用户名: 密码: 验证码:
基于激光雷达与多光谱遥感数据的森林地上生物量反演研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
森林生物量是衡量生态系统生产力的重要指标,也是研究森林生态系统物质循环的重要基础,作为陆地生物圈的主体,对全球气候变化研究具有重要意义。传统的森林生物量统计以实测数据为基础,需要进行大量的实地调查,工作量大、周期长,在推测大面积林分生物量时,待测林分每木检尺数据往往难以获得。而随着遥感技术的快速发展,包括航空像片、光学遥感影像、微波雷达与激光雷达等多源遥感数据已应用于森林类型、分布与结构特征的监测与信息提取,为大尺度森林生物量估算与长时间动态变化研究提供了一条快捷、经济、方便的途径。利用光学遥感数据进行区域性森林结构参数及生物量反演研究起步较早,但是其信号穿透性较差,因此主要记录了森林的水平结构信息。运行于特定波长范围的合成孔径雷达(SAR)对植被有一定的穿透能力,能够利用后向散射进行生物量的估算,但是微波受地形起伏干扰较大,并且当植被冠层密闭或生物量较高时易饱和,从而限制了在区域生物量估算中的应用。激光雷达是近年来迅速发展的主动遥感技术,对森林具有很强的穿透能力,在森林结构参数获取方面具有显著的优势。然而,小光斑激光雷达也存在着成本高、覆盖范围有限、数据量大等局限,限制了其在大面积森林空间结构信息提取中的应用。具有完整波形的大光斑激光雷达能够描述大面积森林冠层空间结构信息,记录光斑内随时间变化的能量值,获取比小光斑激光雷达更多的林分冠层信息,且理论上具有获取全球数据的能力。目前,以激光雷达为代表的新技术逐渐成为森林生态参数测量中的重要手段,正发挥着无可比拟的优势。但是,大光斑激光雷达传感器在空间上采样不连续,无法达到无缝覆盖,在大尺度应用上也存在着局限。而随着遥感技术手段的多样化,人们对如何有效利用多源遥感数据进行生态学研究寄予厚望。当前,将激光雷达数据与其他光学或微波遥感数据融合进行森林结构参数及生物量反演研究是热点,具有很大的发展潜力。
     本研究针对长白山林区复杂的地形环境,探讨了联合多光谱TM数据与大光斑激光雷达GLAS数据进行森林冠层高度与生物量估算的可行性;实现了GLAS完整波形数据的处理算法,提出并建立了能适应复杂地形条件的森林冠层高度估算模型;针对ICESat/GLAS光斑数据空间离散,不具备成像能力的特点,融合光学遥感影像数据建立了区域尺度森林冠层高度反演模型,并分析其影响因素及不确定性;最终,联合GLAS最大冠层高度数据与光谱信息对研究区森林生物量进行空间反演。研究结果表明,联合光学遥感与激光雷达进行森林冠层高度与生物量估算可以充分发挥多源遥感数据的优势,并且具有广泛的适用性。
     取得的主要结论如下:
     1.基于TM遥感影像6个波段反射率及RVI、NDVI、SLAVI、EVI、VII、MSR、NDVIc、BI、GVI、WI等10个植被指数,并辅助于DEM、ASPECT、SLOPE等地形信息,在与植物冠层分析仪(TRAC)实测各森林类型叶面积指数相关性分析的基础上,对比分析多元线性回归与偏最小二乘法估算能力,构建了该区森林LAI最佳遥感反演模型,最终获得区域尺度森林LAI分布。研究发现,对于复杂的森林生态系统,仅依靠单个波段或植被指数很难达到建模反演LAI的需要,而融合各指数能够改善遥感估算的精度。同时还发现,引入地形指数并未能有效地提高模型的预测精度。从模型的反演能力来看,无论多元线性回归方法还是偏最小二乘法,针叶林优于阔叶林、针阔混交林,这可能是受森林群落结构复杂程度的影响。对比分析了各森林类型基于单变量的郁闭度最佳遥感反演模型及基于植被指数的像元二分模型模拟效果,研究发现后者能更好地把握森林郁闭度的动态变化,并且在应用像元二分模型时,通过对NDVIcrown与NDVInon-crown设置不同的阈值,能够在一定程度上提高模型估算的精度。
     2.分析了研究区不同森林类型激光雷达脚点数据的空间分布情况,实现了GLAS完整波形数据处理算法。针对当前大多数研究利用Gaussian组分拟合原始波形获取信号始末位置及地面回波位置不足以准确把握细节信息、易造成地面回波“丢失”的缺陷,提出利用傅里叶变换进行低通滤波与波形拟合,从而为波形关键参数提取及森林冠层高度估算奠定基础。而后基于波形长度、地形指数及质心位置信息构建了适于复杂地形条件下的森林冠层高度估算模型。总体而言,对于平缓地形,GLAS估算的最大冠层高度精度较高(误差通常在0.5m左右),坡地条件下经过校正后的最大冠层高度总体RMSE也在2.021~2.674m之间,为有
     3.在GLAS最大森林冠层高度获取的基础上,联合TM多光谱数据及转换生成的植被指数、叶面积指数、郁闭度信息,并考虑地形因素对林分高度的影响,构建了适用于区域扩展的针叶林、阔叶林及针阔混交林冠层高度最佳遥感反演模型,并利用野外实测数据进行独立验证。研究表明,融入地形因子可以弥补光谱信息的不足;各森林类型偏最小二乘法模型估算结果RMSE都在2m以内,虽仍有个别点存在高估或低估的现象,但总体一致性较好。
     4.基于GLAS数据获取的最大森林冠层高度,建立了各森林类型地上生物量估算模型,分析发现针叶林GLAS冠层高度与生物量的相关系数达到0.903,回归模型的确定性系数R2也达到0.816,而阔叶林相关性也达到了0.589,回归模型R2达到了0.412,表明树高对于森林生物量具有重要的预测能力。而后,融合GLAS估算的最大冠层高度、TM数据转换生成的10个植被指数以及估算的LAI和冠层郁闭度,分别利用多元线性回归(MLR)方法及BP神经网络模型建立森林地上生物量反演模型。研究表明,融合光谱信息与林分高度信息的BP神经网络模型以其强大的非线性处理能力,能够较好地对各森林类型生物量进行空间反演。
Forest biomass is an important indicator for assessing the ecosystem productivity,and also the basis for analysis of substance circulation in forest ecosystem. As themain body of the Earth’s terrestrial biosphere, forest plays a major role in fixingatmospheric CO2and mitigating climate change. The traditional methods forcalculating biomass rely on a considerable amount of in-situ measurements thatinvolves extreme time and labour, which is also difficult to update spatial distributionin a large area. However, with the rapid development of remote sensing technique,multi-source remote sensing data including aerial photographs, optical images, radarand LiDAR have been extensively used for monitoring the forest types, spatialdistribution and structural features, which provides a fast, cheap, and convenient wayto estimate the large-scale forest biomass and long-term dynamic change. Usingoptical remote sensing data to retrieve regional forest structural parameters andbiomass started earlier. However, owing to weak penetrating power, it mainly reflectshorizontal forest structures. Synthetic Aperture Radar (SAR) could penetrate thevegetation canopies to a certain extent, but it was seriously disturbed by thetopographic relief and no longer sensitive when the crown was closed or the biomasswas very high, which restricted its application in regional estimation. LiDAR (LightDetect and Ranging) is an active remote sensing that developed rapidly in recent years,and has performed great potential and advantage in estimating forest vertical structureparameters due to its strong capacity to penetrate forest canopies. The small-footprintLiDAR can provide a wide variety of efficient stand parameters with high precision,but it still has plenty of limitations such as high cost, limited coverage, massive amounts of data, and so on. While large-footprint ICESat/GLAS waveform data canestimate spatial structure parameters of large-area forest, and acquire more standinformation than small-foortprint LiDAR through recording the time variation in theintensities of returned laser pulses, which resole elliptical areas approximately65m indiameter. Futhermore, the satellite coverage is even global scale in theory. CurrentlyICESat/GLAS data have being widely used in estimation of ecological parameters offorest. However, the major shortcoming of the large-footprint LiDAR is lack ofimaging capability, which could only provide vegetation samples in spatially discretefootprints and restrict its application in regional biomass estimation. The developmentof multi-source remote sensing techniques stimulates how to effectively use these datafor ecological studies owing to limited information from a single sensor. At present,there is a trend of using multi-sensor remote-sensing system integration and datafusion (such as GLAS waveform data and optical images or SAR), which indicatesgreat potential in forest biomass estimation.
     In view of the complicated terrain in Changbai Mountains, the study explored thefeasibility of extraction of forest canopy height and above-ground biomass byintegrating multispectral data (TM) and GLAS waveform data. The algorithms ofprocessing the GLAS data were implemented and the models of estimating canopyheight in the area of flat slope and steep slope were established. Considering theGLAS waveform data were spatially discrete, the study brought forward theestimation model of regional forest canopy height using optical remote sensingimages. At last, the forest above-ground biomass in the study area was retrieved byintegrating the canopy height from GLAS with optical data. The results showed thatTM wide-swath data and GLAS waveform data can be combined to estimate forestcanopy height and above-ground biomass with good precision. The main findings areas follows:
     1. Based on the object-oriented method from eCognition and corrected LandsatTM data, this study acquired the land use/cover data in2010. Then the data wasfurther divided into coniferous forest, broad-leaved forest, mixed broadleaf-conifer forest and non-forestry land. Meanwhile under the ArcGIS platform, six bands ofreflectance values, ten kinds of vegetation index including RVI、NDVI、SLAVI、EVI、VII、MSR、NDVIc、BI、GVI and WI, and the topographic factors as DEM、ASPECTand SLOPE, were calculated to analyze the correlations between the correspondingforest LAI measured using TRAC with each factor. Then compared the modelperformance of multiple linear regression (MLR) and partial least squares (PLS)method, this paper established the optimal model to retrieve the forest LAI of eachforest type. At last, the distribution map of forest LAI in this study area was made byintegrating remote sensing inversion model with the forest classification data acquiredbeforehand. The results showed that it’s hard to retrieve forest LAI accurately with asingle band or vegetation index, but we could improve the model’s precision bycombining these variables. Meanwhile, the topographic factors cannot effectivelyenhance the model’s effect. From the perspective of inversion ability of each foresttype, PLS models were obviously superior to MLR. Forest crown density is animportant parameter for evaluating forest status and indicating possible managementinterventions. Based on the highly related vegetation index, this paper established theoptimal empirical model to retrieve the forest crown density of each forest type.Compared with the empirical approach, we also improved the dimidiate pixel modelby defining four-level thresholds of NDVI including2%,1%,0.5%, and0.2%minimum and maximum cut of points in the histograms of NDVI imagery. The resultsshowed that forest crown density estimation based on the dimidiate pixel model withthreshold of NDVI being0.5%was efficient with high precision over the in-situ fieldvalidation for coniferous forest and mixed forest whereas being1%for broad-leavedforest in Changbai Mountain area. And the model performed well for coniferousforest (R2of0.872and RMSE of0.019), followed by broad-leaved forest (R2of0.832and RMSE of0.016) and mixed forest (R2of0.799and RMSE of0.021).
     2. After analyzing the distribution of these GLAS waveform data for each foresttype in the study area, the algorithms of processing GLAS data were implemented.Currently, many studies use Gauss function to fit the GLAS full waveform, and obtain the key parameters. However, this method might lead to ground echo signals missing.Therefore, Fourier transform was proposed to filter and fit the waveform, which builta basis for extraction of the key parameters and estimation of canopy height. Thenbased on the waveform length, topographic index and centroid position, this studyestablished the estimation model of forest canopy height in complicated terrain.Overall, the precision of GLAS forest canopy height was high in flat regions (about0.5m). The RMSE in high-slope terrain also reached2.021~2.674m after correction.
     3. Based on the algorithm of forest canopy height for GLAS data, the models ofconifer, deciduous broadleaf forest, and mixed forest in complex terrain conditionswere established by integrating TM parameters (6spectral bands,10vegetationindexes, LAI and crown density), canopy height and the topographic factors, and thenvalidated with in-situ measured data. The results showed that the topographic factorscould supplement the shortcomings of spectral information. RMSE of the optimizedmodels for each forest type using PLS method were less than2m. Although there stillexisted overestimation or underestimation, the general trend held true.
     4. The relationship between forest canopy height and above-ground biomass wasanalyzed. The result showed that the correlation coefficients between above-groundbiomass and the canopy height were0.903and0.589, and the R2of the regressionmodel reached0.816and0.412, respectively, which indicated the predictive ability ofcanopy height to forest biomass. Then the multiple linear regression model and BPneutral network model of forest above-ground biomass were established bycombining forest canopy height, vegetation indexes, LAI and crown density. Theresult showed that the characteristic of nonlinearity of BP neutral network model wasmore fitted to inverse the forest biomass.
引文
安图县土壤志.1985.安图县农业区划委员会办公室.
    曹宝,秦其明,马海建等.2006.面向对象方法在SPOT5遥感影像中的应用——以北京市海淀区为例.地理与地理信息科学,22(2):46–54.
    陈传国,朱俊凤.1989.东北主要林木生物量手册.中国林业出版社.
    程红芳,章文波,陈锋.2008.植被覆盖度遥感估算方法研究进展.国土资源遥感,19(1):1318.
    陈尔学.1999.合成孔径雷达森林生物量估测研究进展.世界林业研究,12(6):18–23.
    陈尔学,李增元,庞勇等.2007.基于极化合成孔径雷达干涉测量的平均树高提取技术.林业科学,43(4):66–70.
    陈云浩,冯通,史培军等.2006.基于面向对象和规则的遥感影像分类研究.武汉大学学报(信息科学版),31(4):316–320.
    陈旭,徐佐荣,余世孝.2009.基于对象的Quickbird遥感图像多层次森林分类.遥感技术与应用,24(1):22–26.
    董立新.2008.基于多源遥感数据的三峡库区森林冠层高度与生物量估算方法研究.中国科学院研究生院博士学位论文.
    董立新,吴炳方,唐世浩.2011.激光雷达GLAS与ETM联合反演森林地上生物量研究.北京大学学报(自然科学版),47(4):703–710.
    方精云,朴世龙,赵淑清.2001. CO2失汇与北半球中高纬度陆地生态系统的碳汇.植物生态学报,25(5):594–602.
    方秀琴,张万昌.2003.叶面积指数(LAI)的遥感定量方法综述.国土资源遥感,14(3):58–62.
    高云飞,李智广,杨胜天等.2012.基于SPOT5的郁闭度反演方法.水土保持研究,19(2):267270.
    国庆喜,张峰.2003.基于遥感信息估测森林生物量.东北林业大学学报,2003,31(2):13–16.
    郭芬芬,范建容,严冬等.2010.基于像元二分模型的昌都县植被盖度遥感估算.中国水土保持,5:6567.
    郭志华,彭少麟,王伯荪.2002.利用TM数据提取粤西地区的森林生物量.生态学报,22(11):1832–1840.
    何红艳,郭志华,肖文发.2007.遥感在森林地上生物量估算中的应用.生态学杂志,26(8):1317–1322.
    何祺胜,陈尔学,曹春香等.2009.基于LiDAR数据的森林参数反演方法研究.地球科学进展,24(7):748–755.
    金丽芳,徐希孺,张猛.1986.内蒙古典型草原地带牧草产量估算的光谱模型.内蒙古大学学报(自然科学版),17(4):735–740.
    李德仁,王长委,胡月明等.2012.遥感技术估算森林生物量的研究进展.武汉大学学报(信息科学版),37(6):631–635.
    李海奎,雷渊才,曾伟生.2011.基于森林清查资料的中国森林植被碳储量.林业科学,47(7):7–12.
    李苗苗,吴炳方,颜长珍等.2004.密云水库上游植被覆盖度的遥感估算.资源科学,26(4):153159.
    李明泽.2010.东北地区森林生物量遥感估算及分析.东北林业大学博士论文.
    李晓.2010.吉林省安图县县域旅游形象设计与传播.延边大学硕士论文.
    李晓梅,张秋良,李增元等.基于对象的CHRIS遥感图像森林类型分类方法研究.内蒙古农业大学学报,31(2):31–36.
    刘大伟,孙国清,庞勇等.2006.利用LANDSAT TM数据对森林郁闭度进行遥感分级估测.遥感信息,1:4143.
    刘殿伟,汤旭光,王宗明等.应用Photoshop和Matlab快速提取森林郁闭度的方法.专利号:201110444692.
    刘东起,范文义,李明泽.2012.利用小光斑激光雷达估测林分参数和生物量.东北林业大学学报,40(1):3943.
    刘志锋,南颖,胡浩,董叶辉,杨易,周鹏,吉喆.2010.2000~2008年长白山地区植被覆盖变化特征.西北植物学报,30(2):391–398.
    马利群,李爱农.2011.激光雷达在森林垂直结构参数估算中的应用.2011.世界林业研究,24(1):42–45.
    马泽清,刘琪,徐雯佳等.2007.江西千烟洲人工林生态系统的碳蓄积特征.林业科学,43(11):1–7.
    庞勇,李增元,陈尔学等.2005.激光雷达技术及其在林业上的应用.林业科学,41(3):129–136.
    庞勇,于信芳,李增元等.2006.星载激光雷达波形长度提取与林业应用潜力分析.林业科学,42(7):137–140.
    庞勇,黄克标,李增元等.2011.基于遥感的湄公河次区域森林地上生物量分析.资源科学,33(10):1863–1869.
    宋茜,范文义.2011.大兴安岭植被生物量的ALOS PALSAR估算.应用生态学报,22(2):303–308.
    孙华,鞠洪波,张怀清等.2012.偏最小二乘回归在Hyperion影像叶面积指数反演中的应用.中国农学通报,28(7):44–52.
    谭炳香,李增元,陈尔学等.2006. Hyperion高光谱数据森林郁闭度定量估测研究.北京林业大学学报,28(3):95–101.
    汤旭光,刘殿伟,宋开山等.2010.东北主要绿化树种叶面积指数(LAI)高光谱估算模型研究.遥感技术与应用,25(3):334–341.
    汤旭光,宋开山,刘殿伟等.2011.基于可见/近红外反射光谱的大豆叶绿素含量估算方法比较.光谱学与光谱分析,31(2):371–374.
    汤旭光,刘殿伟,王宗明等.2012.森林地上生物量遥感估算研究进展.生态学杂志,31(5):1311–1318.
    涂云燕,彭道黎.2012.基于神经网络的森林蓄积量估测.中南林业科技大学学报,32(3):49–52.
    汪少华,张茂震,赵平安等.2011.基于TM影像、森林资源清查数据和人工神经网络的森林碳空间分布模拟.生态学报,31(4):998–1008.
    王金亮,程峰,王成等.2012.基于ICESat-GLAS数据估算复杂地形区域森林蓄积量潜力初探——以云南省香格里拉县为例.遥感技术与应用,27(1):45–50.
    王立海,邢艳秋.2012.基于人工神经网络的天然林生物量遥感估测.应用生态学报,19(2):261–266.
    王敏,李贵才,仲国庆等.2010.区域尺度上森林生态系统碳储量的估算方法分析.林业资源管理,2:107–112.
    文汉江,程鹏飞.2005. ICESat/GLAS激光测高原理及其应用.测绘科学,30(5):33–35.
    肖海燕.2006.基于高光谱成像遥感的红树林类型信息提取和生物量研究——以福田红树林为例.北京大学硕士论文.
    邢劭朋.1988.吉林森林.吉林科学技术出版社.
    邢素丽,张广录,刘慧涛等.2004.基于Landsat ETM+数据的落叶松林生物量估算模式.福建林学院学报,24(2):153–156.
    邢艳秋,王立海.2009.基于ICESat/GLAS完整波形的坡地森林冠层高度反演研究——以吉林长白山林区为例.武汉大学学报(信息科学版),34(6):696–700.
    徐振邦,李昕,戴洪才等.1985.长白山阔叶红松林生物生产量的研究.森林生态系统研究,5:33–46.
    杨存建,刘纪远,张增详.2004.热带森林植被生物量遥感估算探讨.地理与地理信息科学,20(6):22–25.
    杨飞,王卷乐,陈鹏飞等.2012. HJ-1ACCD与TM数据及其估算草地LAI和鲜生物量效果比较分析.遥感学报,16(5):1000–1023.
    于贵瑞,李轩然.2009.中国陆地生态系统管理将持续发挥重要碳汇作用.科学时报.
    于贵瑞,王秋凤,朱先进.2011.区域尺度陆地生态系统碳收支评估方法及其不确定性.地理科学进展,30(1):103–113.
    于颖,范文义,李明泽等.2010.利用大光斑激光雷达数据估测树高和生物量.林业科学,46(9):84–87.
    张俊,朱国龙,李妍.2011.面向对象高分辨率影像信息提取中的尺度效应及最优尺度研究.测绘科学,36(2):107–109.
    张良培,郑兰芬,童庆禧.1997.利用高光谱对生物变量进行估计.遥感学报,1(2):111–114.
    张全智,王传宽.2010.6种温带森林碳密度与碳分配.中国科学(生命科学版),40(7):621–631.
    张仁华.1996.实验遥感模型及地面基础.北京:科学出版社.
    张云霞,李晓兵,陈云浩.2003.草地植被盖度的多尺度遥感与实地测量方法综述.地球科学进展,18(1):8593.
    张瀛,孟庆岩,武佳丽等.2011.基于环境星CCD数据的环境植被指数及叶面积指数反演研究.光谱学与光谱分析,31(10):2789–2793.
    张志,田昕,陈尔学等.2011.森林地上生物量估测方法研究综述.北京林业大学学报,33(5):144–150.
    张志新,邓孺孺,李灏等.2011.基于混合像元分解的南方地区植被覆盖度遥感监测——以广州市为例.国土资源遥感,22(3):8894.
    朱彪.2005.我国东北地区主要森林生态系统的碳储量.北京大学硕士论文.
    朱高龙,居为民,陈镜明等.2010.帽儿山地区森林冠层叶面积指数的地面观测与遥感反演.应用生态学报,21(8):2117–2124.
    周广益,熊涛,张卫杰等.2009.基于极化干涉SAR数据的树高反演方法.清华大学学报,4:510–513.
    周志强,岳彩荣,徐天蜀等.2012.森林高度遥感估测研究综述.现代农业科技,2:198–199.
    Abshire, J.B., Sun, X.L., Riris, H., et al.2005. Geoscience laser altimeter system (GLAS) on theICESat mission: on-orbit measurement performance. Geophysical Research Letters,32:1534–1536.
    Aldred, A., Bonner, M.1985. Application of airborne lasers to forest surveys. Canadian ForestryService, Petawawa National Forestry Centre, Information Report PI-X-51.
    Alley, R., Berntsen, T., Bindoff, N.L., et al.2007. Climate change2007: The physical sciencebasis, summary for policymakers. Intergovernmental Panel on Climate Change.
    Anderson, J., Martin, M.E., Smith, M.L., et al.2006. The use of waveform lidar to measurenorthern temperate mixed conifer and deciduous forest structure in New Hampshire. RemoteSensing of Environment,105:248–261.
    Bachman, C.G.1979. Laser radar systems and technique. Artech House, MA.
    Baldocchi, D., Falge, E., Gu, L.2001. FLUXNET: a new tool to study the temporal and spatialvariability of ecosystem scale carbon dioxide, water vapor, and energy flux densities. Bulletinof the American Meteorological Society,82:2415–2434.
    Battle, M, Bender, M.L, Tans, P.P, White, J.W.C, Ellis, J.T, Conway, T, Francey, R.J.2000. Globalcarbon sinks and their variability inferred from atmospheric O2and delta C13. Science,287:2467–2470.
    Boudreau, J., Nelson, R.F., Margolis, H.A., Beaudoin, A., Guindon, L., Kims, D.S.2008. Regionalaboveground forest biomass using airborne and spaceborne LiDAR in Quebec. RemoteSensing of Environment,112:3876–3890.
    Boyd, D.D., Foody, G.M., Curran, P.J.1999. The relationship between the biomass ofCameroonian tropical forests and radiation reflected in middle infrared wavelengths.International Journal of Remote Sensing,20(5):1017–1023.
    Brantley, S.T., Zinnert, J.C., Young, D.R.2011. Application of hyperspectral vegetation indices todetect variations in high leaf area index temperate shrub thicket canopies. Remote Sensing ofEnvironment,115:514–523.
    Brenner, A.C., Jay, Z.H., Charles, R.B.2002. Derivation of range and range distribution from laserpulse waveform analysis for surface elevations, roughness, slope, and vegetation heights.GLAS Algorithm Theoretical Basis Document Version3.0.
    Brown, L.J., Chen, J. M., Leblanc, S.G., et al.2000. Shortwave infrared correction to the simpleratio: an image and model analysis. Remote Sensing of Environment,77:1625.
    Brown, S.2002. Measuring carbon in forests: current status and future challenges. EnvironmentalPollution,116:363–372.
    Caicoya, A.T., Kugler, F., Papathanassiou, K.2010. Biomass estimation as a function of verticalforest structure and forest height. Potential and limitations for Radar Remote Sensing.8thEuropean Conference on Synthetic Aperture Radar.
    Carlson, T.N., Ripley, D.A.1997. On the relation between NDVI, fractional vegetation cover, andleaf area index. Remote Sensing of Environment,62(3):241252.
    Chen, J.M., Black, T.A.1992. Defining leaf area index for nonflat leaves. Plant, Cell andEnvironment,15:421–429.
    Cloude, S.R.1998. Polarimetric SAR Interferometry. IEEE Transactions on Geoscience andRemote Sensing,36(5):1551–1565.
    Cloude, S.R., Papathanassiou, K.P., Granary, B.2003. Three-stage inversion process forpolarimetric SAR interferometry. Radar, Sonar and Navigation, IEEE Proceedings,150(3):125-134.
    Cloude, S.R.2006. Polarization coherence tomography. Radio Science,41(4), RS4017.
    Crist, E.P., Cicone, R.C.1984. A physically-based transformation of Thematic Mapper data—theTM Tasseled Cap. IEEE Transactions on Geoscience and Remote Sensing,22:256–263.
    Curran, P.J., Dungan, J.L., Gholz, H.L.1992. Seasonal LAI in slash pine estimated with LandsatTM. Remote Sensing of Environment,39:3–13.
    Dorren, L.K.A., Maier, B., Seijmonsbergen, A.C.2003. Improved Landsat-based forest mappingin steep mountainous terrain using object-based classification. Forest Ecology andManagement,183:31–46.
    Drake, J.B., Dubayah, R.O., Clark, D.B., Knox, R.G., Blair, J.B., Hofton, M.A., Chazdon, R.L.,Weishampel, J.F., Prince, S.2002. Estimation of tropical forest structural characteristicsusing large-footprint lidar. Remote Sensing of Environment,79:305–319.
    Duang, V.H., Lindenbergh, R., Pfeifer, N., Vosselman, G.2008. Single and two epoch analysis ofICESat full waveform data over forested areas. International Journal of Remote Sensing,29:1453–1473.
    Duang, V.H., Lindenbergh, R., Pfeifer, N., Vosselman, G.2009. ICESat full waveform altimetrycompared to airborne laser scanning altimetry over the Netherlands. IEEE Transactions onGeoscience and Remote Sensing,47:3365–3378.
    Duncanson, L.I., Niemann, K.O., Wulder, M.A.2010a. Estimating forest canopy height andterrain relief from GLAS waveform metrics. Remote Sensing of Environment,114:138–154.
    Duncanson, L.I., Niemann, K.O., Wulder, M.A.2010b. Integration of GLAS and Landsat TM datafor aboveground biomass estimation. Canadian Journal of Remote Sensing,36:129–141.
    Eisfelder, C., Kuenzer, C., Dech, S.2011. Derivation of biomass information for semi-arid areasusing remote-sensing data. International Journal of Remote Sensing,33(9):1–48.
    Feldpausch, T.R., Lloyd, J., Lewis, S.L., et al.2012. Tree height integrated into pantropical forestbiomass estimates. Biogeosciences,9:3381–3403.
    Foody, G.M., Cutler, M.E., McMorrow, J., et al.2001. Mapping the biomass of Bornean tropicalrain forest from remotely sensed data. Global Ecology and Biogeography,10(4):379–387.
    Foody, G.M., Boyd, D.S., Cutler, M.E.2003. Predicitive relations of tropical forest biomass fromLandsat TM data and their transferability between regions. Remoe Sensing of Environment,85(4):463474.
    Franklin, S.E., Hall, R.J., Smith, L., et al.2003. Discrimination of conifer height, age and crownclosure classes using Landsat-5TM imagery in the Canadian Northwest Territories.International Journal of Remote Sensing,24(9):18231834.
    Gitelson, A.A., Kaufman, Y.J., Stark, R.2002. Novel algorithms for remote estimation ofvegetation fraction. Remote Sensing of Environment,80(1):7687.
    Goodale, C.L., Apps, M.J., Birdsey, R.A., Field, C.B., Heath, L.S., Houghton, R.A., Jenkins, J.C.,Kohlmaier, G.H., Kurz, W., Liu, S.R., Nabuurs, G.J., Nilsson, S., Shvidenko, A.Z.2002.Forest carbon sinks in the Northern Hemisphere. Ecological Applications,12:891–899.
    Gower, S.T.2003. Patterns and mechanisms of the forest carbon cycle. Annual Review ofEnvironment and Resources,28:169–204.
    Guo, Z.F., Chi, H., Sun, G.Q.2010. Estimating forest aboveground biomass using HJ–A satelliteand ICESat GLAS waveform data. Science China (Earth Sciences),53:16–25.
    Hall, R.J., Skakun, R.S., Arsenault, E.J., et al.2006. Modeling forest stand structure attributesusing Landst ETM+data: application to mapping of aboveground biomass and stand volume.Forest Ecology and Management,225:378–390.
    Hame, T., Salli, A., Andersson, K., et al.1997. A new methodology for the estimation of biomassof conifer-dominated boreal forest using NOAA AVHRR data. International Journal ofRemote Sensing,18(15):3211–3243.
    Harding, D.J., Carabajal, C.C.2005. ICESat waveform measurements of within-footprinttopographic relief and vegetation vertical structure. Geophysical Research Letters,32,L21S10.
    Harrell, P.A., Kasischke, E.S., French, N.H.F.1995. Sensitivity of ERS-1and JERS-1radar data tobiomass and stand structure in Alaskan boreal forest. Remote Sensing of Environment,54(3):247–260.
    Heyder, U.2005. Vertical forest structure from ICESat/GLAS LiDAR data. Masters thesisGeography, UCL.
    Hill, R.A., Boyd, D.S., Hopkinson, C.2010. Integrating airborne LiDAR and Landsat ETM+datafor large area assessment of forest canopy height in Amazonia. ISPRS Silvilaser workshopproceedings in Freiburg, Germany,2010.
    Hill, R.A., Boyd, D.S., Hopkinson, C.2011. Relationship between canopy height and LandsatETM+response in lowland Amazonian rainforest. Remote Sensing Letters,2(3):203–212.
    Hudak, A.T., Lefsky, M.A., Cohen, W.B., Berterretche, M.2002. Integration of lidar and LandsatETM+data for estimating and mapping forest canopy height. Remote Sensing ofEnvironment,82:397–416.
    Huete, A., Didan, K., Miura, T., et al.2002. Overview of the radiometric and biophysicalperformance of the MODIS vegetation indices. Remote Sensing of Environment,83:195–213.
    Imhoff, M.L.1995. Radar backscatter and biomass saturation: ramifications for global biomassinventory. IEEE International Geoscience and Remote Sensing,33(2):511–518.
    Iqbal, I.A.2010. Evaluating the potential of ICESat/GLAS data to estimate canopy height in theNew Forest National Park, UK. Dissertation for the degree of M.A. at University of Twente.
    Jennings, S.B., Brown, N.D., Sheil, D.1999. Assessing forest canopies and understoryillumination: canopy closure, canopy cover and other measures. Forestry,72(1):5974.
    Jordan, C.F.1969. Derivation of leaf-area index from quality of light on forest floor. Ecology,50:663–666.
    Kims, D.S., Holben, B.N., Nickeson, J.E., et al.1996. Extracting forest age in a Pacific Northwestforest from Thematic Mapper and topographic data. Remote Sensing of Environment,56(2):133–140.
    Kuplich, T.M., Salvatori, V., Curran, P.J.2000. JERA–1/SAR backscatter and its relationship withbiomass of regenerating forests. International Journal of Remote Sensing,21:2513–2518.
    Lefsky, M.A., Cohen, W.B., Spies, T.A.2001. An evaluation of alternate remote sensing productsfor forest inventory, monitoring, and mapping of Douglas-fir forests in western Oregon.Canadian Journal of Forest Research,31:78–87.
    Lefsky, M.A., Cohen, W.B., Parker, G., et al.2002. Lidar remote sensing for ecosystem studies.Bioscience,52:19–30.
    Li, A., Huang, C., Sun, G., Shi, H., Toney, C., Zhu, Z., Rollis, M.G., Goward, S.N., Masek, J.G.2011. Modeling the height of young forests regenerating from recent disturbances inMississippi using Landsat and Icesat data. Remote Sensing of Environment,115:1837–1849.
    Lymburner, L., Beggs, P.J., Jacobson, C.R..2000. Estimation of canopy-average surface-specificleaf area using Landsat TM data. Photogrametric Engineering&Remote Sensing,66:183–191.
    MacLean, G.A., Krabill, W.B.1986. Grossmerchantable timber volume estimationusing an airborne LIDAR system. Canadian Journal of Remote Sensing,12:7–18.
    Maselli, F., Chiesi, M., Montaghi, A., et al.2011. Use of ETM+imagines to extend stm volumeestimates obtained from LiDAR data. Journal of Photogrammetry and Remote Sensing,66:662–671.
    Mette, T., Papathanassiou, K., Hajnsek, I.2004. Applying a common allometric equation toconvert forest height form POLINSAR data to forest biomass. Proceedings of the2010IEEEInternational Geoscience and Remote Sensing Symposium.
    Mougin, E., Proisy, C., Matty, G., Fromard, F., Puig, H., Betoulle, J.L., Rudant, J.P.1999.Multifrequency and multipolarization radar backscattering from Mangrove forest. IEEETransactions on Geoscience and Remote Sensing,37:94–102.
    Myneni, R.B., Dong, J., Tucker, C.J., Kaufmann, R.K., Kauppi, P.E., Liski, J., Zhou, L., Alexeyev,V., Hughes, M.K.2001. A large carbon sink in the woody biomass of Northern forests.Proceeding of the National Academy of Sciences of the United States of America,98:14784–14789.
    Nasset, E., Gobakken, T.2008. Estimation of above-and below-ground biomass across regions ofthe boreal forest zone using airborne laser. Remote Sensing of Environment,112:3079–3090.
    Nelson, R.2010. Model effects on GLAS-based regional estimates of forest biomass and carbon.International Journal of Remote Sensing,31(5):1359–1372.
    Nemani, R., Pierce, L., Running, S., et al.1993. Forest ecosystem processes at the watershed scale:sensitivity to remotely-sensed leaf area index estimates. International Journal of RemoteSensing,14:2519–2534.
    Nilsson, M.1996. Estimation of tree heights and stand volume using an airborne lidar system.Remote Sensing of Environment,56:1–7.
    North, P.R.J., Rosette, J.A.B., Suarez, J.C., et al.2010. A Monte Carlo radiative transfer model ofsatellite waveform LiDAR. International Journal of Remote Sensing,31(5):1343–1358.
    Peduzzi, A., Wynne, R.H., Fox, T.R., et al.2012. Estimating leaf area index in intensivelymanaged pine plantations using airborne laser scanner data. Forest Ecology and Management,270:54–65.
    Popescu, S.C., Wynne, R.H., Scrivani, J.A.2004. Fusion of small footprint LiDAR andmultispectral data to estimate plot-level volume and biomass in deciduous and pine forests inVirginia USA. Forest Sciences,50:551–565.
    Post, W.M., Emanuel, W.R., Zinke, P.J., Stangenberger, A.G.1982. Soil carbon and world lifezones. Nature,298:156–159.
    Purevdorj, T.S., Tateishi, R., Ishiyama, T., et al.1998. Relationships between percent vegetationcover and vegetation indices. International Journal of Remote Sensing,19(18):35193535.
    Qi, J, Marsett, R.C., Moran, M.S., et al.2000. Spatial and temporal dynamics of vegetation in theSan Pedro River basin area. Agricultural and Forest Meteorology,105(13):5568.
    Ranson, K.J., Sun, G.Q.1994. Mapping biomass of a northern forest using multifrequency SARdata. IEEE Transactions on Geoscience and Remote Sensing,32(2):388–396.
    Ranson, K.J., Kimes, D., Sun, G., et al.2007. Using MODIS and GLAS data to develop timbervolume estimates in central Siberia. In IEEE IGARSS,23–26July2007, Barcelona, Spain,2306–2309.
    Rignot, E.J., Zimmermann, R., Vanzyl, J.J.1995. Spaceborne applications of P band imagingradars for measuring forest biomass. IEEE International Geoscience and Remote Sensing,33(2):1162–1169.
    Rosette, J.A.B., North, P.R.J., Suarez, J.C.2008. Vegetation height estimates for a mixedtemperate forest using satellite laser altimetry. International Journal of Remote Sensing,29(5):1475–1493.
    Rouse, J.W., Haas, R.H., Schell, J.A., et al.1974. Monitoring vegetation systems in the GreatPlains with ERTS. Third ERTS-1Symposium.Washington, DC: NASA.
    Runyon, J., Waring, R.H., Goward, S.N., et al.1994. Environmental limits on net primaryproductivity and light use efficiency across the Oregon transect. Ecological Applications,4:226237.
    Sandberg, G., Ulander, L.M.H., Fransson, J.E.S., Holmgren, J., Toan, T.Le.2011. L-and P-backscatter intensity for biomass retrieval in hemiboreal forest. Remote Sensing ofEnvironment,115:2874–2886.
    Soenen, S.A., Peddle, D.R., Hall, R.J., et al.2010. Estimating aboveground forest biomass fromcanopy reflectance model inversion in mountainous terrain. Remote Sensing of Environment,114:1325–1337.
    Solberg, S., Astrup, R., Gobakken, T., et al.2010. Estimating spruce and pine biomass withinterferometric X–band SAR. Remote Sensing of Environment,114:2353–2360.
    Solodukhin, V.I., Zukov, A.J., Mazugin, I.M.1977. Laser aerial profiling of a forest. Lew NIILKhLeningrad Lesnoe Khozyaistvo,10:53–58.
    Suganuma, H., Abe, Y., Taniguchi, M., et al.2006. Stand biomass estimation method by canopycoverage for application to remote sensing in an arid area of Western Australia. ForestEcology and Management,222:75–87.
    Sun, G., Pang, Y.2005. Evaluation of GLAS land and canopy elevation (GLA14) data.International Conference on Land-cover and Land-use Change Processes in North East AsiaRegion.
    Sun, G., Ranson, K. J., Kimes, D. S., et al.2008. Forest vertical structure from GLAS: Anevaluation using LVIS and SRTM data. Remote Sensing of Environment,112(1):107117.
    Sun, G., Ranson, K.J., Guo, Z., et al.2011. Forest biomass mapping from lidar and radarsynergies. Remote Sensing of Environment,115:2906–2916.
    Stenberg, P., Rautiainen, M., Manninen, T., et al.2008. Boreal forest leaf area index from opticalsatellite images: model simulations and empirical analyses using data from central Finland.Boreal Environment Research,13:433–443.
    Tang, X.G., Wang, Z.M., Liu, D.W., et al.2012. Estimating the net ecosystem exchange for themajor forests in the northern United States by integrating MODIS and AmeriFlux data.Agricultural and Forest Meteorology,156,7584.
    Thenkabail, P.S., Enclona, E.A, Ashton, M.S., et al.2004. Hyperion, IKONOS, ALI, and ETM+sensors in the study of African rainforests. Remote Sensing of Environment,90:23–43.
    Toan, L., Beaudoin, T., Riom, A., et al.1992. Relating forest biomass to SAR data. Geoscienceand Remote Sensing,30(2):403–411.
    Turner, D.P., Cohen, W.B., Kennedy, R.E., et al.1999. Relationships between leaf area index andLandsat TM spectral vegetation indices across three temperate zone sites. Remote Sensing ofEnvironment,70(1):52–68.
    Walter, V.2004. Object-based classifieation of remote sensing data for change detection. Journalof photogrammetry&RemoteSensing,58:225–238.
    Wang, C.K.2006. Biomass allometric equations for10co–occurring tree species in Chinesetemperate forests. Forest Ecological Management,222:9–16.
    Waring, R.H., Schlesinger, W.R.1985. Forest ecosystem: concepts and management. AcademicPress, Orlando.
    Xing, L.H., Alfred, D.G., Zhang, J.J., Wang, L.H.2010. An improved method for estimating forestcanopy height using ICESat/GLAS full waveform data over sloping terrain: A case study inChangbai mountains, China. International Journal of Applied Earth Observation andGeoinformation,12:385–392.
    Xu, X.J., Du, H.Q., Zhou, G.M., et al.2011. Estimation of aboveground carbon stock of Mosobamboo (Phyllostachys heterocycla var. pubescens) forest with a Landsat Thematic Mapperimage. International Journal of Remote Sensing,32(5):1431–1448.
    Zhang, Z.M., He, G.J., Wang, X.Q., et al.2011. Leaf area index estimation of bamboo forest inFujian province based on IRS P6LISS3imagery. International Journal of Remote Sensing,32,5365–5379.
    Zhao, F., Yang, X.Y., Schull, M.A., et al.2011. Measuing effective leaf area index, foliage profile,and stand height in New England forest stands using a full-waveform ground-based lidar.Remote Sensing of Environment,115:2954-2964.
    Zhu, B., Wang, X.P., Fang, J.Y., et al.2010. Altitudinal changes in carbon storage of temperateforests on Mt Changbai, Northeast China. Journal of Plant Research,123(4):439-452.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700