用户名: 密码: 验证码:
多通道SAR系统地面运动目标信息获取方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
雷达成像技术作为一种全天时、全天候、远距离的信息获取手段在国防以及民用领域都具有重大应用价值,它大大提高了雷达信息获取能力,为目标识别创造了前所未有的机会,是雷达技术发展的一个重要里程碑。地面运动目标检测是军用合成孔径雷达系统所必须具备的一项基本功能,也是其信号处理中的一个重要问题。由于沿航迹向多通道SAR比单通道SAR能够提供更多的系统自由度,具有很好的杂波抑制性能,能在地杂波或者海杂波中清楚地区分出运动目标并且能够正确地估计出其运动参数,因而广泛地应用于战场感知和侦查中。本论文以正侧视多通道SAR-GMTI系统为对象,具体研究内容如下:
     第一部分,为了获得水平和垂直的多个相位中心信息,提出了一种新的卫星基线斜置并结合相位中心偏置天线技术的星载三通道SAR-GMTI方法。研究了基线斜置时的等效相位中心补偿函数,给出了在该情况下新的系统约束条件,并在此基础上分析了基线斜置角对检测盲速的影响。
     第二部分,针对多通道SAR-GMTI系统中通道间存在幅度、相位误差的问题,分析了幅、相误差对静止目标抑制和运动目标检测的影响。提出了一种以伪随机码作为校准源进行通道幅、相误差计算的方法,该方法利用校准源发射伪随机码信号,然后在各接收通道中利用相关解扩计算出幅度和相位误差,并结合卡尔曼滤波器来消除噪声对误差计算的影响。与传统的傅立叶变换相比,所提方法在低信噪比的情况下具有更好的误差测量效果。
     第三部分,单通道系统对落入主瓣杂波内的慢速运动目标难以检测,而多通道SAR-GMTI具有良好的杂波对消性,不仅能够检测慢速运动目标,而且还能对目标进行参数估计和定位处理。因此,本文着重对多通道SAR-GMTI的误差问题进行了分析。同时,在多输入多输出合成孔径雷达的基础上,提出使用双卫星、双工作频率实现地面快速运动目标检测、成像和参数估计的方法。利用广义二阶keystone变换对提取出的运动目标进行距离徙动校正,针对快速运动目标的多普勒模糊问题,使用修正的离散调频傅立叶变换结合最小波形熵搜索完成目标多普勒参数估计,利用数值搜索的方法对不同工作频率下的速度集合进行交集求解得到目标真实速度值。
     第四部分,不同于匀速运动目标,当目标具有加速度时会使回波产生方位向上的三次相位,影响静止目标抑制和多普勒参数估计,为此,提出了一种基于三次相位补偿的参数估计方法。在分析信号模型的基础上,通过在时间-调频率平面上采用类似Dechirp和一维搜索的方法实现三次相位的补偿,并提出了一种基于三次相位补偿的方位向速度估计方法。
     第五部分,研究了同步轨道卫星结合机载双通道SAR的双基地SAR-GMTI系统。在分析运动目标回波信号的线性调频特性后,根据该特性利用分数阶傅立叶变换进行多普勒参数估计,以此构造新的补偿函数和匹配滤波器,并对双基地系统中的时间、频率不同步影响运动目标聚焦成像的问题进行了详细分析。从星机双基地SAR-GMTI的运动误差几何模型出发,分析出误差对运动目标参数的影响,并给出了相应的补偿因子。特别针对地势起伏和斜视角不能忽略的情况,分析了误差补偿的偏移量并提出了有效的补偿方法。
Due to its all-weather, all day/night and long range, radar imaging technique canenhance radar’s information acquisition capability greatly, thus exhibits great value inboth civilian and military applications. It provides strange change for targetidentification. At the same time, it is also a landmark for development of radartechniques. Ground Moving Target Indication (GMTI) is a necessary function of theSAR system, especially in military SAR application and signal processing. Since two ormore antennas (channels) can provide more degrees of freedom, multi-channelalong-track SAR has powerful ability to suppress clutter and distinguish targets movingon land or water from surface clutters over a large area. Thus it has been usedextensively in air-to-ground surveillance and reconnaissance. The primary contributionsof this dissertation, which is devoted to the above aspects, are summarized as below:
     1. In order to obtain a number of horizontal and vertical phase center information,a novel spaceborne SAR-GMTI with three-channel is proposed, which is based onslant-placed baseline and displaced phase center antenna. The compensation functionfor equivalent phase center with slant-placed baseline is analyzed. New constraint of thesystem and analysis of blind velocity relative to slant-placed antenna are also given.
     2. Aiming at channel errors in multi-channel SAR-GMTI, the influence of errorson clutter suppression and moving target detection is analyzed. A novel method ofamplitude and phase errors calculation is presented based on the PN code. It transmits aPN code from calibration source, and use decorrelation to get amplitude and phaseerrors in each receiving channel. Finally, Kalman filter is applied to eliminate the effectof noise. Compared with the traditional Fourier transform, the proposed method hasbetter effects in the case of low SNR.
     3. Multi-channel SAR-GMTI has a good character of clutter cancellation, it is notonly able to detect slow moving targets, but also on the target parameter estimation andpositioning processing. Therefore, the errors of multi-channel SAR-GMTI wereanalyzed in detail. Based on the multiple-input multiple-output synthetic aperture radar,an approach with dual-satellites dual frequency for detection, imaging and parametersestimation of the ground fast moving target is proposed. General two-order keystonetransform is employed to eliminate range migration, modified discrete chirp-Fouriertransform and least waveform entropy are applied to Doppler parameters estimation. Forthe Doppler ambiguity of fast moving target, velocity can be obtained by search ofdifferent frequency data.
     4. Different from the target of uniform motion, moving target makes cubic phasewhen it has acceleration. It affects clutter suppression and Doppler parameter estimation,so a parameter estimation method based on cubic phase compensation is proposed.Based on the analysis of signal model, phase compensation is achieved by dechirp andone-dimensional search in time-chirp distribution. And velocity estimation is proposedbased on the cubic phase compensation.
     5. A bistatic SAR-GMTI system which is the combination of geosynchronoussatellite and airborne dual-channel SAR is researched. According to the analysis ofmoving target signal characteristics, new compensation function and matched filter areconstructed by FrFT. The problem of imaging affected by time and frequencyasynchronization is analyzed in detail. Based on the signal geometry, motion errorinfluence on parameters of moving target is deduced, and the correspondingcompensation factors are also proposed. Especially for the case when relief and squintcannot be ignored, offset error compensation and an effective compensation methodwere obtained.
引文
[1] Carrara W G, Goodman R S, Majewski R M. Spotlight synthetic apertureradar:signal processing algorithms[M]. Boston: Artech House,1995.
    [2]张直中.机载和星载合成孔径雷达导论[M].北京:电子工业出版社,2004.
    [3] Graham L C. Synthetic interferometer radar for topographic mapping[J]. Proc. ofIEEE,1974,62(6):763-768.
    [4]魏钟铨.合成孔径雷达卫星[M].北京:科学出版社,2001.
    [5]张澄波.综合孔径雷达原理、系统分析与应用[M].北京:科学出版社,1989.
    [6] Wiley C A. Synthetic aperture radar[J]. IEEE Trans.on AES,1985,21(3):440-443.
    [7] Wiley C. Pioneer award acceptance remarks[J]. IEEE Trans.On AES,1986,21(3):433-433.
    [8] Sherwin C W, Ruina J P, Rawcliffe R D. Some early developments in syntheticaperture radar systems[J]. IRE Trans. On military electronics,1962,6(2):111-115.
    [9] Ausherman D A, Kozma A, Walker J L. Developments in radar imaging[J]. IEEETrans.on AES,1984,20(4):363-400.
    [10] Elahci C, Bicknell T, Jordan R L, et al. Spacebome synthetic aperture imagingradars: application, techniques, and technology[J]. Proc. of IEEE,1982,70(10):1174-1209.
    [11] Raney R K, Luscombe A P. Radarsat[J]. Proc of IEEE,1991,79(6):839-849.
    [12] Horn R. E-SAR--The experiment airborne L/C band SAR system of DLR[C].Proc. of IGARSS,1988:1025-1026.
    [13] Ender J H L, Brenner A R. PAMIR-a wideband phased array SAR-MTI system [J].IEE Proc. Radar Sonar Navig.,2003,150(3):165-172.
    [14] Hensley W H, Doerry A W, Walker B C. Lynx: a high-resolution syntheticaperture radar[C]. SPIE Aerosense,1999,3704.
    [15]保铮,邢孟道,王彤.雷达成像技术[M].北京:电子工业出版社,2005.
    [16] Raney R K. Synthetic aperture imaging radar and moving targets[J]. IEEETrans.Aerosp. Electron. Syst.,1971,3:499-505.
    [17] Freeman A. Simple MTI using synthetic aperture radar[C]. Proc.of IGARSS,1984:65-69.
    [18] Barbarossa S, Farina A. A novel procedure for detecting and focusing movingobjects with SAR based on the Wigner-Ville distribution[C]. IEEE InternationalRadar Conference,1990:44-50.
    [19] Barbarossa S. Detection and imaging of moving objects with synthetic apertureradar[J]. Part I: Optional Detection and Parameter Estimation Theory, IEEProc.,1992(1):79-88.
    [20] Chen Hern-chung, Mcgillem C D. Target motion compensation by spectrumshifting in synthetic aperture radar[J]. IEEE Trans. Aerosp. Electron. Syst.,1992,28(3):895-901.
    [21] Moreira J R,Wolfgang Keydel. A new MTI-SAR approach using the reflectivitydisplacement method [J]. IEEE Trans. Geosci. Remote Sens.,1995,33(5):1238-1244.
    [22] Perry R P, Dipietro R C, Fante R L. SAR imaging of moving targets[J]. IEEETrans.on AES,1999,35(1):188-200.
    [23] Fienup J R. Detecting moving targets in SAR imagery by focusing[J]. IEEE Trans.on AES,2001,37(3):794-809.
    [24] Dias J, Marques P. Moving targets detection and trajectory parameters estimationusing a single SAR sensor[J]. IEEE Trans. on Aerosp. Electron. Syst.,2003,39(2):604-624.
    [25] Wang G, Xia X, Chen V C. Dual-speed SAR imaging of moving targets[J]. IEEETrans. on Aerosp. Electron. Syst.,2006,42(1):368-379.
    [26] Lightstone L, Faubert D, Rempel G. Multiple phase center DPCA for airborneradar[C]. Proceedings of IEEE National Radar Conference,1991:36-40.
    [27] Wang H S C. Mainlobe clutter cancellation by DPCA for space-based Radars[C].Aerospace Applications Conference,1991:124-128.
    [28] Nohara T J. Derivation of a3-Channel DPCA/monopulse radar using phasedarrays[C]. IEEE International Radar Conference,1994:243-246.
    [29] Barbarossa S, Farina A. Space-time-frequency processing of synthetic apertureradar signals[J]. IEEE Trans. Aerosp. Electron. Syst.,1994,30(2):341-358.
    [30] Richardson P G. Analysis of the adaptive space time processing technique forairborne radar[J]. IEE Proc. Radar Sonar Navig,1994,141(4):187-195.
    [31] Klemm R. Introduction to space-time adaptive processing[J]. Electronics&Communication Engineering Journal,1999,5-12.
    [32]王永良,彭应宁.空时自适应信号处理[M].北京:清华大学出版社,2000.
    [33] Richard E C. Dual baseline and frequency along-track interferometry[C]. Proc.ofIEEE,1992:1585-1588.
    [34] Barnler R, Hartl P. Synthetic aperture radar interferometry[J].InverseProblems.1998,14:1-54.
    [35] Frasier S J. Dual-beam interferometry for ocean surface current vector mapping[J].IEEE Trans. Geosci. Remote Sens.,2001,39(2):401-414.
    [36] Kim Duk-jin, Moon W M, Imel D A, et al. Remote sensing of ocean waves andcurrents using NASA(JPL) AIRSAR along-track interferometry(ATI)[C]. Proc.ofIGARSS,2002,2:931-933.
    [37] Brennan L E, Reed I S. Theory of adaptive radar[J]. IEEE Transactions onAerospace Electron System,1973,9(2):237-252.
    [38] Reed I S, Mallet J D, Brennan L E. Rapid convergence rate in adaptive arrays[J].IEEE Trans. on Aerosp. Electron. Syst.,1974,10(6):853-863.
    [39] Bao Zheng, Liao Gui-sheng, Wu Ren-biao, et al. Adaptive spatial-temporalprocessing for airborne radars[J]. Chinese Journal of Electronics,1993,2(1):1-7.
    [40]廖桂生.相控阵天线AEW雷达时-空二维自适应处理[D].博士学位论文,西安电子科技大学,1992.
    [41]吴仁彪.机载相控阵雷达时空二维自适应滤波的理论与实现[D].博士学位论文,西安电子科技大学,1993.
    [42]王永良.新一代机载预警雷达的空时二维自适应处理[D].博士学位论文,西安电子科技大学,1994.
    [43] Cerutti-Maori D, Klare J, Brenner A, et al. Wide area traffic monitoring with theSAR/GMTI system PAMIR[J]. IEEE Trans. on Geosc. Remote Sens.-SpecialIssue,2008,46(10):3019-3030.
    [44] Richardson P G. Relationships between DPCA and adaptive space-timeprocessing techniques for clutter suppression[C]. IEEE International RadarConference, Paris,1994:295-300.
    [45] Nohara T J. Comparison of DPCA and STAP for space-based radar[C]. IEEEInternational Radar Conference,1995:113-119.
    [46]龚耀寰.机载雷达相位中心偏移天线系统的性能[J].电子学报,1995,23(9):24-27.
    [47]杨垒.多通道SAR-GMTI方法研究[D].博士学位论文,西安电子科技大学,2009.
    [48]时公涛.基于干涉图的多通道SAR地面慢动目标自动检测技术研究[D].博士学位论文,国防科学技术大学,2009.
    [49] Whelan D A, Filip A, Koss J J. Global space-based ground surveillance missionutility and performance of Discoverer II[C]. IEEE Aerospace ConferenceProceedings, March2000:1-11.
    [50]吕孝雷.机载多通道SAR-GMTI处理方法的研究[D].博士学位论文,西安电子科技大学,2008.
    [1] Curlander J C, McDonough R N. Synthetic aperture radar: system and signalprocessing[M]. Jone Wiley&SONS, Inc.,1991.
    [2]保铮,邢孟道,王彤.雷达成像技术[M].北京:电子工业出版社,2005.
    [3] Mehrdad Soumekh. Synthetic aperture radar signal processing with MATLABalgorithms[M]. Jone Wiley&SONS, Inc.,1991.
    [4]姚迪,龙腾.合成孔径雷达实时距离徙动校正算法研究[J].系统工程与电子技术,2006,28(8):1128-1130.
    [5]代海军,谢名,罗代升,等. SAR距离-多普勒成像算法中的距离徙动及校正[J].四川大学学报,2007,44(6):1263-1267.
    [6]郑明洁.合成孔径雷达动目标检测和成像研究[D].博士学位论文,中国科学院研究生院,2003.
    [7]郑明洁,杨汝良.一种改进的DPCA运动目标检测方法[J].电子学报,2004,32(9):1429-1432.
    [8]张英,李景文.基于DPCA的机载SAR-MTI系统误差分析及补偿方法研究[J].电子学报,2003,31(12A):2031-2034.
    [9]张焕胜.机载SAR地面运动目标检测与成像技术研究[D].博士学位论文,中国科学院电子学研究所,2006.
    [10]王永良,陈建文,吴志文.现代DPCA技术研究[J].电子学报,2000,28(6):118-121.
    [11]钱江,吕孝雷,邢孟道,等.机载三通道SAR/GMTI快速目标运动参数估计[J].西安电子科技大学学报,2010,37(2):235-241.
    [12]高飞,毛士艺,袁运能,等.基于原始数据域的星载双通道SAR-GMTI研究[J].电子学报,2005,33(12):2105-2110.
    [13]武其松,邢孟道,保铮.双通道MIMO-SAR运动目标成像[J].系统工程与电子技术,2010,32(5):921-926.
    [14]李亚超,李晓明,邢孟道,等.天线斜置情况下三通道SAR-GMTI技术研究[J].电子与信息学报,2009,31(3):578-582.
    [15]吕孝雷,苏军海,邢孟道,等.三通道SAR-GMTI误差校正方法的研究[J].系统工程与电子技术,2008,30(6):1037-1042.
    [16]何峰,梁甸农,刘建平.星载双基地SAR干涉测高误差分析[J].系统工程与电子技术,2005,27(9):1519-1522.
    [17]史洪印,周荫清,陈杰.同步轨道星机双基地三通道SAR地面运动目标指示算法[J].电子与信息学报,2009,31(8):1881-1885.
    [18] Sharma J J, Gierull C H, Collins M J. Compensating the effects of targetacceleration in dual-channel SAR-GMTI[J]. IEE Proc-Radar Sonar Navig,2006,153(1):53-62.
    [19]李宏,秦玉亮,李彦鹏,等.基于FrFT的LFM相参脉冲信号多普勒频率变化率估计算法[J].电子与信息学报,2010,32(11):2718-2723.
    [20] Li Gang, Xu Jia, Peng Ying-ning, et al. Bistatic linear antenna array SAR formoving target detection, location, and imaging with two passive airborne radars[J].IEEE Transactions on Geoscience and Remote sensing,2007,45(3):554-565.
    [21] Sun Hong-bo, Liu Guo-sui, Gu Hong, et al. Application of the fractional Fouriertransform to moving target detection in airborne SAR[J]. IEEE Transactions onAerospace and Electronic System,2002,38(4):1416-1424.
    [22] Amin A S, Soraghan J J. A new chirp scaling algorithm based on the fractionalFourier transform[J]. IEEE Trans.Signal Processing Lett.,2005,12(10):705-708.
    [23] Tao Ran, Deng Bing. Sampling and sampling rate conversion of band limitedsignals in the fractional Fourier transform Domain[J]. IEEE Trans. SignalProcessing,2008,56(1):158-171.
    [24] Ozaktas H M, Arikan O, Kutay M A, et al. Digital computation of the fractionalFourier transform[J]. IEEE Transactions on Signal Processing,1996,44(9):2141-2150.
    [25] Sun Hong-bo, Guo Xin, Gu Hong, et al. Modified discrete chirp-Fourier transformand its application to SAR moving target detection[J]. Acta Electronica Sinica,2003,31(1):1-4.
    [26] Xiao Di, Zhang Lan-yue. The parameters estimation of underwater transient signalbased on FRFT[C].2011International Conference on Electronic and MechanicalEngineering and Information Technology (EMEIT),2011:3781-3784.
    [27] Sun Hua-dong, Zhang Li-zhi, Jin Xue-song. Parameter estimations based onDPCA-FrFT algorithm for three-channel SAR-GMTI system[C].2011International Conference on Intelligent Computation Technology and Automation(ICICTA),2011:640-644.
    [28] Chen Xiao-long, Song Jie, Guan Jian, et al. Moving target detection at sea basedon fractal characters in FRFT domain[C].2011IEEE Radar Conference(RADAR),2011:001-005.
    [29] Tao Ran, Li Yan-Lei, Wang Yue. Short-time fractional Fourier transform and itsapplications[J]. IEEE Transactions on Signal Processing,2010,58(5):2568-2580.
    [1] Callow H J, Saebo T O, Hansen R E. Towards robust quality assessment of SARimagery using the DPCA algorithm[C]. Oceans2005-Europe,2:1095-1100.
    [2] Lightstone L, Faubert D, Rempel G. Multiple phase centre DPCA for airborneradar [C].1991IEEE National Radar Conference,1991:36-40.
    [3] Fielding P J. GMTI performance estimation for airborne E-scan radar employingDPCA motion compensation[C]. IEE Conference Publication,2002,490:286-290.
    [4] Chapin E, Chen C W. GMTI along-track interferometry experiment[J]. IEEE Trans.on Aerosp, Electron. Syst.,2006,21(3):15-20.
    [5] Sikaneta I, Gierull C. Ground moving target detection for along-trackinterferometric SAR data[C]. IEEE Aerospace Conference Proceedings,2004,4:2227-2235.
    [6] Chen C W. Performance assessment of along-track interferometry for detectingground moving targets[C]. IEEE National Radar Conference-Proceedings,2004:99-104.
    [7] Moccia A, Rufino G. Spaceborne along-track SAR interferometry: performanceanalysis and mission scenarios[J]. IEEE Trans. on Aerosp. Electron. Syst.,2001,37(1):199-213.
    [8] Brennan L E, Mallett J D, Reed I S. Adaptive arrays in airborne MTI radar[J].IEEE Trans. on AP,1976,24(5):607-615.
    [9] Klemm R. Adaptive airborne MTI: An auxiliary channel approach[J]. IEEProc.-f,1987,134(3):269-276.
    [10] Melvin W L. Space-time adaptive radar performance in heterogeneous clutter[J].IEEE Trans. on Aerosp. Electron. Syst.,2000,36(2):621-633.
    [11] Guerci J R, Goldstein J S, Reed I S. Optimal and adaptive reduced-rank STAP[J].IEEE Trans. on Aerosp. Electron. Syst.,2000,36(2):647-663.
    [12]杨垒,王彤,邢孟道,等.机载多通道SAR-GMTI的杂波抑制方法[J].电子与信息学报,2008,30(12):2931-2834.
    [13]张立峰,王彤,邢孟道,等.多通道SAR-GMTI通道均衡和动目标检测定位方法[J].西安电子科技大学学报,2009,36(1):11-16.
    [14] Raney R K. Synthetic aperture imaging radar and moving Targets [J]. IEEE Trans.on Aerospace and Electronic Systems,1971,7(3):499-505.
    [15] Gierull C H. Ground moving target parameter estimation for two channel SAR [J].IEE Proc Radar Sonar and Navigation,2006,153(3):224-233.
    [16] Budillon A, Pascazio V, Schirinzi G. Estimation of radial velocity of movingtargets by along-track interferometric SAR systems[J]. IEEE Geoscience andRemote Sensing Letters,2008,5(3):349-353.
    [17]常玉林,黄晓涛,周红,等.基于ATI的双通道UWB SAR运动目标检测和距离向速度估计[J].信号处理,2008,24(5):742-746.
    [18] Gabele M, SIkaneta I. A new method to create a virtual third antenna from atwo-channel SAR GMTI system[C].2007Waveform Diversity&Design, Pisa,Italy,2007:433-437.
    [1] Tim J,Nohara. Comparison of DPCA and STAP for space-based radar[C]. IEEEInternational Radar Conference,1995:113-119.
    [2]李亚超,李晓明,邢孟道,等.天线斜置情况下三通道SAR-GMTI技术研究[J].电子与信息学报,2009,31(3):578-582.
    [3] Shen Chiu, Livingstone C. A comparison of displaced phase centre antenna andalong-track interferometry techniques for RADARSAT-2ground moving targetindication[J]. Canadian journal of remote sensing,2005,31(1):37-51.
    [4]李景文,李春升,周荫清.三孔径INSAR动目标检测和成像[J].电子学报,1999,27(6):40-43.
    [5]孙娜,周荫清,李景文.一种新的双孔径天线干涉SAR动目标检测方法[J].电子学报,2003,31(12):1820-1823.
    [6]杨贤林,潘志刚,沈汀.机载双通道SAR/DPCA误差分析[J].电子与信息学报,2007,29(3):536-539.
    [7]孙娜,周荫清,李景文.基于DPCA技术的星载SAR/GMTI处理方法[J].电子与信息学报,2005,27(10):1564-1568.
    [8]郑明洁,杨汝良.一种改进的DPCA运动目标检测方法[J].电子学报,2004,32(9):1429-1432.
    [9]吕孝雷,苏军海,邢孟道,等.三通道SAR-GMTI误差校正方法的研究[J].系统工程与电子技术,2008,30(6):1037-1042.
    [10]谭鸽伟,邓云凯.机载SAR的运动误差的二维空变性及其补偿[J].电子与信息学报,2009,31(2):366-369.
    [11]唐智,周荫清,李景文.机载编队飞行InSAR的运动误差分析与补偿[J].电子与信息学报,2005,27(6):932-935.
    [12]郑晓双,禹卫东.一种宽波束机载SAR运动误差的频域补偿方法[J].电子与信息学报,2007,29(7):1670-1673.
    [13]郑明洁.合成孔径雷达动目标检测和成像研究[D].博士学位论文,中国科学院研究生院,2003.
    [14]宁蔚.机载/星载雷达地面动目标检测方法研究[D].博士学位论文,西安电子科技大学,2005.
    [15]杨垒,王彤,保铮.解运动目标径向速度模糊的一种新方法[J].西安电子科技大学学报,2009,36(2):189-192.
    [16]党雅文,禹卫东.分布式小卫星SAR测速解模糊分析[J].测试技术学报,2007,21(6):500-505.
    [17] Jen K J. Theory of synthetic aperture radar imaging of a moving target[J]. IEEETransactions on Geoscience and Remote Sensing,2001,39(9):1984-1992.
    [18] Krieger G, Fiedler H, Mittermayer J, et al. Analysis of multistatic configurationsfor spaceborne SAR interferometry[J]. IEE Proc.-Radar Sonar Nuvig.,2003,150(3):87-96.
    [19] Nohara T J, Weber P, Premji A, et al. SAR-GMTI processing with Canada, sRadarsat2satellite [C]. Adaptive Systems for Signal Processing,Communications, and Control Symposium, Alberta, Canada,2000:379-384.
    [20]尹建凤,李道京,吴一戎.顺轨三频三孔径星载SAR的运动目标检测及定位方法研究[J].电子与信息学报,2010,32(4):902-907.
    [21] Gierull C H. Ground moving target parameter estimation for two channelSAR[J].IEE Proceedings on Radar, Sonar and Navigation,2006,53(3):224-233.
    [22]周峰,李亚超,邢孟道,等.一种单通道SAR地面运动目标成像和运动参数估计方法[J].电子学报,2007,35(3):543-548.
    [23]王力宝,许稼,皇甫堪,等. MIMO-SAR等效相位中心误差分析与补偿[J].电子学报,2009,37(12):2688-2693.
    [24] Wang Li-bao, Xu Jia, Peng Shi-bao, et al. Optimal lineararray tradeoff for configuration and DOF MIMO-SAR[J]. Acta Electronica Sinica,2011,20(CJE-2):380-384.
    [25] Guo Xin, Sun Hong-bo,Wang Sheng-li, et al. Comments on “discrete chip-Fouriertransform and its application to chip rate estimation”[J]. IEEE Trans. on SignalProcessing,2002,50(12):3155-3156.
    [26]孙泓波,郭欣,顾红,等.修正离散Chirp-Fourier变换及其在SAR运动目标检测中的应用[J].电子学报,2003,31(1):25-28.
    [27]邓云凯,刘亚东,行坤,等.一种结合时频分析与Dechirp技术提高运动目标参数估计精度的多通道方法[J].电子与信息学报,2011,33(1):14-20.
    [28]吕孝雷,齐飞林,邢孟道,等.三通道SAR-GMTI地面快速目标检测[J].系统工程与电子技术,2009,31(7):1581-1587.
    [29]刘峥,张守宏.跳频脉冲雷达目标的运动参数估计[J].电子与信息学报,2000,22(4):591-596.
    [30]武其松,邢孟道,保铮.双通道MIMO-SAR运动目标成像[J].系统工程与电子技术,2010,32(5):921-926.
    [31]杨垒,王彤,保铮.解运动目标径向速度模糊的一种新方法[J].西安电子科技大学学报,2009,36(2):189-192.
    [32]秦国栋,陈伯孝,陈多芳,等.多载频MIMO雷达解速度模糊及综合处理方法[J].电子与信息学报,2009,31(7):1696-1700.
    [1] Gierull C H. Azimuth positioning of moving targets in two-channel SAR bydirection-of-arrival estimation[J]. Electronics Letters,2004,40(21):1380-1381.
    [2]王伟伟,廖桂生,朱圣棋.基于压缩感知的双通道SAR地面运动目标检测方法研究[J].电子与信息学报,2012,34(3):587-593.
    [3]邓云凯,刘亚东,行坤,等.一种结合时频分析与Dechirp技术提高运动目标参数估计精度的多通道方法[J].电子与信息学报,2011,33(1):14-20.
    [4]张佳佳,周芳,孙光才,等.基于机载前向阵雷达的三通道斜视SAR-GMTI技术研究[J].电子与信息学报,2012,34(2):344-350.
    [5]吕孝雷,邢孟道,潘月娥,等.基于联合像素干涉统计特性的三通道动目标检测方法[J].电子学报,2008,36(12):2319-2323.
    [6]常玉林,周红,黄晓涛,等.多通道SAR频率多普勒域宽带长CPI STAP方法[J].电子学报,2011,20(6):1245-1252.
    [7]郑明洁,杨汝良.一种改进的DPCA运动目标检测方法[J].电子学报,2004,32(9):1429-1432.
    [8]郑明洁,杨汝良.双通道沿迹干涉SAR地面动目标检测[J].电子与信息学报,2005,27(10):1560-1563
    [9] Sharma J J, Gierull C H, Collins M J. The influence of target acceleration onvelocity estimation in Dual-Channel SAR-GMTI[J]. IEEE Trans. Geosci. RemoteSens.,2006,44(1):134-147.
    [10] Sharma J J, Gierull C H, Collins M J. Compensating the Effects of TargetAcceleration in Dual-Channel SAR-GMTI[J]. IEE Proc-Radar Sonar Navig,2006,153(1):53-62.
    [11]房丽丽,王岩飞.俯冲加速运动状态下SAR信号分析及运动补偿[J].电子与信息学报,2008,30(6):1316-1320.
    [12]李亚超,苏军海,邢孟道,等.利用时间-调频率分布特性的复杂运动目标ISAR成像研究[J].西安电子科技大学学报,2008,35(1):1-7.
    [13]王忠仁,林君,李文伟.基于Wigner-Ville分布的复杂时变信号的时频分析[J].电子学报,2005,33(12):2239-2241.
    [14]孙泓波,顾红,苏卫民,等.基于互Wigner-Ville分布的SAR运动目标检测[J].电子学报,2002,30(3):347-350.
    [15] Boashash B, O’ Shea P. Use of the cross Wigner-Ville distribution for estimationof instantaneous frequency [J]. IEEE Trans. on Signal Processing,1993,41(3):1439-1445.
    [16] Brbarossa S. Analysis of multicomponent LFM signals by a combined wignerHough transform[J]. IEEE Trans. on Signal Processing,1995, SP-43(6):1511-1515.
    [17]王勇,姜义成.多项式Wigner-Ville分布的频域卷积实现[J].电子与信息学报,2008,30(2):286-289.
    [18]苏军海,邢孟道,保铮.宽带机动目标检测[J].电子与信息学报,2009,31(6):1283-1287.
    [19]高飞,毛士艺,袁运能,等.一种在双通道SAR图像域实现地面运动目标检测的方法[J].电子学报,2006,34(4):755-760.
    [20]张佳佳,周芳,孙光才,等.基于机载前向阵雷达的三通道斜视SAR-GMTI技术研究[J].电子与信息学报,2012,34(2):344-350.
    [21] Cumming I G, Wong F K.著.洪文,胡东辉等译.合成孔径雷达成像-算法与实现[M].北京:电子工业出版社,2007.
    [22] Sun Hua-dong, Su Fu-lin, Gao Jian-jun, et al. Parameter estimations of SARmoving target based on DPCA-FrFT algorithm[C]. IEEE Conference on IndustrialElectronics and Applications,2007:1779-1784.
    [23] Amin A S, Soraghan J J. A new chirp scaling algorithm based on the fractionalFourier transform[J]. IEEE Trans.Signal Processing Lett.,2005,12(10):705-708.
    [24] Sun Hong-bo, Liu Guo-sui, Gu Hong, et al. Application of the fractional Fouriertransform to moving target detection in airborne SAR[J]. IEEE Transactions onAerospace and Electronic System,2002,38(4):1416-1424.
    [25] Tao Ran, Deng Bing. Sampling and sampling rate conversion of band limitedsignals in the fractional Fourier transform domain[J]. IEEE Trans. SignalProcessing,2008,56(1):158-171.
    [26]许建忠,孙红伟,孙业岐,等.采用Radon-Wigne变换的二维波达方向估计[J].电子与信息学报,2012,34(4):997-1001.
    [27]朱振波,汤子跃,张亚标,等.基于Radon变换的双站SAR多普勒参数估计[J].电子与信息学报,2008,30(6):1331-1335.
    [28] Kong Young-Kyun, Cho Byung-Lae, Kim Young-Soo. Ambiguity-free Dopplercentroid estimation technique for airborne SAR using the Radon transform[J].IEEE Trans. On Geosci. Remote Sensing,2005,43(4):716-721.
    [1]孙娜,周荫清,李景文.基于DPCA技术的星载SAR/GMTI处理方法[J].电子与信息学报,2005,27(10):1564-1568.
    [2] Sun Hua-dong, Su Fu-lin, Gao Jian-jun, et al. Parameter estimations of SARmoving target based on DPCA-FrFT algorithm[C]. IEEE Conference on IndustrialElectronics and Applications,2007:1779-1784.
    [3]陈娟,王盛利.基于二天线的双基地DPCA技术[J].电子与信息学报,2007,29(7):1687-1690.
    [4]史洪印,周荫清,陈杰.同步轨道星机双基地三通道SAR地面运动目标指示算法[J].电子与信息学报,2009,31(8):1881-1885.
    [5]张升康,杨汝良.基于二次距离压缩的双基地合成孔径雷达斜视成像算法[J].电子与信息学报,2008,30(7):1717-1721.
    [6]高飞,毛士艺,袁运能,等.基于原始数据域的星载双通道SAR-GMTI研究[J].电子学报,2005,33(12):2105-2110.
    [7]赵兴浩,陶然,邓兵,等.分数阶傅里叶变换的快速计算新方法[J].电子学报,2007,35(6):1089-1093.
    [8]尹治平,张冬晨,王东进,等.基于FRFT距离压缩的高速目标ISAR成像[J].中国科学技术大学学报,2009,39(9):944-948.
    [9]包敏,李亚超,邢孟道,等.椭圆轨道GEOSAR特性分析及成像方法研究[J].西安电子科技大学学报,2010,37(6):1033-1041.
    [10] Wood J C, Barry D T. Linear signal synthesis using the Radon-Wignertransform[J]. IEEE Transactions on Signal Processing,1994,42(8):2105-2111.
    [11] Li Wen-chen, Wang Xue-song, Wang Guo-yu. Scaled Radon-Wigner transformimaging and scaling of maneuvering target[J]. IEEE Transactions on Aerospaceand Electronic Systems,2010,46(4):2043-2051.
    [12] Wood J C, Barry D T. Radon transformation of time-frequency distributions foranalysis of multicomponent signals[J]. IEEE Transactions on Signal Processing,1994,42(11):3166-3177.
    [13] Sun Hong-bo, Liu Guo-sui, Gu Hong, et al. Application of the fractional Fouriertransform to moving target detection in airborne SAR[J]. IEEE Transactions onAerospace and Electronic System,2002,38(4):1416-1424.
    [14] Amin A S, Soraghan J J. A new chirp scaling algorithm based on the fractionalFourier transform[J]. IEEE Trans.Signal Processing Lett.,2005,12(10):705-708.
    [15] Tao Ran, Deng Bing. Sampling and sampling rate conversion of band limitedsignals in the fractional Fourier transform domain[J]. IEEE Transactionson Signal Processing,2008,56(1):158-171.
    [16] Pei Soo-chang, Yeh Min-hung, Tseng Chien-cheng. Discrete fractional Fouriertransform based on orthogonal projections[J]. IEEE Transactions on SignalProcessing,1999,47(5):1335-1348.
    [17] Wei De-yun, Ran Qi-wen, Li Yuan-min. Generalized sampling expansion forbandlimited signals associated with the fractional Fourier transform[J]. IEEESignal Processing Letters,2010,17(6):595-598.
    [18] Ozaktas H M, Arikan O, Kutay M A, et al. Digital computation of the fractionalFourier transform[J]. IEEE Transactions on Signal Processing,1996,44(9):2141-2150.
    [19]孙泓波,郭欣,顾红,等.修正离散Chirp-Fourier变换及其在SAR运动目标检测中的应用[J].电子学报,2003,31(1):1-4.
    [20]肖慧,胡卫东,郁文贤.基于二次混频DPT的LFMCW雷达多目标检测和参数估计[J].电子与信息学报,2008,30(12):2844-2848.
    [21]黄钰林.机载双基地SAR同步与成像处理研究[D].博士论文,电子科技大学,2008.
    [22]张贤达.现代信号处理[M].北京:清华大学出版社,2002.
    [23]周鹏.星机双基地SAR系统总体与同步技术研究[D].博士论文,电子科技大学,2008.
    [24] Cumming I G, Wong F K.著.洪文,胡东辉等译.合成孔径雷达成像-算法与实现
    [M].北京:电子工业出版社,2007.
    [25]唐晓青,向茂生,吴一戎.一种改进的基于DEM的机载重轨干涉SAR运动补偿算法[J].电子与信息学报,2009,31(5):1090-1094.
    [26]谭鸽伟,邓云凯.机载SAR的运动误差的二维空变性及其补偿[J].电子与信息学报,2009,31(2):366-369.
    [27]汤子跃,张守融,王卫延.运动误差对双站SAR相位同步及成像的影响[J].电子学报,2003,31(12):1907-1910.
    [28]朱振波,汤子跃,蒋兴舟.机载双站SAR频率同步与误差补偿[J].电子学报,2006,34(12):2418-2420.
    [29]李燕平,张振华,邢孟道,等.机载双站SAR运动补偿研究[J].电子学报,2008,36(3):421-427.
    [30]夏猛,杨小牛.星载三通道SAR-DPCA误差分析与动目标定位方法[J].中国空间科学技术,2011,31(2):58-63.
    [31]张英、李景文.基于DPCA的机载SAR-MTI系统误差分析及补偿方法研究[J].电子学报,2003,31(12):2031-2034.
    [32] Mittermayer J, Moreira A, Loffeld O. Spotlight SAR data processing using thefrequency scaling algorithm[J]. IEEE Transactions on Geoscience and RemoteSensing,1999,37(5):2198-2214.
    [33] Jiang Zhi-hong, Kan Huang-Fu. Squint LFMCW SAR data processing usingDoppler-Centroid-Dependent frequency scaling algorithm[J]. IEEE Transactionson Geoscience and Remote Sensing,2008,46(11):3535-3543.
    [34]李亚超,周峰,邢孟道,等.一种直升机的舰船Dechirp实测数据SAR成像方法[J].电子与信息学报,2007,29(8):1794-1798.
    [35]李燕平.单双基地SAR成像和运动补偿研究[D].西安电子科技大学,2007.
    [36] Moreira A, Huang Y H. Airborne SAR processing of highly squinted data using achirp scaling approach with integrated motion compensation[J].IEEE Transactionson Geoscience and Remote Sensing.1994,32(5):1029-1040.
    [37] Sun Guang-cai, Jiang Xiu-wei, Xing Meng-dao, et al. Focus improvement ofhighly squinted data based on azimuth nonlinear scaling[J]. IEEE Transactionson Geoscience and Remote Sensing,2011,49(6):2308-2322.
    [38] Wang Kai-zhi, Liu Xing-zhao. Quartic-phase algorithm for highly squinted SARdata processing[J]. IEEE Geoscience and Remote Sensing Letters,2007,4(2):246-250.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700