用户名: 密码: 验证码:
锦屏二级水电站施工排水洞岩爆问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
岩爆涉及到水电工程、矿山开发、铁路公路隧道工程等多个工程领域,造成了重大的人员伤亡和经济损失,已成为工业安全领域的主要灾种之一。锦屏二级水电站地处高地应力地区,自掘进以来施工排水洞发生岩爆110余次,对人员设备安全及工程进展产生严重威胁。为更好地阐明高地应力条件下硬岩岩爆孕育发生机理,开展施工排水洞岩爆的预警预报工作。本研究以理论分析为基础,结合试验研究,现场工程监测,岩爆宏观表现特征,采用数值仿真技术等手段,系统地研究了施工排水洞岩爆问题。主要研究工作与成果如下:
     (1)施工排水洞所发生岩爆基本为零星应变型岩爆,断裂型及节理控制型岩爆较少。一般表现为片、板状剥落、弯曲鼓折破裂、穹状/楔状爆裂以及洞室垮塌型破坏特征。多发生于埋深大、岩体完整、地应力量级较高洞段,断层、节理等构造控制岩爆表征。
     (2)针对施工排水洞开挖卸荷本质,开展了室内常规及卸载岩石试验研究。结果表明:施工排水洞大理岩具有明显的弹-脆性破坏特征,卸载、加载速率及破坏围压等对脆性破坏特征影响较大,外部施加应变能达到极限储能时,试件发生破坏。
     (3)结合室内试验、现场声发射监测及数值模拟分析结果,提出洞壁围岩能量单纯释放与积聚-释放两种不同演化模式,从极限储能及能量演化角度提出了施工排水洞应变型岩爆孕育发生机制。
     (4)系统地研究了埋深、侧压系数、断裂构造、节理构造、地层岩性、洞群相互作用、洞室形状、施工方式、支护作用、围岩强度退化等因素对岩爆的影响,揭示了一系列有价值的规律。
     (5)结合已有岩爆判据,提出考虑岩石力学、脆性、岩体完整性、储能、能量释放量等五个方面的岩爆多元复合判据,并以能量释放量为依据,对岩爆等级进行了划分,对施工排水洞剩余洞段岩爆可能性进行了预测。提出前期避让、预防为主、防治结合、强化管理、实时优化的岩爆防治措施总则。
The rockbusrst problems involve multi-fields such as hydropowerproject, mine exploitation, tunnel projects of railway and roadway and so on. It causes serious economic losses and casualties every year, and becomes a major disaster in the field of industrial safety.
     JinpingⅡhydropower station is located in a high geostress region of South-West China. Since the excavation of drainage tunnel, more than 110 rockbursts were recorded. These rockbursts activities have severe influence on the construction progress and safety of the personnel and equipments. To be better understanding the mechanism and prediction of rockburst of hard rock, the related problems of rockburst are studied in the dissertation. Based on theory analysis, using numerical simulation technology, and combining results of experiment research and field monitoring with characterization of rockburst, the rockburst in the drainage tunnel is studied systematically. The main research works are as following:
     (1) The rockburst in the drainage tunnel is mainly partial strain rockbust, fault-control while joint-control rockbust are infrequent. The break styles include spalling, bending, exploding, and collapsing. The strain rockburst occurred frequently in the layer with deep overburden, high in-situ stress, and intact rock mass. Fault and joint often influence the character of rockburst.
     (2) In response to the nature of the unloading since excavating of the underground, a series of rock experiment are carried out. The results illustrate that:the marble in the drainage tunnel has a characteristic elastic-brittle property, and the nature is influenced by loading velocity, unload velocity and failure confining pressure. If the energy in the rock which due to the change of the equipment attach the limitation energy of the rock self, the rock specimen will break.
     (3) Combining the results of the experiment research, field monitoring and numerical simulation, the energy change path in the tunnel wall are proposed, which has two patterns, release and release-accumulation. Based on the theory of the limitation of the energy in rock and the change of the energy when the excavating, the mechanism of rockburst preparation and development is proposed.
     (4) The influence on the rockburst by buried depth, side pressure coefficient, fault structure, joint structure, formation lithology, excavation shape, construction method, support action, strength degradation of rock mass have been analyzed. Based on the study conclusion mentioned above, some valuable laws are derived.
     (5) Based on the elastic energy release character of rock mass, combining the pre-existing rock burst criterion, the multi-criteria of rockburst are proposed, which considered the request of the rock mechanics, brittleness, integrity of rock mass, energy accumulating capability, energy release ability, and the index of the rock burst. Based on the multi-criteria of rockburst, the probability of rockburst in the residual drainage tunnel was analyzed and predicted. The results illustrate that:SK09+869~SK08+000 section will occurⅢlevel rockburst, SK08+000~SK07+000 section will occurⅡlevel rock burst and the others section will occurⅠlevel. Finally, the treatment measures of rockburst were presented.
引文
Barton N, Lien R, Lunde J. Engineering classification of rock masses for the design of tunnel support. International Journal of Rock Mechanics and Mining Sciences,1974,6(4):189-236.
    Brown ET, Hoek E. Technical note trends in relationships bwtween measured in-situ stress and depth[J]. [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1978,15(4): 211-215.
    Carter BJ. Size and stress gradient effect on fracture around cavities[J]. Rock Mechanics and Rock Engineering,1992,23(3):167-86.
    Diederichs MS, Kaiser PK, Eberhardt E. Damage initation and propagation in hard rock during tunneling and the influence of near-face stress rotation [J]. International Journal of Rock Mechanics and Mining Sciences,2004,41(5):785-812.
    Diederichs MS. Instability of hard rockmass:the role of tensile damage and relaxation[D]. University of Waterloo,2000.
    Eberhardt E. Numerical modelling of three-dimension stress rotation ahead of an advancing tunnel face[J]. International Journal of Rock Mechanics and Mining Sciences,2001,38:499-518.
    Edelbro C. Numerical modeling of observed fallouts in hard rock masses using an instantaneous cohesion-softening friction-hardening model[J]. Tunnelling and Uderground Space Technology,2009,24: 398-409.
    Germanovish LN, Dyskin AV. Fracture mechanisms and instability of openings in compression[J]. International Journal of Rock Mechanics and Mining Sciences,2000,37(1-2):263-284.
    Griffith A A. The phenomena of rupture and flow in solid[J]. Philosophical Transactions of the Royal Society of London A,1921,221:163-198.
    Griffith A A. The theory of rupture[A]. Proceedings of the First Congress of Applied Mechanics[C],1924: 55-63.
    Hajiabdolmajid V, Kaiser PK, Martin CD. Modelling brittle failure of rock[J]. International Journal of Rock Mechanics and Mining Sciences,2002,39:731-741.
    Hajiabdolmajid V, Kaiser PK. Brittleness of rock and stability assessment in hard rock tunneling[J]. Tunnelling and Underground Space Technology,2003,18:35-48.
    Heard HC. Transition from brittle fracture to ductile flow in Solenhofen limestone as a function of temperature, confining pressure, and interstitial fluid pressure[J]. Rock deformation,1960,193-226.
    Hoek E, Bieniawski ZT. Brittle fracture propagation in rock under compression [J]. International Journal of Fracture Mechanics,1965,13:137-155.
    Hoek E, Brown ET. Underground excavation in rock[M].London:The Institute of Mining and Metallurgy, 1980.
    Hoek E, Carranza-Torres C, Corkum B. Hoek-Brown failure criterion-2002 edition. In:Proceedings of the North American Rock Mechanics Symposium Toronto,2002.
    Hoek E, Kaiser P K, Bawden W F. Support of underground excavations in hard rock[M]. A.A.Balkenma/Rotterdam/Brookfield,1995.
    Hoek E, Brown E T. Strength of joint rock mass [J]. Geotechnique,1983,33 (3):187-223.
    Hoek E, Brown E T. Underground excavations in rock[M]. Herford, England:Austin& Sons Ltd,1980.
    Huang J, Wang Z, Zhao Y. The development of rock fracture from microfracturing to main fracture formation[J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 1993,30(7):925-928.
    Kaiser PK, Tannnant DD, McCreat DR. Canadian Rockburst Support Handbook[M]. Geomechanics Research Centre,1996.
    Kaiser, PK. Observational modellingapproach for design of underground opening[A]. In Proceedings, International Society for Rock Mechanics, South African National Group, The Application of Numerical Modelling in Geotechnical Engineering[C],1994.
    Kidybinski A. Bursting liability indices of coal[J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts,1981,18 (6):295-304.
    Kielbassa S, Duddeck H. Stress-strain fields at the tunneling face-Three-dimensional analysis for two-dimensional technical approach[J]. Rock Mechanics and Rock Engineering,1991,24(3):115-132.
    Lajtai EZ. A theoretical and experimental evaluation of the Griffith theory of brittle fracture[J]. Tectonophysics,1971, (11):129-156.
    Martin CD, Chandler N A. Stress heterogeneity and geological structures[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1993,30(7):993-999.
    Martin CD, Kaiser PK, McCreath DR. Hoek-Brown parameters for predicting the depth of brittle failure around tunnels[J]. Canadian Geotechnical Jorunal,1999,36(1):135-51.
    Martin CD. Characterizing in situ stress domains at AECL underground research laboratory[J]. Canadian Geotechnical Journal,1990,27:631-646.
    Martin CD. Seventeenth Canadian Geotechnical Colloquium:The effect of cohesion loss and stress path on brittle rock strength[J]. Canadian Geotechnical Journal,1997,34(5):698-725.
    Martin CD. The strength of massive Lac du Bonnet granite around underground openings[D]. Manitoba: University of Manitoba,1993.
    Moriyaa H, Fujita T, Niitsuma H, et al. Analysis of fracture propagation behavior using hydraulically induced acoustic emissions in the Bernburg salt mine, Germany[J]. International Journal of Rock Mechanics and Mining Sciences,2006,43(1):49-57.
    Ortlepp WD. Rock fracture and rockbursts:an illustrative study[M], The South African institute of Mining and Metallurgy,1997.
    Pan XD, Hudson JA. Plane strain analysis for tunneling[J]. Int J Numer Anal Methods Geomech,1991, 15(4):223-229.
    Pelli F, Kaiser PK, Morgenstern NR. An interpretation of ground movements recorded during construction of Donkin-Morien tunnel[J]. Canadian Geotechnical Journal,1991,28(2):239-254.
    Peng S, Johnson AM. Crack growth and faulting in cylindrical specimens of Chelmsford granite[J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts,1972,9(1): 37-86.
    Stephansson O. Polydiapirism of granitic rocks in the Svecofennian of Central Sweden[J]. Precambrian Research,1975,2:189-214.
    陈炳瑞,冯夏庭,肖亚勋,等.深埋隧洞TBM施工过程围岩损伤演化声发射试验[J].岩石力学与工程学报,2010,29(8):1562-1569.
    陈海军,郦能惠,聂德新,等.岩爆预测的人工神经网络模型[J].岩十工程学报,2002,24(2):229-232.
    陈卫忠,吕森鹏,郭小红,等.基于能量原理的卸围压试验与岩爆判据研究[J].岩石力学与工程学报,2009,28(8):1530-1541.
    陈祥,孙进忠,张杰坤,等.岩爆的判别指标和分级标准及可拓综合判别方法[J].土木工程学报,2009,42(9):82-88.
    陈秀铜,李璐.基于AHP-FUZZY方法的隧道岩爆预测[J].煤炭学报,2008,33(11):1230-1234.
    陈秀铜,李璐.锦屏二级水电站引水隧洞区域三维初始地应力反演回归分析[J].水文地质工程地质,2007,(6):55-59.
    陈蕴生,李宁,韩信.非贯通裂隙介质裂隙扩展规律的CT试验研究[J].岩石力学与工程学报,2005,24(15):2665-2670.
    冯涛,谢学斌,王文星,等.岩石脆性及描述岩爆倾向的脆性系数[J].矿冶工程,2000,20(4):18-19.
    冯夏庭.地下硐室岩爆预报的自适应模式识别方法[J].东北大学学报,1994,15(5):471-475.
    符文喜,任光明,聂德兴,等.深埋长隧道岩爆的预测预报及防治初探[J].地质灾害与环境保护,1999,10(1):25-28.
    高春玉,徐进,何鹏,等.大理岩加卸载力学特性的研究[J].岩石力学与工程学报,2005,24(18):456-460.
    葛修润,任建喜,蒲毅彬.岩石细观损伤扩展规律的CT实时试验[J].中国科学(E辑),2000,4:104-111.
    工程岩体分级标准(GB50218-94)[S].中华人民共和国建设部.北京:中国计划出版,1994.
    谷明成,侯发亮,陈成宗.秦岭隧道岩爆的研究[J].岩石力学与工程学报,2002,21(9):1324-1329.
    郭然,于润沧.有岩爆危险巷道的支护设计[J].中国矿业,2002,11(3):23-26.
    郭志.实用岩体力学[M].北京:地震出版社,1996.
    侯发亮,刘小明,王敏强.岩爆成因再分析及烈度划分探讨[A].第二届全国岩石动力学学生会议论
    文集[C].武汉:武汉测绘科技大学出版社,1992.
    侯发亮.岩石的全程应力应变曲线及岩爆倾向指数分析[A].第二届全国岩石动力学学术会议论文集[C].宜昌,1990.
    侯发亮等.岩石力学在工程中的应用[M].北京:知识出版社,1989.
    华安增,孔圆波,李世平,等.岩块降压破碎的能量分析[J].煤炭学报,1995,20(4):389-392.
    华安增,孔圆波,李世平,等.岩块降压破碎的能量分析[J].煤炭学报,1995,20(4):389-392.
    华安增.地下工程周围岩体能量分析[J].岩石力学与工程学报,2003,22(7):1054-1059.
    黄润秋,黄达.高地应力条件下卸荷速率对锦屏大理岩力学特性影响规律试验研究[J].岩石力学与工程学报,2010,29(1):21-34.
    黄润秋,黄达.卸荷条件下花岗岩力学特性试验研究[J].岩石力学与工程学报,2008,27(11):2205-2213.
    黄书岭.高应力下脆性岩石的力学模型与工程应用研究[D].武汉:中国科学院武汉岩土力学研究所,2008.
    贾愚如,黄玉灵.地下洞室中岩爆对策研究[J].地质灾害与防治,1991,2(1):42-50.
    江权.高地应力下硬岩弹脆塑性劣化本构模型与大型地下洞室群围岩稳定性分析[D].武汉:中国科学院武汉岩土力学研究所,2006.
    姜彤,黄志全,赵彦彦.动态权重灰色归类模型在南水北调西线工程岩爆风险评估中的应用[J].岩石力学与工程学报,2004,23(7):1104-1108.
    景锋,盛谦,张勇慧,等.中国大陆浅层地壳实测地应力分布规律研究[J].岩石力学与工程学报,2007,26(10):2056-2062.
    赖勇,张永兴.岩石宏、细观损伤复合模型及裂纹扩展规律研究[J].岩石力学与工程学报,2008,27(3):534-542.
    李新平,陈俊桦,李友华,等.溪洛渡电站地下厂房爆破损伤范围及判据研究[J].岩石力学与工程学报,2010,29(10):2042-2049.
    梁志勇,刘汉超,石豫川,等.岩爆预测的概率模型[J].岩石力学与工程学报,2004,23(18):3098-3101.
    林鹏,黄凯珠,王仁坤,等.不同角度单裂纹缺陷试样的裂纹扩展与破坏行为[J].岩石力学与工程学报,2005,24(增2):5652-5657.
    林鹏,周雅能,李子昌,等.含三维预置单裂纹缺陷岩石破坏试验研究[J].岩石力学与工程学报,2008,27(增2):3882-3887.
    刘斌.基于最小耗能原理的岩爆孕育发生机理研究[D].武汉:中国科学院武汉岩土力学研究所,2009.
    刘冬梅,蔡美峰,周玉斌,等.岩石裂纹扩展过程的动态监测研究[J].岩石力学与工程学报,2006,25(3):467-472.
    刘立鹏,姚磊华,王成虎,等.地应力对脆性岩体洞群稳定性的影响[J].中南大学学报(自然科学版),2010,41(2):972-977.
    陆家佑,王昌明.根据岩爆反分析岩体应力研究[J].长江科学院院报,1994,11(3):27-30.
    马启超.工程岩体应力场的成因分析与分布规律[J].岩石力学与工程学报,1986,5(4):329-342.
    潘一山,李忠华.矿井岩石结构稳定性的解析方法[A].全国固体力学学术会议论文集[C].2002.
    彭瑞东,谢和平,鞠杨.砂岩拉伸过程中的能量耗散与损伤演化分析[J].岩石力学与工程学报,2007,26(12):2526-2531.
    彭瑞东.基于能量耗散及能量释放的岩石损伤与强度研究[D].北京:中国矿业大学,2005.
    彭祝,王元汉,李廷芥.Griffith理论与岩爆的判别准则[J].岩石力学与工程学报,1996,15(增):491-495.
    舒磊,王磊,彭金伟.秦岭铁路隧道岩爆预报的模糊综合评判研究[J].四川联合大学学报(工程科学版),1998,2(5):55-60.
    水利发电工程地质勘察规范(GB50287-2006)[S].中华人民共和国建设部.北京:中国计划出版社,2007.
    水利水电工程地质勘察规范(GB50487-2008)[S].中华人民共和国建设部.北京:中国计划出版社,2009.
    宋建波,张倬元,于远忠,等.岩体经验强度准则及其在地质工程中的应用[M].北京:地质出版社,2002.
    苏国韶,冯夏庭,江权,等.高地应力-下地下工程稳定性分析与优化的局部能量释放率新指标研究[J].岩石力学与工程学报,2006,25(12):2453-2460.
    苏生瑞,黄润秋,王士天.断裂构造对地应力场的影响及其工程应用[M].北京:科学出版社,2002.
    谭以安.关于岩爆岩石能量冲击性指标的商榷[J].水文地质工程地质,1992,19(2):10-13.
    谭以安.岩爆类型及其防治[J].现代地质,1991,5(4):450-456.
    谭以安.岩爆烈度分级问题[J].地质论评,1992,38(5):439-443.
    谭以安.岩爆岩石断口扫描电镜分析及岩爆渐进破坏过程[J].电子显微学报,1989,2:41-48.
    唐绍辉,吴壮军,陈向华.地下深井矿山岩爆发生规律及形成机理研究[J].岩石力学与工程学报,2003,22(8):1250-1254.
    陶振宇,潘别桐.岩石力学原理与方法[M].武汉:中国地质大学出版社,1991.
    陶振宇.高地应力区的岩爆及其判据[J].人民长江,1987,5:25-32.
    万姜林,周世祥,南琛,等.岩爆特征及机理[J].铁道工程学报,1998,2:95-102.
    汪泽斌.岩爆实例、岩爆术语及分类的建议[J].工程地质,1988,(3):32-38.
    王吉亮,陈剑平,杨静,等.岩爆等级判定的距离判别分析方法及应用[J].岩土力学,2009,30(7):2203-2208.
    王兰生,李天斌,李永林,等.二郎山隧道高地应力与围岩稳定问题[M].北京:地质出版社,2006.
    王兰生,李天斌,徐进,等.川藏公路二郎山隧道围岩变形破裂的调研与监测[A].四川省公路学会隧道专业委员会1998年学术讨论会论文集[C],1998.
    王耀辉,陈莉雯,沈峰.岩爆破坏过程能量释放的数值模拟[J].岩土力学,2008,29(3):790-794.
    王元汉,李卧东,李启光,等.岩爆预测的模糊数学综合评判方法[J].岩石力学与工程学报,1998,17(5):493-501.
    王自强,陈少华.高等断裂力学[M].北京:科学出版社,2009.
    吴刚,孙钧.卸荷应力状态下裂隙岩体的变形和强度特性[J].岩石力学与工程学报,1998,17(6):615-621.
    谢和平,鞠杨,黎立云,等.岩体变形破坏过程的能量分析[J].岩石力学与工程学报,2008,27(9):1729-1740.
    谢和平,鞠杨,黎立云.基于能量耗散与释放原理的岩石强度与整体破坏准则[J].岩石力学与工程学报,2005,24(17):3003-3010.
    谢和平,彭瑞东,鞠杨,等.岩石破坏的能量分析初探[J].岩石力学与工程学报,2005,24(15):2603-2608.
    谢和平,彭瑞东,鞠杨.岩石变形破坏过程中的能量耗散分析[J].岩石力学与工程学报,2004,23(1):3565-3570.
    熊海华,卢文波,李小联,等.龙滩水电站右岸导流洞开挖中爆破损伤范围研究[J].岩土力学,2004,25(3):432436.
    熊孝波,桂国庆,许建聪,等.可拓工程方法在地下工程岩爆预测中的应用[J].解放军理工大学学报(自然科学版),2007,8(6):695-701.
    徐林生,王兰生,李永林.岩爆形成机制与判决研究[J].岩土力学,2002,23(3):300-303.
    徐林生,王兰生.二郎山公路隧道岩爆发生规律与岩爆预测研究[J].岩士工程学报,1999,21(5):569-572.
    徐林生.川藏公路二郎山隧道高地应力与岩爆问题研究[D].成都:成都理工学院,1999.
    徐松林,吴文,张华.大理岩三轴压缩动态卸围压与岩爆模拟分析[J].辽宁工程技术大学学报,2002,21(5):612-615.
    徐志英.岩石力学(第三版)[M].北京:中国水利水电出版社,1993.
    许梦国,杜子建,姚高辉,等.程潮铁矿深部开采岩爆预测[J].岩石力学与工程学报,2008,27(增1):2921-2928.
    闫长斌,徐国元,杨飞.爆破动荷载作用下围岩累积损伤效应声波测试研究[J].岩土工程学报,2007,29(1):88-93.
    严鹏,卢文波,陈明,等.TBM和钻爆开挖条件下隧洞围岩损伤特性研究[J].土木工程学报,2009,42(11):121-128.
    尤明庆,华安增.岩石试样破坏过程的能量分析[J].岩石力学与工程学报,2002,21(6):778-781.
    尤明庆,华安增.岩石试样破坏过程的能量分析[J].岩石力学与工程学报,2002,21(6):778-781.
    张津生,陆家佑,贾愚如.天生桥二级水电站引水隧洞岩爆研究[J].水力发电,1991,(10):34-37.
    张镜剑,傅冰骏.岩爆及其判据和防治[J].岩石力学与工程学报,2008,27(10):2034-2042.
    张倬元,王十天,王兰生.工程地质分析原理[M].北京:地质出版社,1994.
    赵德安,陈志敏,蔡小林,等.中国地应力场分布规律统计分析[J].岩石力学与工程学报,2007,26(6):1265-1271.
    赵兴东,李元辉,袁瑞甫,等.基于声发射定位的岩石裂纹动态演化过程研究[J].岩石力学与工程学报,2007,26(5):944-950.
    中国人民武装警察部队水电指挥部.天生桥二级水电站引水隧洞岩爆研究[R].1991.
    周德培,洪开荣.太平驿隧洞岩爆特征及防治措施[J].岩石力学与工程学报,1995,14(2):171-178.
    周科平,古德生.基于GIS的岩爆倾向性模糊自组织神经网络分析模型[J].岩石力学与工程学报,2004,23(18):3093-3097.
    朱焕春,陶振宇.不同岩石中地应力分布[J].地震学报,1994,16(1):49-63.
    左文智,张齐桂.地应力与地质灾害关系探讨[A].第五届全国工程地质大会文集[C].北京:地质出版社,1996.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700