用户名: 密码: 验证码:
曹妃甸甸头斜坡液化深度预测及稳定性的模拟评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
曹妃甸甸头水下边坡主要由粉细砂组成,边坡于近岸较陡,在极端海况下水下边坡底床存在液化可能,甚至影响岸坡稳定,威胁工程安全。本文采用物理模型和数学模型计算互为补充,对曹妃甸甸头海底可能形成的波致液化情况和液化后岸坡稳定问题展开研究工作。
     论文首先对波致底床响应的国内外研究历程进行回顾;其次根据已有调查资料总结给出曹妃甸甸头的基本海洋环境概况;然后利用动三轴试验和波浪水漕试验分别对曹妃甸甸头砂样进行抗液化特性和砂样底床液化响应进行研究;进而采用有限元计算软件对不同波况下甸头斜坡液化发展进行模拟预测。最后,利用斜坡稳定性分析软件对液化前后斜坡整体和局部稳定性进行评价。
     论文研究结果表明,日常海况不会对海床产生液化影响,但在极端海况下底床会产生液化,且伴随波浪增大,海床液化深度和范围会大幅增加。极端海况发生时,甸头斜坡整体处于稳定状态,但稳定性较原斜坡有明显削减。因液化作用产生的滑动堆积体,其形成的剩余下滑力可能对海岸工程安全性造成威胁,需要防范和注意。
The sediment around Caofedian Cape sea area is mainly composed by silt sand and fine sand. Because the underwater slope is steep, the seabed liquefaction may be induced, when the extreme wave condition occurs. Through physical tests and numerical simulations, this paper mainly studys on wave-induced seabed liquefaction, and how the liquefaction influences the slope stabilities.
     Firstly, a brief literature review of wave induced liquefaction is studied. Secondly, based on the surveyed documents, the ocean enviorment conditions of Caofeidian Cape are concluded. Then by using dynamic triaxial test and flume test, the sediment anti-liquefaction abilities and the sandbed responds to wave action are studied respectively. Through numerical simulation, based on finite element software, a forecast of how the liquefaction developed under different wave condition is studied. Finally, by using Geo-slope/W and Sweden slice method, the whole stability and the stability of liquefaction sediment are calculated and evaluated, and some control measures are suggested.
     As the results show, only when the wave height is large enough, the liquefaction of seabed may occur and, with the increase of the wave height, the depth of liquefaction increases sharply. Under the storm surge condition, the whole slope stability decrease sharply compare to the original, however, the stabilizing force is still larger than the slide force. Through the slice calculation of the liquified sediment, an obvious accumulated stress may threaten the safety of coastal structures which are built on the underwater slope.
引文
[1]单红仙,贾永刚,许国辉.波浪作用诱发的黄河口水下斜坡失稳破坏[J],地学前缘.2001,8(3).
    [2]李玉成,滕斌.波浪对海上建筑物的作用.北京:海洋出本社,2002,103-112.
    [3]向来华.2009.6.海床—管道原位检测及水动力响应分析.浙江大学博士学位论文.
    [4]尹延鸿.对河北唐山曹妃甸浅谈大面积填海的思考.海洋地质动态,2007,23(3):1-10.
    [5]尹延鸿.曹妃甸浅滩潮道保护意义及曹妃甸新老填海规划对比分析.现代地质,2009,23(2):200-209.
    [6]McClelland B., Young A.Q. & Remmes B.D. Avoiding Jack-up Rig Foundation Failures [A]. Symposium o n Geotechnical Aspects of Offshore and Nearshore Structures, Bangkok [C], Thailand,1981.
    [7]顾小芸.海洋工程地的回顾与展望.工程地质学报,2000,08(01):40-45.
    [8]李松林.1990.动三轴试验的原理和方法.地质出版社.
    [9]Ishihara K. & Yamazaki A. Wave-induced Liquefaction in Seabed Deposits of Sand [A]. in: Seabed Mechanics[C], B. Deness (ed.), London:Graham & Trotman.1984,139-148.
    [10]The Committee on Soil Dynamics of the Geotechnical Engineering Division. Definition f terms related to liquefaction. Journal of the Geotechnical Engineering Division, ASCE,1978, 104(GT9):1197-1200.
    [11]Seed H B. Soil liquefaction and cyclic mobility evaluation for leve ground during earthquakes. Journal of the Geotechnical Engineering Division, ASCE,1979,105(2):201-255.
    [12]Finn W D L, Lee K W, Martin G R. An effective stress model for liquefaction. Journal of the Geotechinical Engineering Division, ASCE,1977,103(6):517-533.
    [13]Terzaghi K, Peck R B. Soil Mechanics in Engineering Practice (2"d edition). New York:John Wiley & Sons, Inc,1948.
    [14]黄文熙.水工建设中的结构力学与岩土力学问题.北京:水利电力出版社,1984,252-256
    [15]汪闻韶.饱和砂土振动孔隙水压力试验研究.水利学报,1962,2:36-47.
    [16]谢定义,巫志辉.不规则动荷脉冲波对砂土液化特性的影响[J].岩土工程学报,1987,9:1-12.
    [17]沈珠汀.复杂荷载下砂十液化变形的结构性模型[C].大连:第五届全国土动力学学术会议论文集,1998,53-63.
    [18]王刚,张建民.砂土液化大变形的弹塑性循环本构模型[J].岩土工程学报,2007,29(1):51-59.
    [19]陈育民,周云东.基于流体力学方法的砂土液化后研究进展.河海大学学报(自然科学版),2007,35(4):418-421.
    [20]黄雨,郝亮.基于CFD的地震液化研究新进展.岩土力学,2008,29(8):2231-2235.
    [21]周健,于荣传,贾敏才.基于数字图像技术的砂十模型试验细观结构参数测量[J].岩土工程学报,2006,28(12):2047.
    [22]周健,杨永香,刘洋.饱和砂土液化过程中细观组构的模型试验研究.同济大学学报(自然科学版),2009,37(4):466-470.
    [23]汪闻韶.土的动力强度和液化特性.北京:中国水利电力出版社.1997.
    [24]汪闻韶.上工抗震研究进展[J]。岩土工程学报,1993,15(6):80-82.
    [25]魏迎奇,刘汉龙,余湘娟.砂土液化及液化后分析综述.水利水电科技进展,1997,17(5): 35-40.
    [26]鲁晓兵,谈庆明,王淑云.饱和砂土液化研究新发展.力学进展,2004,34(1):87-96.
    [27]任红梅,吕西林,李培振.饱和砂土液化研究进展.地震工程与工程振动,2007,27(6):166-175.
    [28]Silverster R and Hsu JRC(1993),Coastal Stabilization, PTR PrenticeHall, NJ.
    [20]Barends FBJ(1991), Interaction betwwen ocean waves and sea-bed, Proc of Int Conf on Geotechnical Engineering for Coastal Development-Theory and Practice on Soft Ground (Geot-Coastal'91),Yokohama, Japan,2,1091-1108.
    [30]McClelland B. Cox W.R. Performance of pile foundartions for fixed structures. International Conference on Behavior of Offshore Structures,1976,1.
    [31]Bea R.G. How Seafloor Slides Affect offshore structures[J]. Oil and Gas Journal,1971, 29:88-92.
    [32]Bjerrum J. Geotechnical problem involved in foundations of structures in the North Sea, Geotechnique,1973,23 (3),319-358.
    [33]Putnam JA, Loss of wave energy due to percolation in a permeable sea bottom, Trans., Am. Geophys. Union,1949,30(3),349-356.
    [34]Sleath JFA, Wave-induced pressures in beads of sand, J. Hydraul. Div., Am. Soc. Civ. Eng., 1970.96(2),367-378.
    [35]Liu PLF, Damping of water waves over porous bed, J. Hydraul. Div., Am. Soc. Civ. Eng.1973, 99(12),2263-2271.
    [36]Madsen O S. The stability of a sand bed under breaking waves. Proc. Of the 14th coastal engineering conference. ASCE,1974,2:776-794.
    [37]Nakamura H, Onishi R, and Minamide H, On the seepage in the seabed due to waves, Proc of 20th Coastal Engineering Conf, JSCE,1973,421-428.
    [38]Massel SR, Gravity waves propagated over permeable bottom, J. Waterw., Harbors Coastal Eng. Div. Am. Soc. Civ. Eng.1976,102(2),111-121.
    [39]Biot M.A. General thory of three dimensional consolidation. Journal of Applied Physics, 1941,12:155-161.
    [40]Yamamoto T et al. On the response of a poro-elastic bed to water waves [J]. Journal of Fluid Mechanics,1978,87(1):193-206.
    [41]Madesen OS(1978), Wave-induced pore pressures and effective stresses in a porous bed, Geotechnique 28(4),377-393.
    [42]Finn WDL, Siddharthan R, and Martin GR, Response of sea-floor to ocean waves [J]. J. Geotech. Eng. Div., Am. Soc. Civ. Eng,1983,109(4),556-572.
    [43]Nago H. Liquefaction of highly saturated sand layer unde oscillating water pressure. Mcmories of School of Enginnering, Okayama Uninversity,1981,16(1):91-104.
    [44]Yamanoto T. Wave induced pore pressure and effective stresses in inhomogeneous seabed. Ocean Engineering,1981,8:1-16.
    [45]Yamamoto T. Nuerical integration methed for seabed response to water waves[J]. Journal of Soil Dynamics and Earthquake Engineering,1983,2(2):92-100.
    [46]Ohara S et al. Pore pressure developed in saturated sand subjected to cyclic shear stress under partial-drainage conditons [J]. Soils and Foundations.1985,25(2):45-56.
    [47]Rahman M.S. and Jaber W.Y.. A simplied drained analysis for wave induced liquefaction in ocean floor sands [J]. Soilds and Foundations,1986.26(3):57-68.
    [48]李向维.波浪作用下沙质海底的瞬态应力.力学与实践,1989,11(6):17-20.
    [49]章根德,顾晓芸.有限厚度砂床对波浪荷载的影响.力学学报,1993,25(1):56-68.
    [50]别社安,赵子丹.波浪作用下的海床响应及其对建筑物稳定性的影响[J].清华大学学报:自然科学版,1998,38(11):95-98.
    [51]别社安,赵子丹.随机波浪作用下砂质海床中的孔隙水压力响应[J].港口工程,1998,2:13-18.
    [52]赵贤,姜伟,林彦等.波浪作用下弹性海洋地丛的动力反应.山东建筑工程学院学报,2002,17(3):14-18.
    [53]王栋,栾茂田.波浪作用下粘弹性海床动力响应的数值分析.工程力学,2002,19(4):130-134.
    [54]栾茂田,张晨明,王栋等.波浪作用下海床孔隙水压力发展过程与液化的数值分析.水利学报,2004,2:94-100.
    [55]周援衡,卢海斌,陈智杰.波浪作用下弹性海床孔隙水应力响应的数值模拟.水道港口,2005,26(2):67-70.
    [56]王立忠,潘冬子,凌道盛.海床波浪响应的积分变换解及其分析应用.岩土工程学报,2006,28(7):847-852.
    [57]张金凤,张庆河,秦崇仁.波浪作用下非均质各向异性海床响应的数值模拟.天津大学学报,2006,39(2):159-164.
    [58]王忠涛,栾茂田,刘占阁等.浅水区波浪非线性效应对砂质海床动力响应的影响.海洋工程,2005,23(1):42-47.
    [59]王忠涛,栾茂田,Jeng等.随机波浪作用下海床动力响应及液化理论分析.岩土力学,2008,29(8):2051-2057.
    [60]周香莲,王建华,李耀良等.波浪作用下层状海床孔隙水压力响应的计算方法.岩土工程学报,2010,32(2):22-25.
    [61]吴梦喜,楼志刚.波浪作用下海床的有效应力分析.海洋工程,2002,20(1):64-68.
    [62]金钢锋,屠毓敏,俞亚南.波浪作用下堤前海床动应力分析.浙江大学学报工学版,2006,40(2):285-289.
    [63]栾茂田,曲鹏,杨庆.非线性波浪作用下海底管线—海床动力响应分析.岩土力学,2007,28:710-715.
    [64]张小玲,栾茂田,郭莹.海底管线周围海床瞬时液化的数值分析.防灾减灾工科学报,2009,29(2):165-171.
    [65]张永利,李杰.波浪作用下海床响应的解析解.中国科学,2010,40(12):1398-1408.
    [66]张永利,李杰.基于总应力法的波致底床剪切破坏准则.力学季刊,2010,31(3):342-349.
    [67]Madga W (1990), On one-dimensional model of pore pressure generation in a highly saturated sandbed due to cyclic loading acting on a sand sureface, I:Theoretical description and numerical approach, Internal Report No 5, SFB-205, TP A13, Kusteningenieurwesen, University Hannover,1-42.
    [68]Gatmiri B (1990), A simplified finite element analysis of wave-induced effective stress and pore pressures in permeable sea beds, Geotechnique 40(1),15-30.
    [69]Gatmiri B (1992), Response of Cross-anisotropic seabed to ocean waves, J. Geotech. Eng. Div.. Am. Soc. Civ. Eng.118(9),1295-1314.
    [70]Jeng DS and Lin YS(1997), Non-linear waves-induced response of porous seabed:A finite element analysis, Int. J. Numer. Analyt. Met. Geomech.21(1),15-42.
    [71]Jeng D.S., Cha D.H.. Effects of dynamic soil behavior and wave nonlinearity on the wave-induced porepressure and effective stresses in porous seabed [J]. Ocean Engineering, 2003,30(16):2065-2089.
    [72]王忠涛,栾茂田,刘占阁等.浅水区波浪非线性效应对砂质海床动力响应的影响.海洋工程,2005,23(1):42-47.
    [73]唐云,任增金.结构—波浪—海床耦合系统动力有限元分析.水运工程,2006,5:8-12.
    [74]王忠涛,栾茂田,郑东生.多孔介质海床对波浪传播影响理论分析.大连理工大学学报,2009,49(6):891-896.
    [75]Bruckl E., Scheidegger A.E.. Geotechinique,1973,23(1).
    [76]Edgers L., Karlsrud K.. Soil flow generated by submarine slides-case studies and consequences. NGI Publish,1982,143.
    [77]荚颖,唐小薇,栾茂田.砂土液化变形的有限元—无网格耦合方法.岩土力学,2010,31(8):2643-2648.
    [78]Shore Protection Manual, U.S. Army Coastal Engieering Research Center, U.S. Gvoerment Printing Office,1975,1.
    [79]顾小芸.海底边坡稳定分析方法综述.力学进展,1989,19(1):50-59.
    [80]赵子丹,别社安.砂质海床对波浪的响应及稳定性研究回顾.海洋通报,1995,14(4):85-104.
    [81]Dong S. Jeng. Wave-induced sea floor dynamics. Apply Mechanics,2003,56 (4):407-429.
    [82]Bennett RH (1978), Pore-water pressure measurements:Mississippi Delta submarine sediments, Mar. Geotech.2,177-189.
    [83]Okusa S and Uchida A (1980), Pore-water pressure change in submarine sediments due to waves, Mar. Geotech.4(2),145-161.
    [84]刘涛,冯秀丽,林霖.海底孔压对波浪响应试验研究及数值模拟[J].海洋学报,2006,28(3):173-17.
    [85]白顺果,侯永峰,张鸿儒.循环荷载作用下水泥上桩复合地基变形形状分析.岩土力学,2006,27(04):677-680.
    [86]冯玉岩,郭秀军,孟庆生.黄河口粉土层振动响应过程的电性变化.岩石力学与工程学报,2007,26(Z1):3271-3276.
    [87]Zen K and Yamazaki H (1991), Field observation and analysis of wave-induced liquefaction in seabed, Soils Found.31 (4),161-179.
    [88]闫澎旺,邱长林,孙宝仓,等.波浪作用下海底软粘土学性状的离心模型试验研究[J].水利学报,1998,29(9):66-70.
    [89]冯秀丽,叶银灿,马艳霞等.动荷载作用下海洋粉土的孔压响应及其动强度.海洋大学学报,2002,32(3):429-433.
    [90]冯秀丽,刘晓瑜,董立峰.波浪作用下埕岛海域海底图液化分区.中国海洋大学学报,2007,37(5):815-819.
    [91]简连贵,张志新.海床砂土应力分析及动态强度特性.岩土工程学报,2004,26(4):445-449.
    [92]曹成效.胜利油田粉土液化研究:[硕士学位论文].青岛:国家海洋局第一海洋研究所,2005.
    [93]曹成效,刘乐军,李培英等.循环荷载作用下粉土的动力学特性.海洋科学进展,2007.25(01):54-62.
    [94]张晨明,董秀竹,郭莹,等.波浪荷载作用下砂土变形特性的模拟试验研究[J].地震 工程与工程振动,2005,25(2):155-159.
    [95]孟凡丽,卢成原,王珊珊.波浪荷载下粉质土动应变和动强度的试验研究.浙江工业大学学报,2007,35(06):671-674.
    [96]常方强,贾永刚.黄河口不同强度粉土液化特性的试验研究.岩土力学,2011,32(9):2692-2696.
    [97]Yang QS and Poorooshasb HB, Seabed response to wave loading, Proc of 7th Int Offshore and Polar Engineering Conference,1997,1,689-695.
    [98]Maeno YH and Hasegawa T (1985), Evaluation of wave-induced pore pressure in sand layer by wave steepness, Coastal Engineering. Japan,1985,28,31-44.
    [99]Sleath JFA (1970), Wave-induced pressures in beds of sand, J. Hydraul.Div., Am. Soc. Civ. Eng.96(2),367-378.
    [100]Demars KR and Vanover EA (1985), Measurement of wave-induced pressures and stresses in a sand bed, Mar. Geotech.6(1),29-59.
    [101]陈仲颐,李向维.波浪作用下海底土层的稳定性模型试验[C]//第六届土力学及基础工程学术会议论文集.上海:同济大学出版社,1991:855—858.
    [102]秦崇仁,孙海军,赵冲久.波浪作用下沙纹形态的试验研究.天津大学学报,1991,Z:109-113.
    [103]别社安,赵子丹,刘同利,等.波浪作用下砂床中的孔隙水压力响应模型试验研究[J].海洋通报,1997,16(5):55-65.
    [104]Shiaw-Yih, Tzang. Unfluidized Soil Responses of a Silty Seabed to Monochromatic Waves. Coastal Engineering.1998,35:283-301.
    [105]许国辉,常瑞芳,李安龙.波浪作用下粘质粉砂底床形态变化的试验研究.黄渤海海洋,2000,18(1):19-26.
    [106]许国辉,单红仙,贾永刚.黄河水下三角洲沉积物在循环荷载作用下土体中孔压变化试验研究.青岛海洋大学学报,2003,33(1):80-86.
    [107]许国辉,贾永刚,郑建国,刘媛媛.黄河水下三角洲塌陷凹坑构造形成的水槽试验研究.海洋地质与第四纪地质,2004,24(3):37-40.
    [108]G.Xu, Y.Sun and X.Wang etc.(2009). Wave-induced shallow slides and their features on the subaqueous Yellow River delta.2009, Can. Geotech. J.46:1406-1417.
    [109]程显霞,孙辉.海洋粉土在波浪作用下破坏的试验研究.黑龙汀水专学报,2004,31(1):20-21.
    [110]陈静,冯秀丽,林霖.波浪作用下粉土中的孔压响应及其在粉十海床稳定性评价中的应用.海洋科学[J],2006,30(3):1-5.
    [111]王立忠,潘冬子,潘存鸿.波浪对海床作用的实验研究.土木工程学报,2007,40(9):101-109.
    [112]程方舟,沈小雄,李建习.波浪作用下岸坡动力响应试验研究.港工技术,2008,184(6):1-4.
    [113]韩丹岫,庞重光,李光伟.波浪作用下细颗粒泥沙悬疑特性的试验研究.海洋科学,2008,32(6):46-51.
    [4]张民生,刘红军,李晓东.波浪作用下黄河口粉土液化与“铁板砂”形成机制的模拟试验研究.岩土力学,2009,30(11):3347-3352.
    [115]刘红军,刘莹,张民生.波浪作用下黄河粉土液化与振荡层形成试验研究.中国海洋大学学报.2009,39(5):1013-1018.
    [116]王欣,青岛海洋大学工作硕士学术论文,波浪作用下粉质砂土上底床液化后运动特征的 试验研究,2010.
    [117]陶常飞,吴建政等.曹妃甸浅滩表层砂体插桩深度研究.海岸工程,2008,27(4):54-59.
    [118]苏纪兰.中国近海水文.北京:海洋出版社,2005.
    [119]《冀东南堡油田数字海滩研究》,国家海洋局北海预报中心,2006.
    [120]同济大学.曹妃甸近岸海洋水动力与沉积环境数值模拟计算研究专题报告.2011.
    [121]Yu Zhang, Cuiping Kuang, Rui Huo. Water Quality of Summer Coastal Waters around Caofeidian Harbor, Bohai Bay, China. Advances in Biomedical Engineering,2012,6, 172-179.
    [122]曹妃甸工业区近期工程用海总体规划,唐山曹妃甸工业区管委会,2009.
    [123]李从先,陈刚,王利.滦河废弃三角洲和砂坝——泻湖沉积体系.沉积学报,1983,(2).
    [124]曹妃甸工业区总体规划潮汐水流整体物理模型试验研究报告.南京水利科学院,河海大学,2005.8..
    [125]陆永军,左利钦,季荣耀.渤海湾曹妃甸港区开发对水动力泥沙环境的影响.水科学进展,2007.11,18(6):793-800.
    [126]南京大学.京唐港曹妃甸港区海洋动力地貌调查报告,1997.2.
    [127]南京水利科学研究院.京唐港曹妃甸港区数学模型实验报告,1997.5.
    [128]南京水利科学研究院,港口航道泥沙工程交通行业重点实验室,水文水资源与水利工程科学国家重点实验室.唐山曹妃甸港区波浪潮流泥沙数学模型及滩槽稳定性研究,2006.12.
    [129]ZHANG Yu, SUN Xiao-ming, KUANG Cui-ping, Analysis on Sea Bed Evolution around Caofeidian Harbour [J]. Appiled Mechanics and Materials,2011.9,90,2665-2669.
    [130]中国地质调查局天津地质调查中心,河北曹妃甸地区海岸带环境地质调查评价,2009.12.
    [131]Seed H.B., Chen C.B., Monismiht C L. Effects of repeated loading on the strength and deformation of compacted clay. HRB Proc.1955,34:541-558.
    [132]周建.循环荷载作用下饱和软粘土特性研究[D].博士学位论文,杭州:浙江大学,1998.
    [133]刘红军,王小花,贾永刚等.黄河三角洲饱和粉土液化特性及孔压模型试验研究.岩土力学,2005,(26):83-87.
    [134]Larew H G, Leonards G A. A repeated load strength criterion. Proceeding Highway Research Board,1962,(41):529-556.
    [135]鲍陈阳,余湘娟,高志兵.云南粉土的动力特性试验研究.防灾减灾工程学报,2006,26(03):321-325.
    [136]王庶懋,高玉峰,Ali H. Mahfouz.砂土与EPS颗粒混合的轻质土(LSES)临界循环应力比的试验研究.防灾减灾工程学报,2007,27(2):171-176
    [137]刘功勋,栾茂田,郭莹等.复杂应力条件下长江口原状饱和软黏土门槛循环应力比试验研究.岩十力学,2010,31(4):1123-1129
    [138]Tsui Y.T., Helfrich SC. Wave-induced pore pressure in submerged sand layer. Journal of Geotechnical Engineering,1983,109(4):603-618
    [139]Tzang S.Y.. Water wave-induced soil fluidization in a cohesionless fine -grained seabed PhD dissertation, University of California, Berkeley,137
    [140]Sumer B.M., Cheng N.S.. A random-walk model for pore pressure accumulation in marine soils.9th Int Offshore and Polar Engineering Conference, Brest France, (1),521-528
    [141]武值弢.波浪荷载作用下砂质粉土海床的液化研究[D].同济大学工学硕十学位论文 2009.
    [142]马志杰,孟庆生,贾永刚.循环荷载作用下黄河口海床土的动力响应数值模拟研究.中国水运,2007,7(4):68-70.
    [143]范庆来,栾茂田,倪宏革.循环荷载作用下软基上大圆筒结构弹塑性有效应力分析.水利学报,2008,39(7):836-842.
    [144]倪寅,郑永来,钟佳玉.波浪作用下砂质海床瞬时孔压特性的FLAC模拟.长江科学院院报,2009.10,26:38-41.
    [145]FLAC Mannual Fluid-Mechanical Interaction.
    [146]FLAC Mannual Dynamic Analysis.
    [147]天津地矿所.环渤海地区地下水资源与环境地质调查评价报告[R].2006.
    [148]叶银灿,来向华.杭州湾粉质土动强度特性研究,海洋科学,2003,27(2):56-58.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700