
    [149] Demir A, Mehrotra A, Roychowdhury J. Phase noise in oscillators: a unifying theory and numerical methods for characterizations. IEEE Transactions on Circuits and Systems-Ⅰ: Fundamental Theory and Applications, 2000, 47(5): 655-674
    [150] 郭衍莹.现代电子设备的频率稳定度.北京:宁航出版社,1989,1-78
    [151] Filler R L. The acceleration sensitivity of quartz crystal oscillators: a review. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 1988, 35(3): 297-305
    [152] Massonnet D. The interferometric cartwheel: a constellation of passive satellites to produce radar images to be coherently combined. International Journal of Remote Sensing, 2001, 22(12): 2413-2430
    [153] Madsen S N. Estimating the Doppler centroid of SAR data. IEEE Transaction on Aerospace and Electronic Systems, 1989, 25(2): 134-140
    [154] Cumming I G, Kavanagh P F, Ito M R. Resolving the Doppler ambiguity for spaceborne synthetic aperture radar. International Geoscience and Remote Sensing Symposium (IGARSS), Zurich, Switzerland, 1986: 1639-1643
    [155] Bamler R, Runge H. PRF-Ambiguity resolving by wavelength diversity. IEEE Transaction on Geoscience and Remote Sensing, 1991,29(6):997-1003
    [156] Wong F H, Cumming I G. A combined SAR Doppler centroid estimation scheme based upon signal phase. IEEE Transaction on Geoscience and Remote Sensing, 1996, 34(3):696-707
    [157] Chang C Y, Curlander J C. Application of the multiple PRF technique to resolve Doppler centroid estimation ambiguity for spaceborne SAR. IEEE Transaction on Geoscience and Remote Sensing, 1992, 30(5):941-949
    [158] Kalkuhl M, Noh K, Loffeld O, et al. High precision simulation of near earth satellite orbits for SAR applications. Proc. of International Conference on Computational Science, Krakau, Poland, 2004:228-235
    [159] Hedin A E. MSIS-86 thermospeheric model. Journal of Geophysical Research, 1987, 92(A5):4649-4662
    [160] Nies H, Loffeld O, Natroshvili, et al. A solution for bistatic motion compensation. International Geoscience and Remote Sensing Symposium(IGARSS), Denver, USA,2006:1204-1207

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700