用户名: 密码: 验证码:
水下重力场辅助导航定位关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于INS存在位置误差积累的问题,无法满足潜艇等水下潜器长期高精度的导航需求,因此为提高导航精度、获得高可靠性的位置信息,必须对INS进行定期修正,由此,重力场辅助导航定位系统应运而生。该系统目前还处于探索性阶段,若干关键性问题还需进一步地解决和完善。本文以重力场辅助导航定位技术为研究背景,以提高潜器的定位精度及可靠性为目的,对重力梯度基准图的构建、决策区域的确定和相关匹配解算算法的改进等关键技术展开研究工作。
     首先,在深入研究传统重力场辅助导航定位系统结构框架的基础上,分析总结该系统中每一个组成部分的重要性;针对重力梯度正演过程中地质密度模型无法获得的问题,着重研究利用现有的数据源来模拟地质密度并将其应用于变密度下的重力梯度正演算法中,给出一种利用高精度重力异常数据和数字高程数据在最小二乘法作用下推算地质密度的方法,将其与矩形棱柱法相结合以分析残余密度对重力梯度正演算法的影响。仿真结果表明,数字高程仍是影响重力梯度正演算法精度的主要因素,在正演过程中,陆地区域应该考虑应用较适合该区域的局部平均密度,而水下区域可使用剩余密度(1.643g/cm3)。
     针对目前误差椭圆方法不能很直观地表达出决策区域(搜索区域)的性能,且不便于程序实现的问题,以直接法和坐标变换法两种方式推导了由误差椭圆确定决策区域的方程表达式;详细讨论了误差椭圆和以“3σ”为原则的常规矩形方法之间的关系,得出当INS东向误差标准差大于北向误差标准差时,误差椭圆的相切矩形与常规矩形区域相重合,而当INS东向误差标准差小于北向误差标准差时,误差椭圆的相切矩形与常规矩形呈y=x对称的结论。对中低等精度的INS进行3组仿真实验,结果显示,误差椭圆相切于常规矩形,同时,每个真实位置点均包含在了误差椭圆区域内,从而证明以误差椭圆来确定决策区域方法的正确性。
     在详细推导和分析相关匹配算法中的等值线算法基础上,研究等值线算法在旋转和平移变换过程中的相关性问题,发现旋转和平移的计算具有严格的先后顺序,这样必然会将旋转矩阵的计算误差反作用于平移向量,出现混合误差的升高。针对该问题,为降低旋转误差传播对平移向量的影响,提出一种最近点加密的等值线改进方法,并对其进行仿真验证,结果表明,改进方法是有效的,在初始匹配误差较小的情况下,其定位精度优于传统的等值线算法。
     为提高重力异常辅助导航算法在大的初始匹配误差下的定位精度,详细分析基于概率神经网络的匹配算法,针对该算法对INS航迹过于依赖的缺陷,提出一种基于航迹自旋转微调的概率神经网络匹配算法。该算法由航迹初始化、航迹概率粗竞争、航迹概率精竞争和航迹概率最终竞争四部分组成,具有自动调节和获取最佳匹配航迹的特点。分别在4组具有典型特征的重力异常区域进行仿真实验,结果表明,改进的概率神经网络算法能够达到较高的匹配率,可以在很大程度上克服常规算法依赖于INS航迹的缺陷,并且继承了常规算法在大的初始匹配误差下依然能很好地工作的特点。
     为克服重力梯度辅助导航算法在大的初始匹配误差下定位精度不高的缺陷,将概率神经网络算法引入到重力梯度辅助导航中来,提出一种利用概率神经网络算法进行初始匹配位置调优的等值线改进方法:在决策区域内,利用概率神经网络算法对初始匹配位置进行调优来降低INS误差,从而形成待匹配航迹,在此基础上利用等值线算法得到最佳匹配位置。分别在不同初始匹配条件下进行仿真分析,得出概率神经网络算法在大的初始匹配误差下不易发散但定位精度不高的结论。分别在初始匹配误差为3.720′、4.617′和5.438′的条件下对改进方法进行仿真验证,结果表明,改进方法即使在大的初始匹配误差下仍然能够达到较高的定位精度。
Due to the problem of INS position error accumulation, which is not possible to meetlong-term and high-precision navigation needs for the submarines and other underwatervehicles. So as to improve the navigation accuracy and obtain the high reliability locationinformation, the INS error must be periodically revised. As a result, the gravitational fieldaided navigation and positioning system came into being. The system is still in theexploratory stage, a number of key issues need to be further resolved and improved. Thegravity field aided navigation and positioning technology is as the research background inpaper, in order to improve the submersible navigation accuracy and reliability as the goal, thekey technology is researched, which is involved with the gravity gradient reference mapconstruction, the decision area determine and matching solution algorithm improved and soon.
     Firstly, the structure of the traditional gravitational field aided navigation and positioningsystem is studied in-depth. On the basis, the importance of each component part is analyzed.According to the problem that geological density model can not be obtained in gravitygradient forward process, the existing data sources are used to simulate the geological densityand applied to gravity gradient forward algorithm of the variable density. A method ofcalculating geological density based on high precision gravity anomaly data and digitalelevation data is given in the least squares estimation method. The method is combined withthe rectangular prism method to analyze the influence of the residual density on the gravitygradient forward algorithm. Simulation results show that the digital elevation is still the mainfactor that affects the accuracy of gravity gradient forward algorithm. In the gravity gradientforward process, the land area should consider applying the local average density, theunderwater area can apply the residual density (1.643g/cm3).
     According to the problem that the error ellipse method is not very intuitive to expressdecision area (search area) performance, and is not convenient to program implementation,the error ellipse equation expression is derived by the direct method and coordinatetransformation method. The relationship is discussed in detail between the error ellipse andthe conventional rectangular method to the "3σ " principle, the conclusions are obtained thaterror ellipse tangent rectangle coincides with conventional rectangular area when INS easterror standard deviation is greater than the north standard deviation, and error ellipse tangentrectangle and conventional rectangle are y=xsymmetrical when the INS east error standard deviation is less than the north standard deviation. In view of low and middle precision INSthe three simulation experiments are carried out, results show that the error ellipse is tangentto the conventional rectangular, at the same time, each real location points are contained in theerror ellipse area, thus the decision area method of determineing with the error ellipse iscorrect.
     The contour algorithm is derived in detail and analyzed in the correlation matchingalgorithm, on the basis, contour algorithm is studied on the correlation problem of therotational and translational transformation process. The problem is found that rotation andtranslation calculation has strict order, which inevitably rotation matrix calculation errorreacts on the translation vector, the mixing error enhance is caused. In order to solve theproblem, a closest point encryption contour improved algorithm is proposed. And thesimulation experiments are carried out, results show that the improved method is effective, thepositioning accuracy is better than the traditional contour algorithm when the initial matchingerror is small.
     In order to improve the navigation accuracy of the gravity anomaly aided navigationalgorithm in large initial matching error, probabilistic neural network matching algorithm isdiscussed in detail. According to the defect that the algorithm is too dependent on INS track, aprobabilistic neural network matching algorithm based on the track rotary trimming isproposed. The algorithm consists of four parts: track initiation, track probability roughcompetition, track probability sperm competition and track probability final competition, andthe algorithm is with automatic adjustment and geting the best matching track feature.Respectively the simulation experiments are carried out in four groups typical characteristicsgravity anomaly area, results show that the improved probabilistic neural network algorithmis able to achieve higher matching rate. The defect can be overcome that the conventionalalgorithm depends on the INS track and the characteristics is inherited that conventionalalgorithm is still able to work well in the large initial matching error.
     In order to overcome the defect that navigation accuracy of gravity gradient aidednavigation algorithm is not high in large initial matching error, the probabilistic neuralnetwork algorithm is introduced to gravity gradient aided navigation. At the same time, aimproved contour method is proposed that probabilistic neural network algorithm is used fortuning the initial position: in the decision area, probabilistic neural network algorithm is usedfor tuning the initial matching position to reduce INS error, and the matching track is formed.On this basis, the best matching position is got by contour algorithm. Respectively thesimulation analyses are done in different initial conditions, the conclusion is got that the probabilistic neural network algorithm is not easily divergence in the large initial error butnavigation accuracy is not high. Simulation experiments are carried out with the improvedmethod in the initial error3.720′、4.617′and5.438′, results show that the improved methodis still able to achieve a high navigation accuracy even in the large initial error.
引文
[1]张仁茹,左艳军,高天孚等.国外潜艇作战系统发展综述.舰船科学技术,2011,33(6):11-15页
    [2] Vajda S, Zorn A. Survey of existing and emerging technologies for strategicsubmarine navigation. Proceedings of the1998IEEE Position Location andNavigation Symposium,1998:309-315P
    [3] Hays K M, Schmidt R G, Wilson W A. A submarine navigator for the21st century.2002IEEE Position Location and Navigation Symposium,2002:179-188P
    [4]刘翠海,王文清.外军潜艇通信关键技术及发展趋势.电讯技术,2011,51(7):187-192页
    [5]夏银山.国外核潜艇关键技术发展研究.舰船科学技术,2003,25(4):37-41页
    [6]宗方勇,刘演龙,王炳.美俄潜艇指控系统鱼雷攻击数学模型研究概况.四川兵工学报,2007,25(6):20-23页
    [7]张海波,杨金成.现代潜艇技术.哈尔滨:哈尔滨工程大学出版社,2002:1-9页
    [8]熊正南,蔡开仕,武凤德.21世纪美国战略潜艇导航技术发展综述.舰船科学技术,2002,24(3):30-37页
    [9]黄海明,彼阳李,耀波.浅谈潜艇水声对抗.水雷战与舰船防护,2004,1(4):28-32页
    [10]刘兴章,陈涛.美国东南阿拉斯加潜艇水声实验场测量设施分析及改进综述.噪声与振动控制,2011,12(6):193-195页
    [11]袁赣南,周卫东,刘利强等.导航定位系统工程.哈尔滨:哈尔滨工程大学出版社,2009:37-101,256-264页
    [12]李姗姗.水下重力辅助惯性导航的理论与方法研究.解放军信息工程大学博士学位论文,2010:1-6,82-92页
    [13]刘睿.飞行器惯性/地磁/天文组合导航系统研究.哈尔滨工业大学博士学位论文,2011:1-15页
    [14]周军,葛致磊,施桂国.地磁导航发展与关键技术.宇航学报,2008,29(5):1467-1472页
    [15]寇义民.地磁导航关键技术研究.哈尔滨工业大学博士学位论文,2010:1-12页
    [16]王向磊.地磁匹配导航中几项关键技术研究.测绘工程,2011,20(1):1-5页
    [17]杨昆.重力场和地磁场辅助惯性导航技术研究.电子科技大学硕士学位论文,2009:7-8页
    [18]王向磊.地磁匹配导航算法及其相关技术研究.解放军信息工程大学硕士学位论文,2009:26-28页
    [19]晏登洋,任建新,牛尔卓.惯性/地磁组合导航系统自适应卡尔曼滤波算法研究.电光与控制,2007,14(6):74-77页
    [20] Hugh R, Steven K, Louis M. Geophysical navigation technologies and applications.IEEE position, location and navigation symposium. Monterey,2004:618-624P
    [21] Hugh R, Louis M, Robert A. Next generation marine precision navigation system.IEEE2000position, location and navigation symposium. San Diego,2000:200-206P
    [22]张红梅,赵建虎,杨鲲等.水下导航定位技术.武汉:武汉大学出版社,2010:7-9,145-149页
    [23] Moryl J. Advanced submarine navigation system. Sea Technology,1996,37(11):33-39P
    [24] Lowreys J A, Shellenbarger J C. Passive navigation using inertial navigation sonsorsand rnaps. Naval Engineers Journal,1997,5(1):245-251P
    [25]蔡体菁,周百令.重力梯度仪的现状和前景.中国惯性技术学报,1999,7(1):39-42页
    [26]边少锋.新型重力测量技术及其在导航和重力测量中的应用.测绘科学,2006,31(6):47-48页
    [27]程力.重力辅助惯性导航系统匹配方法研究.东南大学博士学位论文,2007:1-4页
    [28] Murphy Air-FTGTM. Bell Geospace’s airborne gravity gradiometer-A Descriptionand Case Study, Preview.2003:24-26P
    [29] Bell C E, Forward R L, Morris J R. Mass detection by means of measuring gravitygradients. AIAA Second Annual Meeting, San Francisco, USA.1965:385-403P
    [30] Hinks D, Mclntosh S, Lane R. A comparison of the Falcon and Air-FTGTM Airbornegravity gradiometer systems at the Kokong test block. Botswana. Abstracts from theASEG-PESA Airborne Gravity2004Workshop Record, Sydney, Australia.2004:125-134P
    [31] Heller W G, Jordan S K. Error analysis of two new gradiometer-aided inertialnavigation systems. AIAA Journal of Spacecraft and Rockets,1976,13(6):340-347P
    [32] Gerber M A. Propagation of gravity gradiometer errors in an airborne inertialnavigation system. AIAA Guidance and Control Conference, Boston, MA.1975:1975-1089P
    [33] Grubin C. Accuracy improvement in a gravity gradiometer-aided cruise Inertialnavigator subjected to deflections of the vertical. AIAA Guidance and ControlConference, Boston, MA.1975:1989-1090P
    [34] Metzger E H, Jircitano A. Inertial navigation performance improvement using gravitygradient matching techniques. Journal of Spacecraft and Rockets,1975,13(6):323-333P
    [35] Justin A R. Gravity gradiometer aided inertial navigation within NON-GNSSenvironments. Doctor of Philosophy Department of Aerospace Engineering,2008:21-24,28-35P
    [36] Clive A A, Albert Jircitano. Passive gravity gradiometer navigation system. IEEEPosition, Location and Navigation System, Las Vegas,1990:60-66P
    [37] Albert J, John W, Daniel D. Gravity based navigation of AUV’s. Proceedings of TheSymposium on Autonomous Underwater Vehicle Technology, Washington,1990:177-180P
    [38] Jircitano A and Dosch D E. Gravity aided inertial navigation system (GAINS).Proceedings of47th annual meeting on navigation and exploration, Willamsburg,1991:221-229P
    [39] Jircitano A, Daniel E. Gravity aided inertial navigation system. US patent:5339684.1994.12.10
    [40] Zorn, Alan H. A merging of system technologies: All-accelerometer inertialnavigation and gravity gradiometry.2002IEEE Position Location and NavigationSymposium,2002:66-73P
    [41]杨晔译.重力辅助惯性导航系统(GAINS).舰船导航,2002,4:1-14页
    [42]王文晶.基于重力和环境特征的水下导航定位方法研究.哈尔滨工程大学博士学位论文,2009:32-38页
    [43]刘凤鸣.重力梯度辅助导航定位技术研究.哈尔滨工程大学博士学位论文,2010:61-82页
    [44]钱东.重力梯度辅助定位与地形反演关键问题研究.哈尔滨工程大学博士学位论文,2011:17-46页
    [45]冯浩.未来水下重力辅助惯性导航微系统中的理论、模型和仿真研究.北京邮电大学博士学位论文,2004:77-109页
    [46]彭富清.海洋重力辅助导航方法及应用.解放军信息工程大学博士学位论文,2009:117-130页
    [47]夏冰.重力辅助导航中的匹配及故障诊断算法.东南大学博士学位论文,2009:54-73页
    [48] Kamgar-Parsi B. Vehicle localization on gravity maps. Proceedings of SPIE TheInternational Society for Optical Engineering, Bellingham, Society of Photo-OpticalInstrumentation Engineers,1999:182-191P
    [49] Garner C B. Gravitational field maps and navigational errors. IEEE Journal ofOceanic Engineering,2002,27(3):726-737P
    [50] Parker R L. The rapid calculation of potential anomalies. Geophysical journal of theroyal astronomical society,1972,42:315-334P
    [51] Forsberg R. Gravity field terrain effect computations by FFT. Bull. Geodesy,1985,59:342-360P
    [52] Dransfield, M. H. Airborne gravity gradiometry.PhD thesis. University of WesternAustralia,1994:29-40P
    [53] Li X, Chouteau M. Three-dimensional gravity modeling in all space. Surveys inGeophysics,1998,19(4):339-368P
    [54]王东明.利用地球重力位模型计算重力和重力梯度.地球物理学报,1999,42(1):108-113页
    [55] Jekeli C, Zhu L Z. Comparison of methods to model the gravitational gradients fromtopographic data bases. Geophys. J. Int,2006,166(5):999-1014P
    [56] Zhu L Z. Gradient modeling with gravity and DEM. PhD thesis. The Ohio StateUniversity,2007:9-42P
    [57] Rogers M M. An investigation into the feasibility of using a modern gravity gradientinstrument for passive aircraft navigation and terrain avoidance. Ohio: Air ForceInstitute of Technology Wright-Patterson AFB Graduate School,2009:31-52P
    [58]武凛,胡维,马杰等.基于重力异常分析的重力梯度图制备方法.华中科技大学学报(自然科学版),2009,11(37):57-60页
    [59]武凛,马杰,周瑶等.重力场匹配导航的全张量重力梯度基准图模拟.系统仿真学报,2009,22(21):7037-7041页
    [60]钱东,刘繁明,李艳等.导航用重力梯度基准图构建方法的比较研究.测绘学报,2011,6(40):736-744页
    [61] Grombein T, Seitz K, Heck B. Modelling topographic effects in GOCE gravitygradients. Geodetic Institute, Karlsruhe Institute of Technalogy (KIT), Germany,2011:85-93P
    [62] Ma J, Yang T, Wu L. Research on the effects of isostasy in gravity gradient mapmodelling.2nd International Conference on Information Science and Engineering,Hangzhou, China,2010:6843-6846P
    [63] Ma J, Yang T, Yan Z. Density compensation to reference map of gravity navigation.Proceedings of2012International Conference on Modelling, Identification andControl, Wuhan, China,2012:1129-1134P
    [64] Heath P J, Greenhalgh S, Direen N G. Modelling gravity and magnetic gradient tensorresponses for exploration within the regolith. Exploration Geophysics,2012:357-364P
    [65] Gary B, John L. Geophysics processing gravity gradient data. GEOPHYSICS,2011,76(2):133-147P
    [66]刘繁明,钱东.密度误差对重力梯度正演精度的影响.华中科技大学学报(自然科学版),2010,12(38):89-93页
    [67]郭文斌,朱自强.重力梯度张量的拟BP神经网络反演.中南大学学报(自然科学版),2011,12(42):3797-3803页
    [68]吴太旗,欧阳永忠,边少锋.重力场辅助水下导航仿真及分析平台的构建.舰船科学技术,2009,31(2):124-128页
    [69]王虎彪,王勇,许大欣.重力垂直梯度数据地图特征及其辅助导航.中国惯性技术学报,2010,18(1):93-96页
    [70] Gong J B, Cheng H, Ma J. A novel3D terrain matching algorithm based on imagelaser radar. Proceedings of the7th World Congress on Intelligent Control andAutomation, Chongqing, China,2008:6834-6839P
    [71] Yan L, Cui C F, Wu H L. A gravity matching algorithm based on TERCOM. GeomInf Sci Wuhan Univ,2009,34:261-264P
    [72] Zhao J B, Wang S P, Wang A X. Study on underwater navigation system based ongeomagnetic match technique. The Ninth International Conference on ElectronicMeasurement&Instruments,2009:255-259P
    [73] WANG H B, WANG Y, FANG J. Simulation research on a minimumroot-mean-square error rotation-fitting algorithm for gravity matching navigation.SCIENCE CHINA Earth Sciences,2012,55(1):90-97P
    [74]李雄伟,刘建业,康国华. TERCOM地形高程辅助导航系统发展及应用研究.中国惯性技术学报,200614(1):34-40页
    [75]闫利,崔晨风,吴华玲.基于TERCOM算法的重力匹配.武汉大学学报(信息科学版),2009,34(3):261-264页
    [76]赵建虎,王胜平,王爱学.一种改进型的TERCOM水下地磁匹配导航算法.武汉大学学报(信息科学版),2009,34(11):320-323页
    [77] Baker W and R. Clem, Terrain contour matching (TERCOM) primer. TechnicalReport ASP-TR-77-61, Aeronautical Systems Division, Wright-Patterson AFB. Ohio,1977.
    [78] Golden J P. Terrain contour matching (TERCOM): A cruise missile guidance aid.Processing for Missile Guidance,1980:10-18P
    [79] Baird C A, Abramson M R. A comparison of several digital map aided navigationtechniques. Proceedings of the IEEE PLANS,1984:286-293P
    [80] Niclas B, Lennart L, Fredrik G. Point-mass filter and cramer-rao bound for terrain-aided navigation. Proceedings of the36th Conference on Decision&Control.Califomla, USA,1997:565-570P
    [81] Kim J, Sukarieh S. Autonomous airborne navigation in unknown terrain environments.IEEE Transactions on Aerospace and Electronic System,2004,40(3):1031-1045P
    [82] Jiang F, Wu Y M, Zhang Z S, et al. Combinational seabed terrain matching algorithmbasing on probability data associate filtering and iterative closest contour point.2009Second International Conference on Intelligent Computation Technology andAutomation, Piscataway: IEEE Computer Society,2009:245-249P
    [83] Yong Y, Wang K D. Mismatching judgment using PDAF in ICCP algorithm. FourthInternational Conference on Natural Computation,2008:172-176P
    [84]郑彤,边少锋,王志刚.基于ICCP匹配算法的海底地形匹配辅助导航.海洋测绘,2008,28(2):22-23页
    [85]马洪波,刘建辉,杨健.基于地形墒差和高程绝对差度量的地形匹配算法.指挥技术学院学报,2000,11(5):59-63页
    [86]常青,马洪波,李言俊.地形辅助导航的匹配算法.弹箭与制导学报,2002,22(3):85-88页
    [87]常青.巡航导弹制导系统关键技术研究.西北工业大学博士学位论文,2003:37-46页
    [88]李爱军,白焱.高程熵综合地形匹配算法的仿真研究.计算机仿真,2004,21(8):135-137页
    [89]白焱,王伟,李爱军.基于高程熵的综合匹配算法在地形匹配上的应用.测控技术,2004,23(3):69-73页
    [90]王伟,谢燕武,李爱军.基于地形熵和MAD的综合地形匹配算法.弹箭与制导学报,2006,26(2):1015-1017页
    [91] Zheng Y N, Zhou M, Li G Y. Information entropy based fuzzy optimization model ofelectricity purchasing portfolio.2009IEEE Power and Energy Society GeneralMeeting,2009:1-6P
    [92]程力,蔡体菁.基于模式识别神经网络的重力匹配算法.东南大学(自然科学版),2007,37(5):839-843页
    [93]程力,蔡体菁.一种模式识别神经网络重力匹配算法.中国惯性技术学报,2007,15(4):418-422页
    [94]郭俊.神经网络与非线性滤波在景象匹配辅助导航中的应用研究.南京航空航天大学硕士学位论文,2009:24-36页
    [95]张德丰等. MATLAB神经网络应用设计.北京:机械工业出版社,2009:1-18页
    [96] Zhang Q H, Benveniate A. Wavelet networks. IEEE Trans Neural Networks,1992,3(6):889-898P
    [97]李玉.小波神经网络及其研究进展.科技信息,2006,9:24-25页
    [98] Hostetler L D, Andreas R D. Nonlinear Kalman filtering techniques for terrain-aidednavigation. IEEE Transactions on Automatic Control,1983:315-323P
    [99] Boozer D D, Lau M K, Fellerhoff J R. The AFTI/F16Terrain-Aided NavigationSystem. IEEE National Aerospace and Electronics Conference Proceedings,1985:351-357P
    [100] Fellerhoff J R. SITAN implementation in the SAINT system. Source: Record IEEEPLANS, Position Location and Navigation Symposium,1986:89-95P
    [101] Chen H H, Ji M. Comparison of methods for expanding the convergence region ofSITAN system. IEEE Proceedings of the National Aerospace and ElectronicsConference,1986:288-292P
    [102] Creel E E. Data compression techniques for use with the SITAN algorithm. IEEEPLANS, Position Location and Navigation Symposium,1986:309-315P
    [103] Hollowell J. Heli/SITAN: A terrain referenced navigation algorithm for helicopters.IEEE PLANS, Position Location and Navigation Symposium,1990:616-625P
    [104] Enns R., Morrell D. Terrain-aided navigation using the Viterbi algorithm. Journal ofGuidance, Control, and Dynamics,1995,6(18):1444-1449P
    [105]方正,佟国峰,徐心和.基于粒子群优化的粒子滤波定位方法.控制理论与应用,2008,23(3):533-537页
    [106]熊凌,马杰,田金文.基于粒子滤波的重力梯度与地形信息融合辅助导航方法.计算机应用与软件,2010,27(2):85-88页
    [107]刘繁明,钱东,刘超华.一种人工物理优化的粒子滤波算法.控制与决策,2012,27(8):1145-1149页
    [108] Nordlund P J, Gustafsson F. Marginalized particle filter for accurate and reliableterrain-aided navigation. IEEE Trans on Aerospace and Electronic Systems,2009,19(7):945-954P
    [109] Gustafsson F. Particle filter theory and practice with positioning applications. IEEEAerospace and Electronic Systems Magazine,2010,25(7):53-81P
    [110]王志刚,边少锋.基于ICCP算法的重力辅助惯性导航.测绘学报,2008,37(2):147-151页
    [111]张立,杨惠珍.基于ICCP和TERCOM的水下地形匹配组合演算法研究.弹箭与制导学报,2008,28(3):231-232页
    [112]王华,晏磊,钱旭等.基于地形熵和地形差异熵的综合地形匹配算法.计算机技术与发展,2007,9(17):25-27页
    [113]王伟,谢燕武,李爱军.一种改进的地形熵匹配导航算法.计算机仿真,2007,24(2):11-14页
    [114]徐晓苏,张逸群.改进的地形熵算法在地形辅助导航中的应用.中国惯性技术学报,2008,16(5):595-598页
    [115] Yuan G N, Zhang H W, Yuan K F. Improved SITAN algorithm in the application ofaided inertial navigation. International Conference on Measurement Information andControl. Harbin, China,2012:922-926P
    [116] Chen Y F, Zhong R F, Shi B. Integration matching algorithm on gravity aidedunderwater navigation. Applied Mechanics and Materials,2012,137:128-133P
    [117] Feng Q T, Shen L C, Chang W S. HMM based terrain elevation matching algorithm.Zidonghua Xuebao/Acta Automatica Sinica,2005,31(6):960-964P
    [118] Uijt D H, Maarten. Flight test evaluation of various terrain referenced navigationtechniques for aircraft approach guidance.2006IEEE/ION Position, Location, andNavigation Symposium,2006:440-449P
    [119]于家城,晏磊,邓嵬.海底地形辅助导航SITAN算法中二次搜索技术.电子学报,2007,35(3):474-477页
    [120] Wang Z G, Bian S F. Local geopotential model for implementation of underwaterpassive navigation. Progress in Natural Science,2008,9(18):1139-1146P
    [121]许大欣,王勇,王虎彪.重力垂直梯度和重力异常辅助导航SITAN算法结果分析.大地测量与地球动力学,2011,31(1):127-131页
    [122]杨峻巍.水下航行器导航及数据融合技术研究.哈尔滨工程大学博士学位论文,2012:46-49页
    [123]黄谟涛,翟国君,管铮等.海洋重力场测定及其应用.北京:测绘出版社,2005:7-9,93-99页
    [124]曾华霖.重力场与重力勘探.北京:地质出版社,2005:85-93,109-111页
    [125] Marvin B M. Fleet ballistic missile navigation2. ION newsletter,2006,16(1):13-17P
    [126] Stephen V, Alan Z. Survey of existing and emerging technologies for strategicsubmarine navigation. IEEE position, location and navigation sysposium, PalmSprings,1998:309-315P
    [127] Chapin D. Gravity instruments: past, present, future. The Leading Edge,1998,17(1):100-112P
    [128] Lee J B, Downey M A, Turner R J. First test survey results from the FALCONHelicopter-borne Airborne Gravity Gradiometer System. Extended Abstracts of theAustralian Earth Sciences Convention(AESC),2006
    [129] Dransfield M H, Lee J B. The FALCONR airborne gravity gradiometer surveysystems. Abstracts from the ASEG-PESA Airborne Gravity2004Workshop Record,Sydney, Australia,2004:15-19P
    [130] Difrancesco D. Advances and challenges in the development and deployment ofgravity gradiometer systems. EGM2007International Workshop, Capri, Italy,2007
    [131] Visser P N. GOCE gradiometer: estimation of biases and scale factors of all sixindividual accelerometers by precise orbit determination. Journal of Geodesy,2009,83(1):69-85P
    [132] Moody M V, paik H J. Three-axis superconducting gravity gradiometer for sensitivegravity experiments. AIP Review of Scientific Instruments,2002,73(1):3957-3974P
    [133] Moody M V, paik H J. A Superconducting gravity gradiometer for inertial navigation.IEEE Position Location and Navigation Symposium (PLANS),2004:775-78lP
    [134] Bongs K, Fixler J. Atom inferometer based inertial force sensors. AIAA Guidance,Navigation, and Control Conference and Exhibit, Monterey, CA,2002:50-53P
    [135]吴琼,滕云田,郭有光.激光干涉重力梯度仪设计方案.物探与化探,2011,35(2):230-233页
    [136]舒晴,周坚鑫,尹航.航空重力梯度仪研究现状及发展趋势.物探与化探,2007,31(6):485-488页
    [137]李红军,邓方林,柯熙政.旋转加速度计重力梯度仪原理及其应用,2002,17(4):614-619页
    [138]罗嗣成.旋转加速度计重力梯度仪.华中科技大学硕士学位论文,2007:6-12页
    [139]李海兵,蔡体菁.旋转加速度计重力梯度仪误差分析.中国惯性技术学报,2009,17(5):525-528页
    [140]涂良成,刘金全,王志伟.旋转重力梯度仪的加速度计动态调节方法与需求分析.中国惯性技术学报,2011,19(2):131-135页
    [141] Zanardi M C, Simal M L. Analytical attitude propagation with non-singular variablesand gravity gradient torque for spin stabilized satellite. Advances in Space Research,2007,40:11-17P
    [142]孔祥元,郭际明,刘宗泉.大地测量学基础.武汉:武汉大学出版社,2010:60-62页
    [143] Teunissen P J G, Jonge P J. Volume of the GPS ambiguity search space and itsrelevance for integer ambiguity resolution. Proceedings of the19969th InternationalTechnical Meeting of the Satellite Division of the Institute of Navigation. Kansas City,MO, USA,1996:889-898P
    [144] Peter J G, Teunissen. GPS carrier phase ambiguity fixing concepts. Department ofGeodetic Engineering, Delft University of Technology,2006:263-332P
    [145]张其善,吴今培,杨东凯.智能车辆定位导航系统及应用.北京:科学出版社,2002:164-165页
    [146]常青,杨东凯.车辆导航定位方法及应用.北京:机械工业出版社,2005:110-112页
    [147]夏冰,王浩.相关极值的重力匹配辅助导航.光学精密工程,2009,17(4):832-837页
    [148]黄富贵,郑育军.基于区域搜索的圆度误差评定方法.计量学报,2008,29(2):117-119页
    [149]谭佳琳.粒子群优化算法研究及其在海底地形辅助导航中的应用.哈尔滨工程大学博士学位论文,2010:118-137页
    [150]谌剑,张静远,查峰.一种改进ICCP水下地形匹配算法.华中科技大学学报(自然科学版),2012,40(10):63-67页
    [151]谌剑,张静远,查峰.变分辨率质点滤波水下地形匹配算法.中国惯性技术学报,2012,6(20):694-699页
    [152]卜长江,罗跃生.矩阵论.哈尔滨:哈尔滨工程大学出版社,2003:24-39页
    [153]秦永元.惯性导航.北京:科学出版社,2012:256-257页
    [154]刘承香,刘繁明,刘柱.快速ICCP算法实现地形匹配技术研究.船舶工程,2003,25(3):54-56页
    [155]刘繁明,孙枫,成怡.基于ICCP算法及其推广的重力定位.中国惯性技术学报,2004(5):36-39页
    [156] Xu ZY, Yan L, Liu G Q. An improved TERCOM algorithm and its application in asubmarine terrain aided navigation system. GNSS and Integrated GeospatialApplications,2006,30(4):1-11P
    [157]王可东,陈偲.水下地形匹配等值线算法研究.宇航学报,2006,27(5):995-999页
    [158] Yang Y, Wang K D. Mismatching judgment using PDAF in ICCP algorithm. FourthInternational Conference on Natural Computation, Piscataway: Inst. of Elec. and Elec.Eng. Computer Society,2008:172-176P
    [159]张红梅,赵建虎,王爱学.预平移简化ICCP匹配算法研究.武汉大学学报信息科学版,2010,35(12):1432-1435页
    [160]杨勇,王可东,吴镇.不同参数对地形等值线匹配算法精度影响的评估分析.航空学报,2010,31(5):996-1003页
    [161]童余德,边少峰,蒋东方.实时ICCP算法重力匹配仿真.中国惯性技术学报,2011,19(3):340-343页
    [162] Jiang F, Wu Y M, Zhang Z S, et al. Combinational seabed terrain matching algorithmbasing on probability data associate filtering and iterative closest contour point.2009Second International Conference on Intelligent Computation Technology andAutomation, Piscataway: IEEE Computer Society,2009:245-249P
    [163] Zhen T, Bian S F. Study on the algorithm of sea bottom terrain match.2009SecondInternational Conference on Information and Computing Science, Piscataway: IEEEComputer Society,2009:179-182P
    [164] Zhao J B, Wang S P, Wang A X. Study on Underwater Navigation System Based onGeomagnetic Match Technique. The Ninth International Conference on ElectronicMeasurement&Instruments,2009:255-259P
    [165]王胜平,张红梅,赵建虎.利用TERCOM与ICCP进行联合地磁匹配导航.武汉大学学报(信息科学版),2011,36(10):1209-1212页
    [166]李姗姗,吴晓平.水下重力异常最近等值线迭代匹配算法的改进.武汉大学学报(信息科学版),2011,36(2):226-230页
    [167] Chen X L, Li Y. Terrain Aided Navigation for Autonomous Underwater Vehicle.2011Seventh International Conference on Natural Computation,2011:1785-1789P
    [168]刘承香.水下潜器的地形匹配辅助定位技术研究.哈尔滨工程大学博士论文,2003:58-66页
    [169]魏东.重力匹配定位方法研究.哈尔滨工程大学硕士论文,2004:1-4页
    [170]李豫泽,石志勇,杨云涛.基于ICCP算法的地磁匹配定位方法.现代电子技术,2008,283(20):122-124页
    [171]刘学军,符锌砂,赵建三.三角网数学地面模型快速构建算法研究.中国公路学报,2000,(2):32-35页
    [172]刘学军,符锌砂.三角网数学地面模型的理论、方法现状及发展.长沙交通学院学报,2001,(2):25-32页
    [173]吴宏悦.基于地形熵和ICCP算法的水下辅助导航组合方法研究.舰船科学技术,2011,33:54-57页
    [174]孙枫,王文晶,高伟.用于无源重力导航的等值线匹配算法.仪器仪表学报,2009,30(4):818-822页
    [175] Zhang Q H, Benveniate A. Wavelet networks. IEEE Trans Neural Networks,1992,3(6):889-898P
    [176]郭俊.神经网络与非线性滤波在景象匹配辅助导航中的应用研究.南京航空航天大学硕士学位论文,2009:24-36页
    [177] Zhang F Z, Chen J, Cheng J Z. Simulation research on matching algorithm forunderwater gravity difference entropy Aided Inertial Navigation. Acta ScientiarumNaturalium Universitatis Pekinensis,2010,46:136-140P
    [178] Zheng Y N, Zhou M, Li G Y. Information entropy based fuzzy optimization model ofelectricity purchasing portfolio.2009IEEE Power and Energy Society GeneralMeeting,2009:1-6P

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700