用户名: 密码: 验证码:
疏松砂岩油藏脱砂压裂产能流固耦合数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
出砂是疏松砂岩油藏开发面临的主要难题之一。脱砂压裂技术是国外近年来发展起来的一种高效防砂技术,该技术既能有效控制出砂,又能显著提高压裂井产量,应用前景极为广泛。然而疏松砂岩油藏脱砂压裂机理复杂,目前对其内在规律认识还不够深入。疏松砂岩油藏胶结强度弱,当储层有效应力状态改变时,具有很强的应力敏感性。
     因此,考虑流固耦合作用影响,系统研究疏松砂岩渗流与变形相互作用的内在机制,对认识疏松砂岩油藏脱砂压裂机理及指导脱砂压裂施工具有重要意义。
     首先,本文建立了保持疏松砂岩原位孔隙结构的应力敏感性实验方法,对滨南尚二区疏松砂岩进行了应力敏感性实验,建立了疏松砂岩油藏渗透率及弹性模量动态模型;在流固耦合渗流理论基础上,基于广义达西定律及固体小变形假设推导了渗透率各向异性储层流固耦合控制方程,再联立相应辅助方程,建立了新的渗透率各向异性疏松砂岩脱砂压裂人工裂缝-油藏系统流固耦合数学模型;基于Galerkin有限元法,对流固耦合模型控制方程进行了Galerkin空间域离散,并按全隐式格式对渗流方程进行了时间域差分离散,推导建立了流固耦合模型有限元求解公式;在有限元离散的基础上,基于FEPG软件自主开发了疏松砂岩油藏单相及两相渗流流固耦合有限元程序。
     其次,建立了脱砂压裂动态造缝有限元分析模型,利用位移及渗流压力动态边界对动态造缝过程进行了流固耦合有限元模拟,分析了造缝形态、裂缝尺寸及储层应力敏感程度对疏松砂岩脱砂压裂井近井地带物性参数的影响规律,研究表明脱砂压裂动态造缝会对近裂缝区域储层有效应力及物性参数产生显著影响。
     最后,本文综合考虑流固耦合作用、动态造缝效应、变裂缝导流能力、储层渗透率各向异性等因素,建立了新的脱砂压裂产能流固耦合分析模型,分析了各因素对储层应力应变特征、储层孔渗特性变化及压后生产的影响。研究表明,在流固耦合作用下,近裂缝区域储层有效应力及物性参数会发生显著变化;动态造缝效应主要对近井眼储层的应变特性及物性参数产生显著影响;储层渗透率各向异性会显著影响整个储层有效应力及物性参数变化及分布,是影响脱砂压裂产能的重要因素;在多因素综合影响下,脱砂压裂增产倍数明显低于常规渗流模型计算结果,且缝长越小,各因素综合影响越显著。
     本文对疏松砂岩油藏脱砂压裂开发中的流固耦合问题进行了系统研究,得到的研究成果对该类油藏开发具有重要的理论和应用价值。
Sand production is one of the major concerns in unconsolidated sandstone reservoir development. The screen out fracturing is a recently developed technology with high efficiency for sand control in foreign countries. It can both effectively control sand production, and significantly improve the production of fracturing wells with extensive application feasibility. However, the screen-out fracturing mechanism in unconsolidated sandstone reservoir is complicated, and to date, less is known about its intrinsic regularity.
     The unconsolidated sandstone reservoir has low consolidation strength. It shows strong stress sensitivity when the effective stress of reservoir changes. Considering the effect of fluid-solid coupling, systematic research was conducted on the intrinsic mechanism of the interaction between the seepage and deformation of unconsolidated sandstone, which is of great importance to understand the screen-out fracturing mechanism of unconsolidated sandstone and to offer guidance for screen-out fracturing implementation.
     Firstly, a stress-sensitivity experimental method, which can maintain the original pore throat configuration of unconsolidated sandstone, was established. Relevant tests were carried on the unconsolidated sandstone in the block of BinNan ShangEr, and the dynamic models of permeability and elastic modulus of unconsolidated sandstone reservoir are proposed. With respect to the fluid-solid coupling filtration theory, the governing equations of fluid-solid coupling model in permeability anisotropy reservoir were derived based on generalized Darcy’s law and the assumption of small deformation of solid, and then combining relevant auxiliary equations, the fluid-solid coupling mathematical model for the artificial fracture-reservoir system in permeability anisotropy unconsolidated sandstone was established. Based on the Galerkin finite element method, the Galerkin finite element space discrete equations were derived from the governing equations of fluid-solid coupling, and differential discretion in time domain was done on the filtration equation with fully implicit format. The finite element solution equations of fluid-solid coupling model were established. On the base of discrete equations, the fluid-solid coupling finite element programs for single phase flow and two phase flow in unconsolidated sandstone reservoir were developed with FEPG.
     Secondly, the finite element analytical model for dynamic fracture creation in screen out fracturing was established. The process of dynamic fracture creation was simulated with dynamic boundaries of displacement and seepage pressure. The effects of the shape, size of created dynamic fracture and reservoir stress sensitivity on the physical parameters around the wellbore were analyzed for the screen-out fracturing well in unconsolidated sandstone reservoir. Research demonstrates that the dynamic fracture creation has noticeable influence on the effective stress and reservoir parameters near the fracture.
     Finally, with comprehensive consideration of the factors, i.e. the fluid-solid coupling effect, the dynamic fracture creation effect, the variable fracture conductivity and the reservoir permeability anisotropy, a new fluid-solid coupling model of deliverability analysis in screen out fracturing was established. The effects of each factor on the reservoir stress-strain, filtration property and after-fracturing production were analyzed. Research results show that the effective stress and physical parameters near the fracture change dramatically under the influence of fluid-solid coupling effect. The dynamic fracture creation has a noticeable influence on the strain and physical parameters near the wellbore. The permeability anisotropy has a noticeable influence on the alteration and distribution of effective stress and physical parameters of whole reservoir. It is an important factor affecting the deliverability of screen out fracturing. The stimulation ratio of screen out fracturing is lower than conventional seepage model under the combined influence of multiple factors, and the influence of multiple factors increases dramatically with the decrease of fracture length.
     The fluid-solid coupling issue of fracturing development in unconsolidated sandstone reservoir is studied in this thesis. Obtained research results are of great theoretical and applicable importance for the development of this type of reservoir.
引文
[1]刘建军,冯夏庭.我国油藏渗流-温度-应力耦合的研究进展[J].岩土力学,2003,24(增):646-650
    [2]薛世峰,仝兴华,岳伯谦,等.地下流固耦合理论的研究进展及应用[J].石油大学学报(自然科学版),2000,24(2):109-114
    [3]董平川,徐小荷,何顺利.流固耦合问题及研究进展[J].地质力学学报,1999,5(1):17-25
    [4] Biot M.A. General theory of three-dimensional consolidation[J]. Journal of Applied Physics, 1941, V12(2): 155-164
    [5] Biot M.A. General solution of the equation of elasticity and consolidation for a porous material[J]. Journal of Applied Physics, 1956, V27(3): 91-96
    [6] Biot M.A. Theory of elasticity and consolidation for a porous anisotropic solid[J]. Journal of Applied Physics, 1955, V26(2): 182-191
    [7] Biot M.A. Theory of stress-strain relation in anisotropic viscoelasticity and relaxation phenomena[J]. Journal of Applied Physics, 1954, V25(11): 1385-1391
    [8] Nur A, Byrlee J.D. An exact effective stress law for elastic deformation of rock with fluids[J]. Journal of Geophysical Research, 1971, V76(26): 6414-6419
    [9] Rice J.R, Cleary M.P. Some basic stress diffusion solution for fluid-saturated elastic solid porous media with compressible constituents[J]. Review of Geophysics and Space Physics, 1976, V14(2): 227-241
    [10] Zienkiewicz O.C, Shiomi T. Dynamic behavior of saturated porous media: the generalized Biot formulation and its numerical solution[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1984, V8(1): 71-96
    [11] McTigue D.F. Thermoelastic response of fluid-saturated porous rock[J]. Journal of Geophysical Research, 1986, V91(9):9533-9542
    [12] Savage W.Z, Bradock W.A. A model for hydrostatic consolidation of Pierre shale[J]. International Journal for Rock Mechanics and Mining Sciences, 1991, V28(5): 345-354
    [13] Van den Hoek P.J., Kooijman A.P., Bree P.D., et al. Horizontal-Wellbore Stability and Sand Production in Weakly Consolidated Sandstones[J]. Journal SPE Drilling & Completion, 2000, V15(4): 274-283
    [14]张广清,陈勉,金衍.高压气藏地层三维出砂预测模型及方法[J].岩土工程学报,2005,27(2):198-201
    [15] Michael S., Bruno. Geomechanical and Decision Analyses for Mitigating Compaction-Related Casing Damage[J]. SPE Drilling & Completion, 2002, V17(3): 179-188
    [16]尹中民,武强,刘建军,等.注水井泄压对套管挤压力影响的数值模拟[J].岩石力学与工程学报,2004,23(14):2390-2395
    [17]代立强,刘宝玉,刘先贵.计算套损的弹塑性流固耦合数学模拟及算例[J].辽宁工程技术大学学报,2003,22(3):323-325
    [18] Fredrich J.T., Arguello J.G., Deitrick G.L., et al. Geomechanical modeling of reservoir compaction, surface subsidence, and casing damage at the Belridge Diatomite Field[J]. SPE Reservoir Evaluation & Engineering, 2000, V3(4): 348-359
    [19] Schutjens P.M.T.M., Hanssen T.H., Hettema M.H.H., et al. Compaction-Induced Porosity/Permeability Reduction in Sandstone Reservoirs: Data and Model for Elasticity-Dominated Deformation[J]. SPE Reservoir Evaluation & Engineering, 2004, V7(3): 202-214
    [20] Cook C.C., Andersen M.A., Halle G., et al. An Approach to Simulating the Effects of Water-Induced Compaction in a North Sea Reservoir[J]. SPE Reservoir Evaluation & Engineering, 2001, V4(2): 121-127
    [21]同登科,杨河山,柳毓松.油气流-固耦合渗流研究进展[J].岩石力学与工程学报,2005,24(24):4594-4602
    [22] Thomas L.K., Chin L.Y., Pierson R.G. Coupled geomechanics and reservoir simulation[J]. SPE Journal, 2003, V8(4): 350-358
    [23] Zeno G., James W., Jennings Jr., et al. Modeling Coupled Fracture-Matrix Fluid Flow in Geomechanically Simulated Fracture Networks[J]. SPE Reservoir Evaluation & Engineering, 2005, V8(4): 300-309
    [24] Walters D.A., Settari A., Kry P.R. Coupled geomechanical and reservoir modeling investigating poroelastic effects of cyclic steam stimulation in the cold lake reservoir[J]. SPE Reservoir Evaluation & Engineering, 2002, V5(6): 507-516
    [25] Araque-Martinez, Larry W.L. A Simplified Approach to Geochemical Modeling and Its Effect on Mineral Precipitation[J]. SPE Journal, 2001, V6(1): 98-107
    [26] Samier P., Onaisi A., Fontaine G. Comparisons of Uncoupled and Various Coupling Techniques for Practical Field Examples[J]. SPE Journal, 2006, V11(1): 89-102
    [27] Fanchi J.R. Estimating Geomechanical Properties Using an Integrated Flow Model[J]. SPE Reservoir Evaluation & Engineering, 2003, V6(2): 108-116
    [28] Patrick M.C. Geomechanical Effects on the SAGD Process[J]. SPE Reservoir Evaluation & Engineering, 2007, V10(4): 367-375
    [29] Dean R.H., Gai X., Stone C.M., et al. A Comparison of Techniques for Coupling Porous Flow and Geomechanics[J]. SPE Journal, 2006, V11(1): 132-140
    [30] Kanj M.Y., Saudi Aramco, Abousleiman Y.N. Taming Complexities of Coupled Geomechanics in Rock Testing: From Assessing Reservoir Compaction to Analyzing Stability of Expandable Sand Screens and Solid Tubulars[J]. SPE Journal, 2007, V12(3): 293-304
    [31] Settari A., Key P.R., Yee C.T. Coupling of fluid flow and soil behavior to model injection into uncemented oil sands. Journal of Canadian Petroleum Technology, 1989, V28(1): 81-92
    [32] Settari A. Physics and Modeling of Thermal Flow and Soil Mechanics in Unconsolidated Porous Media[J]. SPE Production Engineering, 1992, V7(1): 47-55
    [33] Settari A., Mourits F.M. A Coupled Reservoir and Geomechanical Simulation System[J]. SPE Journal, 1998, V3(3): 219-226
    [34] Settari A., Dale A.W. Advances in Coupled Geomechanical and Reservoir Modeling With Applications to Reservoir Compaction[J]. SPE Journal, 2001, V6(3): 334-342
    [35] Settari A. Reservoir Compaction[J]. Journal of Petroleum Technology, 2002, V54(8): 62-69
    [36] Fung L.S.K. A coupled geomechanical multiphase flow model for analysis of in situ recovery in cohesionless oil sands[J]. Journal of Canadian Petroleum Technology, 1992, 31(6): 56-67
    [37] Fung L.S.K. Coupled geomechanical-thermal simulation for deforming heavy-oil reservoirs[J]. Jounal of Canadian Petroleum Technology, 1994, 33(4): 22-28
    [38] Heffer K.J., Fox R.J., McGill C.A. Novel Techniques Show Links between Reservoir Flow Directionality, Earth Stress, Fault Structure and Geomechanical Changes in Mature Waterfloods[J]. SPE Journal, 1997, V2(2): 91-98
    [39] Chin L.Y., Rajagopal Raghavan, Thomas L.K. Fully coupled geomechanics and fluid-flow analysis of wells with stress-dependent permeability[J]. SPE Journal, 2000, V5(1): 32-45
    [40] Khan M., Teufel L.W. The Effect of Geological and Geomechanical Parameters on Reservoir Stress Path and Its Importance in Studying Permeability Anisotropy[J]. SPE Reservoir Evaluation & Engineering, 2000, V3(5): 394-400
    [41] Chin L.Y., Raghavan R.,Thomas L.K. Fully Coupled Analysis of Well Responses in Stress-Sensitive Reservoirs[J]. SPE Reservoir Evaluation & Engineering, 2000, V3(5): 435-443
    [42] Gutierrez M., Lewis R.W., Masters I. Petroleum Reservoir Simulation Coupling Fluid Flow and Geomechanics[J]. SPE Reservoir Evaluation & Engineering, 2001, V4(3): 164-172
    [43] Raghavan R., Chin L.Y. Productivity Changes in Reservoirs With Stress-Dependent Permeability[J]. SPE Reservoir Evaluation & Engineering, 2004, V7(4): 308-315
    [44] David tran, Settari A., Long Nghiem. New iterative coupling between a reservoir simulator and a geomechanics module[J]. SPE Journal, 2004, V9(3): 362-369
    [45]冉启全,李士伦,杜志敏,等.流固藕合多相多组分渗流数学模型的建立[J].油气井测试,1996,5(3):14-18
    [46]冉启全,顾小芸.油藏渗流与应力耦合分析[J].岩土工程学报,1998,20(2):69-73
    [47]冉启全,顾小芸.弹塑性变形油藏中多相渗流的数值模拟[J].计算力学学报,1999,16(1):24-31
    [48]董平川,徐小荷.储层流固耦合的数学模型及其有限元方程[J].石油学报,1998,19(1):64-70
    [49]董平川,徐小荷.油、水两相流固耦合渗流的数学模型[J].石油勘探与开发,1998,25(5):93-96
    [50]董平川,郎兆新,徐小荷.油井开采过程中油层变形的流固耦合分析[J].地质力学学报,2000,6(2):6-10
    [51]薛世峰,宋惠珍.非混溶饱和两相渗流与孔隙介质耦合作用的理论研究I-数学模型[J].地震地质,1999,21(3):243-252
    [52]薛世峰,宋惠珍.非混溶饱和两相渗流与孔隙介质耦合作用的理论研究II-方程解耦与有限元公式[J].地震地质,1999,21(3):253-260
    [53]李培超,孔祥言,李传亮,等.地下各种压力之间关系式的修正[J].岩石力学与工程学报,2002,21(10):1551-1553
    [54]李培超、孔祥言、卢德唐.饱和多孔介质流固耦合渗流的数学模型[J].水动力学研究与进展,2003,18(4):419-426
    [55]徐献芝,李培超,李传亮.多孔介质有效应力原理研究[J].力学与实践,2001,23(4):42-45
    [56]刘建军,张盛宗,刘先贵,等.裂缝性低渗透油藏流-固耦合理论与数值模拟[J].力学学报,2002,34(5):779-784
    [57]刘建军,刘先贵.开发过程中三场耦合的数学模型[J].特种油气藏,2001,8(2):31-33
    [58]刘建军,杨前雄,史沛元.基坑降水过程中地下水渗流数值模拟[J].地下水,2005,27(5):342-343
    [59]刘建军,刘先贵.煤储层流固耦合渗流的数学模型[J].焦作工学院学报,1999,18(6):397-400
    [60]徐向荣,范学平.油藏多相流体渗流流-固耦合数学模拟研究[J].岩石力学与工程学报,2002,21(1):93-97
    [61]徐向荣.用流固耦合方法研究气藏物性参数动态变化[J].天然气工业,2001,21(6):67-70
    [62]王自明,杜志敏.变温条件下弹塑性油藏中多相渗流的流固耦合数学模型与数值模拟[J].石油勘探与开发,2001,28(6):68-72
    [63]周志军、刘永建、马英健,等.低渗透储层流固耦合渗流理论模型[J].大庆石油学院学报,2002,26(3):29-32
    [64]张烈辉,李允.低渗透气藏流-固耦合渗流数值模拟[J].天然气工业,2004,24(10):80-82
    [65]薛强,梁冰.摄动理论在求解流固耦合渗流问题中的应用[J].力学与实践,2003,25(3):17-20
    [66]薛强,梁冰,李宏艳.可压缩流体渗流的流固耦合问题数值模拟研究[J].地下空间,2001,21(5):386-391
    [67]孙培德,万华根.煤层气越流固-气耦合模型及可视化模拟研究[J].岩石力学与工程学报,2004,23(7):1179-1185
    [68]孔祥言,李道伦,徐献芝,等.热-流-固耦合渗流的数学模型研究[J].水动力学研究与进展,2005,20(2A):269-275
    [69]黎水泉,徐秉业.双重孔隙介质非线性流固耦合渗流[J].力学季刊,2000,21(1):96-101
    [70]吉小明,白世伟,杨春和.裂隙岩体流固耦合双重介质模型的有限元计算[J].岩土力学,2003,24(5):748-754
    [71]吉小明,白世伟,杨春和.与应变状态相关的岩体双重孔隙介质流-固耦合的有限元计算[J].岩石力学与工程学报,2003,22(10):1636-1639
    [72]刘晓丽,梁冰,王思敬,等.水气二相渗流与双重介质变形的流固耦合数学模型[J].水利学报,2005,36(4):405-412
    [73]孔亮,王媛,夏均民.非饱和流固耦合双重孔隙介质模型控制方程[J].西安石油大学学报(自然科学版),2007,22(2):163-165
    [74] Smith, Gerald E. Title Fluid Flow and Sand Production in Heavy-Oil Reservoirs Under Solution-Gas Drive[J]. SPE Production Engineering, 1988, V3(2): 169-180
    [75] Wong S.K. Analysis and Implications of In-Situ Stress Changes During Steam Stimulation of Cold Lake Oil Sands[J]. SPE Reservoir Engineering, 1988, V3(1): 55-61
    [76] Papamichos E., Stavropoulou M. An Erosion-Mechanical model for sand production rate prediction[J]. International Journal of Rock Mechanics & Mining Sciences. 1998, V35(4): 531-544
    [77] Papamichos E., Malmanger E.M. A Sand-Erosion Model for Volumetric Sand Predictions in a North Sea Reservoir[J]. SPE Reservoir Evaluation & Engineering, 2001, V4(1): 44-50
    [78] Yarlong Wang, Carl C. Chen. Title Enhanced Oil Production Owing to Sand Flow in Conventional and Heavy-Oil Reservoirs[J]. SPE Reservoir Evaluation & Engineering, 2001, V4(5): 366-374
    [79] Liangwen Zhang, Maurice B. Dusseault. Sand-Production Simulation in Heavy-Oil Reservoirs[J]. SPE Reservoir Evaluation & Engineering, 2004, V7(6): 399-407
    [80]曾流芳,刘建军,裴桂红.疏松砂岩油层出砂问题的Monte-Carlo模拟[J].钻井液与完井液,2002,19(3):10-13
    [81]王治中,邓金根,蔚保华,等.弱固结砂岩油藏出砂量预测模型[J].石油钻采工艺,2006,V28(2):58-61
    [82]李光泉.疏松砂岩油藏流固耦合流动模拟与剩余油分布研究[D].成都:西南石油大学,2004
    [83]刘建军,裴桂红,薛强.弱胶结油层出砂机理及数值方法[J].辽宁工程技术大学学报,2006,25(3):361-363
    [84]何冠军.疏松砂岩常规稠油油藏适度出砂提高产能基础研究[D].成都:西南石油大学,2005
    [85]何冠军,杜志敏,文成杨.出砂影响因素的数值模拟评价[J].油气地质与采收率,2005,12(5):36-38
    [86]郭肖,杜志敏,周志军.疏松砂岩油藏流固耦合流动模拟研究[J].西南石油学院学报,2006,28(4):53-56
    [87] McLatchie A.S., Hemstock R.A., Young J.W. The effective compressibility of reservoir rock and its effects on permeability[J]. Journal of Petroleum Technology, 1958, V10(6): 49-51
    [88]张新红,秦积舜.低渗岩心物性参数与应力关系的试验研究[J].石油大学学报(自然科学版),2001,25(4):56-60
    [89]王掌洪.复杂岩性地层物性参数实验评价[J].岩石力学与工程学报,2003,22(增1):2338-2343
    [90]杨满平,李允.考虑储层初始有效应力的岩石应力敏感性分析[J].天然气地球科学,2004,15(6):601-603
    [91]代平,孙良田,李闽.低渗透砂岩储层孔隙度、渗透率与有效应力关系研究[J].天然气工业,2006,26(5):93-95
    [92]冉启全,李世伦.流固耦合油藏数值模拟中物性参数动态模型研究[J].石油勘探与开发,1997,24(3):61-65
    [93]薛世峰.非混溶饱和两相渗流与变形孔隙介质耦合作用的理论研究及其在石油开发中的应用[D].北京:中国地震局地质研究所,2000
    [94]高博禹,周涌沂,彭仕宓.储层孔隙度应力敏感性研究[J].石油实验地质,2005,27(2):197-202
    [95]吴凡,孙黎娟,何江.孔隙度、渗透率与净覆压的规律研究和应用[J].西南石油学院学报,1999,21(4):23-25
    [96]范学平,徐向荣.地应力对岩心渗透率伤害实验及机理分析[J].石油勘探与开发,2002,29(2):117-119
    [97]刘建军,刘先贵,胡雅礽,等.低渗透储层流-固耦合渗流规律的研究[J].岩石力学与工程学报,2002,21(1):88-92
    [98]尹洪军,何应付.变形介质油藏渗流规律和压力特征分析[J].水动力学研究与进展,2002,17(5A):538-546
    [99]杨满平,李允,李治平.气藏含束缚水储层岩心应力敏感性实验研究[J].天然气地球科学,2004,15(3):227-229
    [100]罗瑞兰,程林松,彭建春,等.油气储层渗透率应力敏感性与启动压力梯度之间的关系[J].西南石油学院学报,2005,27(3):20-22
    [101]陈祖安,伍向阳,孙德明,等.砂岩渗透率随静压力变化的关系研究[J].岩石力学与工程学报,1995,14(2):155-159
    [102]黄继新,彭仕宓,黄述旺,等.异常高压气藏储层应力敏感性研究[J].西安石油大学学报(自然科学版),2005,20(4):21-25
    [103]张琪.采油工程原理与设计[M].东营:石油大学出版社,2000:280-281
    [104] Prats M. Effect of vertical fractures on reservoir behavior- incompressible fluid case[J]. SPE Journal, 1961, V1(2): 105-118
    [105] Raymond L.R., Binder G.G. Productivity of wells in vertically fractured damaged formations[J]. Journal of Petroleum Technology, 1967, V19(1): 120-130
    [106]吴月先.气井压裂酸化产能评价简易新方法[J].新疆石油地质,1999,20(1):62-64
    [107]张伟东,杨铁军,蒋廷学,等.保角变换法用于计算压裂井产能[J].油气地质与采收率,2003,10(增):81-82
    [108]杨正明,张松,张训华,等.气井压后稳态产能公式和压裂数值模拟研究[J].天然气工业,2003,23(4):74-76
    [109]郭建春,罗天雨,赵金洲,等.气井压裂后稳态产能模型[J].天然气工业,2005,25(12):95-102
    [110] Agarwal R.G., Carter R.D., Pollock C.B. Evaluation and Performance Prediction of Low-Permeability Gas Wells Stimulated by Massive Hydraulic Fracturing[J]. Journal of Petroleum Technology, 1979, V31(3): 362-372
    [111] Meehan D.N., Pennington B.F. Numerical simulation results in the Carthage Cotton Valley Field[J]. Journal of Petroleum Technology, 1982, V34(1): 189-198
    [112] Soliman M.Y. Modifications to Production Increase Calculations for a Hydraulically Fractured Well[J]. Journal of Petroleum Technology, 1983, V35(1): 170-172
    [113] Meehan D.N. Optimization of fracture length and well spacing in heterogeneous reservoirs[J]. SPE Production & Facilities, 1995, V10(2): 82-88
    [114]郭建春,赵金洲.水力压裂单井动态预测[J].钻采工艺,1996,19(1):23-27
    [115]张学文,方宏长,裘怿楠,等.低渗透率油藏压裂水平井产能影响因素[J].石油学报,1999,20(4):51-55
    [116]姜春堂,杨兆中.水力压裂产能预测三维三相三重介质模型的建立与求解[J].河南石油,2003,17(4):35-37
    [117]李勇明,赵金洲,郭建春,等.底水油藏压裂产能数值模拟研究[J].石油天然气学报,2005,27(4):475-477
    [118]李勇明,郭建春,赵金洲.裂缝性油藏压裂井产能数值模拟模型研究与应用[J].石油勘探与开发,2005,32(2):126-128
    [119]蒋廷学,郎兆新,单文文,等.低渗透油藏压裂井动态预测的有限元方法[J].石油学报,2002,23(5):54-58
    [120]刘振宇,郑宪宝,张应安.基于有限元法的人工压裂井的产能动态分析[J].大庆石油学院学报,2006,30(2):30-34
    [121]李勇明,罗剑,郭建春,等.介质变形和长期导流裂缝性气藏压裂产能模拟研究[J].天然气工业,2006,26(9):103-105
    [122]李新勇.渗透率依赖于压力的压裂水平缝气井产能模拟[J].断块油气田,2006,13(2):43-44
    [123]范学平,李秀生,张士诚,等.低渗透气藏整体压裂流-固耦合渗流数学模拟[J].石油勘探与开发,2000,27(1):76-79
    [124]范学平,徐向荣,张士诚.用流固耦合方法研究油藏压裂后应力应变和孔渗特性变化[J].岩土力学,2001,22(1):47-50
    [125]李勇.考虑流固耦合效应的整体压裂数值模拟研究[D].成都:西南石油大学,2004
    [126]张绍槐,罗平亚.保护储集层技术[M].北京:石油工业出版社,1996:156-186
    [127]赵杏媛,张有瑜.粘土矿物与粘土矿物分析[M].北京:海洋出版社,1992:76-88
    [128]何更生.油层物理[M].北京:石油工业出版社,1994:25-50
    [129]朱伯芳.有限单元法原理与应用[M].第二版.北京:中国水利水电出版社,1997:247-250
    [130]王勖成.有限单元法[M].北京:清华大学出版社,2003:36-54
    [131]周志军.低渗透储层流固耦合渗流理论及应用研究[D].大庆:大庆石油学院,2003
    [132]冉启全,李士伦,杜志敏.用综合数值模拟方法预测油藏开采过程中的应力分布[J].钻采工艺,1995,18(4):41-43
    [133]郑颖人,沈珠江,龚晓南.岩土塑性力学原理[M].北京:建筑工业出版社,2002:112-137
    [134]尹中民,武强,刘建军,等.注水井泄压对井壁围岩应力场的影响[J].岩土力学,2004,25(3):363-368
    [135]徐同台,崔茂荣,王允良,等.钻井工程井壁稳定新技术[M].北京:石油工业出版社,1999:104-107
    [136]杨桂通.弹塑性力学引论[M].北京:清华大学出版社,2003:119-124
    [137]张建国,雷光伦,张艳玉.油气层渗流力学[M].东营:石油大学出版社,1997:36-40
    [138]智勤功,谢金川,吴琼,等.疏松砂岩油藏压裂防砂一体化技术[J].石油钻采工艺.2007,29(2):57-60
    [139]刘燕.压裂充填防砂工艺在胜利油田的应用[J].断块油气田,2003,10(2):67-69
    [140]段昌旭,于京秋.孤岛常规稠油油藏[M].北京:石油工业出版社,1997:1-30
    [141]谢桂学,李行船,杜宝坛.压裂防砂技术在胜利油田的研究和应用[J].石油勘探与开发,2002,29(3):99-101
    [142]王鸿勋,张士诚.水力压裂设计数值计算方法[M].北京:石油工业出版社,1998:198-216
    [143]顾海洪,李金发,邱锐.压裂防砂工艺的研究及应用[J].油气地质与采收率,2003,10(3):76-77
    [144]谢桂学,李爱山,罗峻等.中、高渗透油藏压裂作用机理探讨[J].油气采收率技术,1998,5(1):51-54

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700