用户名: 密码: 验证码:
地质动力条件对平煤八矿煤与瓦斯突出控制作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
煤与瓦斯突出是一种复杂的矿井动力现象,严重威胁煤矿安全生产。研究发现,板块运动、地质构造、构造凹地、地应力等地质动力条件对煤与瓦斯突出的发生具有控制作用。
     通过对板块运动、地形地貌、区域构造的研究,查明平顶山矿区地质构造、构造块体的时间空间形态。运用地质动力区划方法划分平顶山天安煤业公司八矿Ⅰ~Ⅴ级活动断裂,构建构造活动的格架,并运用分形理论对查明的活动断裂进行研究。结果表明,华北聚煤区南缘逆冲推覆构造带对矿区的挤压,造成矿区的构造应力集中,增加了矿区煤岩体的弹性能;活动断裂的逆冲造成断裂面受压,也产生构造应力集中;断裂的方位角与最大主应力方向夹角、断裂的活动性等对煤与瓦斯突出具有控制作用。
     通过数值模拟手段模拟煤层顶板岩性组合对突出的影响。结果表明,砂质顶板并不是通过自身重力对下伏煤层的突出产生影响,而是巨厚砂质顶板聚集了巨大的弹性能,为突出提供动力。通过岩体应力状态计算分析,得知断裂对突出的影响表现为在煤层顶板形成应力升高区、应力梯度区。通过能量计算,得出井田戊9-10煤层顶板的弹性潜能,最大值为0.025MJ/m~3,聚集的弹性潜能足够支持煤与瓦斯突出所需的能量。通过井田弹性潜能的分布和突出点的对比,突出区域弹性潜能大于0.015MJ/m~3。
Coal and gas outburst is a kind of complex dynamic phenomenon, and serious threat to mine production safety. Research shows that geological dynamic conditions such as plate motion, geological structures, tectonic valley, stress control coal and gas outburst.
     After the research on the plate motion, topography, regional tectonic, find out the space and time state of geological structure and tectonic block of Pingdingshan mine area.Ⅰ~Ⅴlevel active faults are determined by method of geological dynamic regionalization, what’s more, construct tectonic activity grillage, and study on ascertained active faults using fractal theory. Results show that nappe belt in the south of North China coal-accumulating district thrust the mining area, causing tectonic stress concentration and increasing the elastic energy of coal and rock in the mining area; Active faults thrust cause pressure in faults face, and generate tectonic stress concentration; The inclined angle between fracture azimuth and the maximum principal stress direction, the activity of fracture and other factors control coal and gas outburst.
     Numerical simulation method is used to simulate the influence of coal seam roof lithologic combination on outburst, show that sandy roof influences underlie coal seam outburst by the huge elastic energy resilience gathered in thick sandy roof, which provides motive power, not the self-gravity. Through the rock stress state calculation and analysis, learn that the influence of fault on the outburst shows in stress increased region and stress grads region generating in coal seam roof. Through energy calculation, know the elastic proficiency of Wu9-10 coal seam roof, the maximum is 0.025 MJ/m~3, gathered elastic potential supports enough energy for coal and gas outburst. By contrasting the elastic potential distribution and outburst spot, make sure elastic potential value in outburst region is over 0.015 MJ/m~3.
引文
[1] Ettinger, I. L., Shterenberg, L. E., Yablokov, V. S. The relationship between the structures of coal seams and the phenomenon of sudden outbursts [J]. Ugol, 1953(11): 28-31.
    [2] Pooley, F. D. Outburst coal: occurrence in West Wales anthracite [J]. Colliery Guardian, 1967(215): 241-243.
    [3] Szirtes, L. Methods used at Pecs Collieries for the prevention of gas outbursts [A]. UNECE Symp On Coal & Gas Outbursts [C], Nimes, France, 1964, 11: 135-47.
    [4]于不凡.谈煤和瓦斯突出的机理[J].煤炭科学技术,1979(8):34-42.
    [5]А.И.Кравцов,Л.С.Вольпова.在地质勘探阶段按岩心分裂成圆片预测岩石突出危险的可能性[A].见:国外煤和瓦斯突出资料汇编(第二集)[C].重庆:科学技术文献出版社重庆分社, 1979,11:160-162.
    [6] Frodsham K, Gayer. R. A. The impact of tectonic deformation upon coal seams in the South Wales coalfield [J]. Int J coal geol., 1999, 38(3-4): 297-332.
    [7] Bibler C. J, Marshall J. S, Pilcher, Status of worldwide coal mine methane emissions and use. [J]. Int J coal geol., 1998, 35 (1): 283-310.
    [8]周世宁,林柏泉.煤层瓦斯赋存及流动规律[M].北京:煤炭工业出版社,1998.14-16,69.
    [9]焦作矿业学院瓦斯地质研究室.瓦斯地质概论[M].北京:煤炭工业出版社, 1991.
    [10]孔留安.“瓦斯地质”探源.[J].河南理工大学学报(自然科学版),2006,25(3):179-182.
    [11]袁崇孚.构造煤和煤与瓦斯突出[J].瓦斯地质,1985(创刊号):45-52.
    [12]彭立世,陈凯德.构造煤和煤与瓦斯突出机制[J].焦作矿业学院学报,1988(3):23-25.
    [13]曹运兴,彭立世.顺煤断层的基本类型及其对瓦斯突出带的控制作用[J].煤炭学报, 1995, 20(4):413-417.
    [14]刘咸卫,曹运兴.正断层两盘的瓦斯突出分布特征及其地质成因浅析[J].煤炭学报,2000, 25(6):571-575.
    [15]谭学术,鲜学福,邱贤德.地质构造应力的分布与煤和瓦斯突出关系的光弹试验研究[J].力学与实践,1986(2):37-41.
    [16]梁金火.矿区地质构造对煤与瓦斯突出地段的控制[J].中国煤田地质,1991(2):33-37.
    [17]黄德生.地质构造控制煤与瓦斯突出的探讨[J].地质科学,1992(A12):201-207.
    [18]王生全,龙荣生,孙传显.南桐煤矿扭褶构造的展布规律及对煤与瓦斯突出的控制[J].西安科技学院学报,1994,14(4):350-354.
    [19]王树玉.煤矿五大灾害事故分析和防治对策[M].徐州:中国矿业大学出版社,2006,4:192-193.
    [20]李建铭.煤与瓦斯突出防治技术手册[M].徐州:中国矿业大学出版社,2006,4:198-203.
    [21]段克信.北票矿区地质动力区划[J].煤炭学报,1995,20(4):337-341.
    [22]陈松,桂和荣,马艳平,孙林华.平顶山矿区含煤地层沉积环境及聚煤特征[J].煤炭工程:2010,6:73-75.
    [23]李祥根.中国新构造运动概论[M].北京:地震出版社,2003,3:398.
    [24]马宗晋,杜品仁,洪汉净.地球构造与动力[M].广州:广东科技出版社,2003,10:277.
    [25]国家地震局.中国岩石圈动力学地图集[M].北京:中国地图出版社.1989,10.
    [26]邓起东.中国活动构造研究的进展与展望[J].地质论评,2002,48(2):168-177.
    [27]裴放.平顶山市三条主要断裂及其对矿产的影响[J].河南地质,1999,17(2):95-99.
    [28]陈学华,孔祥义.岩体力学[M].长春:吉林大学出版社,2006,8:105-114.
    [29]于不凡.煤矿瓦斯灾害防治及利用技术手册[M].北京:煤炭工业出版社,2000,8:428-460.
    [30]梁冰,李凤仪.深部开采条件下煤和瓦斯突出机制的研究[J].中国科学技术大学学报,2004,34(增1):399–406.
    [31]赵阳升,胡耀青,杨栋,等.三维应力下吸附作用对煤岩气体渗流规律影响的实验研究[J].岩石力学与工程学报,1999,18(6):651-653.
    [32]靳钟铭,赵阳升,贺军,等.含瓦斯煤层力学特性的实验研究[J].岩石力学与工程学报,1991, 10(3):271-280.
    [33]唐巨鹏,潘一山,李成全,等.有效应力对煤层气解吸渗流影响试验研究[J].岩石力学与工程学报,2006,25(8):1563-1567.
    [34]潘一山,李忠华,唐鑫.阜新矿区深部高瓦斯矿井冲击地压研究[J].岩石力学与工程学报, 2005,24(增1):5202-5205.
    [35]卢平,沈兆武,朱贵旺,等.含瓦斯煤的有效应力与力学变形破坏特性[J].中国科学技术大学学报,2001,31(6):686-693.
    [36]张宏伟,张文军.地壳应力状态与地应力测量[M].赤峰:内蒙古科学技术出版社,1999.
    [37]韩军,张宏伟,宋卫华,王震.煤与瓦斯突出矿区地应力场研究[J].岩石力学与工程学报, 2008,27(增2):3852-3859.
    [38]张宏伟,韩军,宋卫华,李胜.地质动力区划[M].北京:煤炭工业出版社,2009,5.
    [39]张宏伟.活动断裂研究与矿井动力现象预测[J].煤炭学报,1998,23(2):113-118.
    [40] Mandelbrot. B. B., 1967. How long is the coast of Britain? Statistical self-Similarity and fractal dimension, Science, 156: 636~638.
    [41] Mandelbrot B B. Fractals: Form, Chance, and Dimension [M]. New York: WH Freeman and Company, 1977.
    [42] Mandelbrot B B. The Fractal Geometry of Nature [M]. New York: WH Freeman and Company, 1982.
    [43] Donald L Turcottc. Fractals in Geology and Geophysics [J]. Pure and Applied Geophysics, 1989, 131.
    [44] Scholz C H, Aviles C A. Fractal dimension of the 1906 San Address fault and 1915 Pleasant Valley faults [abstract]. Earthquakes Notes,1985, 55: 20.
    [45] Barton C C, Larsen E. Fractal geometry of two-dimensional fracture networks at Yucca mountain, southwest Nevada [C]// Stephenson. Proceeding of the International Symposium on Fundamentals of Rock Joints. Sweden: Bjorkklliden, 1985,77-84.
    [46] Hirata T. Fractal dimension of fault systems in Japan: Fractal structure in rock fracture geometry at various scales [J]. Pure and Appl. Geology, 1989, 131: 157-170.
    [47]温彦良.地质动力区划和分形理论在煤与瓦斯突出区域预测中的应用[D].阜新:辽宁工程技术大学,2003,12.
    [48]陆菜平.组合煤岩的强度弱化减冲原理及其应用[D].徐州:中国矿业大学,2008,5.
    [49]窦林名等.组合煤岩冲击倾向性特性试验研究[J].采矿与安全工程学报,2006,3:43-46.
    [50]李纪青等.应用煤岩组合模型方法评价煤岩冲击倾向性探讨[J].岩石力学与工程学报,2005, 24(增1):4805-4810.
    [51]张飞等.受载组合煤岩声发射效应研究[J].煤矿安全,2010(01):66-68.
    [52]文光才.煤与瓦斯突出能量的研究[J].矿业安全与环保,2003,30:1-3+9.
    [53]江林华等.平顶山十矿戊9-10煤层瓦斯含量分布特征[J].煤矿安全,2008(11):83-86.
    [54]赵发军等.新安矿煤与瓦斯突出规律及主控因素分析[J].现代矿业,2010,3(3):119-122.
    [55]鲜学福等.煤与瓦斯突出的激发和发生条件[J].岩土力学,2009,30(3):577-581.
    [56]蓝航等.煤岩动力灾害能量机理的数值模拟[J].煤炭学报,2010,35(增):10-14.
    [57]谢雄刚等.煤与瓦斯突出过程中能量动态平衡[J].煤炭学报,2010,35(7):1120-1124.
    [58]韩军,张宏伟.构造演化对煤与瓦斯突出的控制作用[J].煤炭学报,2010,35(7):1125-1130.
    [59]吴兴荣.坚硬顶板区域冲击矿压防治的研究[J].能源技术与管理,2007,1:17-19.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700