用户名: 密码: 验证码:
基于特征的数字城市地下空间建模技术研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地下空间的不可见性给岩土工程施工带来了许多不利影响,数字化将地下空间变得透明起来,逐渐成为解决某些岩土工程问题的一条有效途径。在城市地下空间数字化的诸多技术中,对象建模是其中最为关键的一项。软土地层任意边域的地层建模、复杂地下构筑物三维建模和地下工程全过程建模是目前城市地下空间对象建模中的几个难点。
     通过对现有地下空间建模方法和几何建模领域常用方法的比较,本文选择了特征建模技术进行对象建模,对基于特征的数字城市地下空间建模技术进行了全面、系统的研究,主要内容有:
     (1) 为解决任意边域软土地层分界面的光滑重构及其局部更新控制,第二章从钻孔数据出发,采用双三次B样条曲面描述地层分界面。首先通过插值和反算控制点算法,由型值点生成B样条曲面需要的控制点和对应的节点向量,自动生成地层分界面。然后通过格网四边形顶点间的拓扑关系确定出地层尖灭处的边界点,运用三次B样条曲线描述地层边界线,最后用B-Rep实现任意边域地层分界面重构。同时,利用B样条曲面的局部修改特性,解决了B-Rep模型中分界面局部更新问题。
     (2) 为解决复杂地下构筑物建模和地下工程全过程建模问题,第三章提出了基于特征的数字城市地下空间建模技术,首先分析了数字城市地下空间特征的定义和分类,接着详细介绍了论文方法的概念模型、建模方法和建模流程,并采用基态修正模型,解决了以施工步为主线的城市地下空间对象时空数据组织与建模表达问题。
     (3) 第四章介绍了基于特征的数字城市地下空间建模实验系统的基本框架和技术细节,第五章结合世博园区数字化平台项目和世博地下变电站等项目,实现任意边域地层建模、复杂地下构筑物建模、地下工程规划、勘察、设计、施工全过程建模及一些空间分析功能的具体应用,证明采用本文建模技术进行数字地下空间建模是十分有效的。
Great disadvantages appeared in Geotechnical Engineering result in the invisibility of the subsurface environment, which is now becoming visible with the tools of digitalization. Digitalization is becoming an efficient method to solve certain problems in urban underground space and geotechnical engineering. Among various techniques of digital underground space and engineering science (DUSES), modeling is absolutely the most important one. There are still some great challenges extruding in the difficulties of DUSES modeling: modeling the horizon with arbitrary boundaries in soft clay, the complicated underground structures and modeling the objects in a certain project in life-long term.
    After compared with the traditional methods of horizon modeling and advanced geometric modeling methods, feature-based modeling technique is chosen to be applied in the field of DUSES, and the objectives of this work are as follows:
    1. In Chapter 2, to deal with modeling on horizon interface with arbitrary boundary, 3 degree Bspline trend surface is adopted to fit borehole data points on different horizons at first. Secondly, with the help of topology existing in the 4 vertexes of the irregular grid unit, the nip-out points are interpolated. At last, the horizon interfaces with arbitrary boundaries are made by adding boundaries to trend surface with the method of B-Rep. Furthermore, interface update in local region is realized by making full use of the characteristic of localized modification.
    2. In Chapter 3, feature-based modeling for DUSES is put forward to modeling complicated underground constructions and architects efficiently. Firstly, the definition and category of features for DUSES are analyzed. Secondly, the concept model, modeling method and procedure this technique are presented thoroughly. In addition, temporal and spatial data organization and model representation of objects in underground space are achieved with the model of base state amendments.
    3. In Chapter 4, two program prototype systems have been worked out with the principle of feature based modeling techniques for DUSES. And in Chapter 5, some practical project modeling examples are accomplished to test and verify the modeling techniques and program.
引文
[1] Assa, S., Celnicker, G. and Ramshom, C., Feature-Based Geometric Modeling for Geoscience. GOCAD ENSG Conf. 1998: 10-21
    [2] Bamhill, R. E., Birkhoff G. and Gordon, W. J., Smooth Interpolation In Triangles. J. Approx. Theory, 1973, Vol. 8: 114-128
    [3] Bamhill, R. E., Riesenfeld R. F., Smooth Interpolation over Triangles in CAGD. CAD, 1974, Vol. 4: 45-70
    [4] Baumgart, B., Winged-Edge Polyhedron Representation. Stanford Artificial Intelligence Report No. CS-320, 1972
    [5] Bezier, P., Example of an Existing System in the Motor Industry: The UNISURF System. Prec. Roy. Sec. Of London, 1971, A321: 207-218
    [6] Bezier, P., Numerical Control—Mathematics and Applications (Translated by Forrest, A. R.). John Wiley and Sons, London, 1972
    [7] Blomgren, R. and Fuhr, R., Algorithms to Convert Between Rational B-Spline and Rational Bezier Representations of Curves and Surfaces. Boeing Commercial Airplane Company, Nov. 1982
    [8] Boehm, W., Inserting New Knots into B-Spline Curves. CAD, 1980, 12(4): 199-201
    [9] Bonham-Carter, G. F., Geographic Information Systems for Geoscientists: Modeling With GIS. Pergamon Press, New York, 1994
    [10] Braid, I., Hillyard, R., and Stroud, I., Stepwise Construction of Polyhedron in Geometric Modeling. CAD Group Document No. 100, Cambridge University Computer Laboratory, 1978
    [11] Celniker, G. and Gossard, D., Continuous Deformable Curves and Their Application to Fairing 3D Geometry. Prec. IFIP TC5/WG5.2 Working Conf., Geometric Modeling, Rensselaeville, New York, 1991, 5-29
    [12] Celniker, G. and Gossard, D., Deformable Curve and Surface Finite-Elements for Free-Form Shape Design. ACM Computer Graphics, 1991, Vol. 25(4): 257-266
    [13] Celniker, G. and Welch, W., Linear Constraints for Deformable B-Spline Surfaces. Proc. Sym. on Interactive 3D Graphics, ACM, New York, 1992, 61-68
    [14] Claramunt, C., Theriault, M., Toward Semantics For Modeling Spatial-Temporal Processed within GIS. Advances In GIS Research Ⅱ, Taylor & Francis, 1996, 47-63
    [15] Clark, J., Designing Surfaces in 3D. Comm. ACM, 1976, 19(8): 454-460
    [16] Clark, J., Some Properties of B-Splines. Second USA-JAPAN Computer Conference Proceedings, 1975, 542-545
    [17] Cline, A. K. and Renka, R. L., Storage Efficient Method for Construction ofa Thiessen Triangulation. Rocky Mountain Journal of Mathematics, 1984, Vol. 14(1): 119-139
    [18] Codd E. F., The Relational Model for Database Management. Reading: Addison-Wesley, Massachusetts, 1990
    [19] Cohen, E., Lyche, T. and Riesenfeld, R. F., Discrete B-Splints and Subdivision Techniques in Computer-Aided Geometric Design and Computer Graphics. Computer Graphics and Image Processing. 1980, 14: 87-111
    [20] Coon, S. A., Surfaces for Computer-Aided Design of Space Figures. MIT, MAC-M-255, 1964
    [21] Coon, S. A., Surfaces for Computer-Aided Design of Space Forms. MIT, MAC-TR-41, 1967
    [22] Coquillart, S., Extended Free-Form Deformation: A Sculpturing Tool for 3D Geometric Modeling. SIGGRAPH'90, ACM Comp. Graph., 1990, Vol. 24(4): 187-196
    [23] Cox, M. G., The Numerical Evaluation of B-Splines. Report No. NPL-DNACS-4, National Physical Laboratory, 1971
    [24] Data C. J., An Introduction to Database Systems. 6th ed. Reading: Addison-Wesley, Massachusetts, 1995
    [25] deBoor, C., Bicubic Spline Interpolation. J. Math. Phys., 1962, 41: 212-218
    [26] deBoor, C., On Calculating with B-Spline. J. Approx. Theory, 1972, 6: 50-62
    [27] deBoor, C., A Practical Guide of Splines. Applied Mathematical Sciences Series, 1978, 27: 164-176
    [28] de Casteljau, P., Ontldlage Methods Calcul. Andre Citroen Automobiles, SA, Paris, 1959
    [29] de Kemp, E. A., Visualization of Complex Geological Structures Using 3D Bezier Construction Tools. Computers & Geoscience, 1999, Vol. 25(5): 581-597
    [30] de Kemp, E. A., 3-D Visualization of Structural Field Data: Examples From the Archean Caopatina Formation. Abitibi Greenstone Belt, Guebec, Canada, Computers & Geoscience, 2000, Vol. 26: 509-530
    [31] de Kemp, E. A., Interpretive Geology with Structural Constraints: An Introduction to the SPARSE Plug-In. Americas GOCAD User Meeting, Houston, Texas, 2004
    [32] DGIWG Digital geographic information working group, the digital geographic information exchange standard (DIGEST), edition 1.2, Part4, Feature and Attribute Coding Catalogue (FACC). Fairfax VA: HQ Defense Mapping Agency, January 1994
    [33] Euler, N., Sword, C. H., and Dulac, J.C., A New Tool to Seal a 3D Earth Model: A Cut With Constraints. Proc. Society of Exploration Geophysicists(68th), New Orleans, 1998, 710-713
    [34] Euler, N., Sword, C. H., and Dulac, J. C., Editing and Rapidly Updating a 3D Model. Proc. Society of Exploration Geophysicists(69th), Tulsa, 1999, 950-953
    [35] Farin, G, Barnhill, R. E., Boehm, W., Smooth Interpolation to Scattered Data, Surface in CAGD. North-Holland, 1983, 43-63
    [36] Farin, G, Triangular Berstein-Bezier Patches. CAGD, 1986, Vol. 13:83-127
    [37] Farin, G., Curvature Continuity and Offsets for Piecewise Conics. ACM Trans. On Graphics, 1989, 8(2)
    [38] Farin, G, Curves and Surfaces for Computer Aided Geometric Design: A Practical Guide. Academic Press, 1992
    [39] Ferguson, J. C., Multivariable Curve Interpolation. Journal ACM, 1963, 11 (2): 221-228
    [40] Fisher, T. R., Wales, R. Q., 3D Solid Modeling of Sandstone Reservoirs Using NURBS. Geobyte, 1990, 5(1): 39-41
    [41] Fisher, T. R. and Wales, R. Q., Three-dimensional solid modeling of geological objects using non-uniform rational B-splines (NURBS). In: Turner, A.K. (Ed.), Three Dimensional Modelling with Geoscientific Information Systems. Kluwer Academic Publishers, Dordrecht, 1991: 85-105.
    [42] Foley, T. A., Three Stage Interpolation to Scattered Data. Rocky Mountain Journal of Mathematics, 1984, Vol. 14(1): 141-151
    [43] Forrest, A. R., Interactive Interpolation and Approximation by Bezier Polynomials. Computer J., 1972, 15(1): 71-79
    [44] Forrest, A. R., On Coons and Other Methods for the Representation of Curved Surface. Computer Graphics and Image Processing, 1972, 1: 341-359
    [45] Fuhr, R. D., Rational B-Spline Representation of Curves and Surfaces. Aug. 1981
    [46] Gordon, W. J. and Riesenfeld, R. F., B-Spline Curves and Surfaces. in "Computer Aided Geometric Design" (Barnhill R. E. and Riesenfeld, R. F., Editors), Academtric Press, 1974
    [47] Gore, A., The Digital Earth-understanding Our Planet in the 21st Century. The Australian Surveyor, 1998, 43(2): 89-91
    [48] Hamann, B. and Tsai, P. Y., A Tessellation Algorithm for the Representation of Trimmed NURBS Surfaces with Arbitrary Trimming Curves. CAD, 1996, 28(6): 461-472
    [49] Hartley, D. J., Judd, C. J., Parametrization of Bezier Type B-Spline Curves and Surfaces. CAD, 1978, 10
    [50] Hartley, P. J. and Judd, C. J., Parameterization and Shape of B-Spline Curves for CAD. CAD, 1980, 12(5): 235-238
    [51] Hsu, W. M., Hughes, J. F. and Kaufman, H., Direct Manipulation of Free-Form Deformation. SIGGRAPH'92, ACM Comp. Graph., 1992, Vol. 26(2): 177-184
    [52] IHO. International hydrographic organization, publication S57, IHO Transfer Standard for Digital Hydro graphic Data, version 2.0, Part A, "Object Catalogue", Monaco: International Hydrographic Bureau, November 1993
    [53] ISO/TC211 N604, 1998, Feature cataloguing methodology, ISO/CD 15046-10
    [54] Jones, N. L., Budge, T. J., Lemon, A. M., etc., Generating MODFLOW Grids from Boundary Representation Solid Models. Ground Water, 2002, 40(2): 194-200
    [55] Ju, J., Zhu, H., Ye, W., et al., 3D Model of Feature Constraints Based for Digital Underground Space. Geoinfomatics2006, Wuhan, China, 2006: 64200E
    [56] Kalra, P., Mangili, A., Thalmann, N. M. and Thalmann, D., Simulation of Facial Muscle Actors Based on Rational Free-Form Deformation. EUROGRAPHICS'92, Comp. Graph. Forum, 1992, Vol. 2(3): 59-69
    [57] Kennedy-Smith, G. M., Data Quality: A Management Philosophy. Prec. Of Auto Carte. 1986, London: 381~390
    [58] Kumar, S. and Manocha, D., Efficient Rendering of Trimmed NURBS Surfaces. CAD, 1995, 27(7): 509-521
    [59] Lamousin, H. J. and Waggenspack, W. N., NURBS-Based Free-Form Deformation IEEE Comp. Graph. and App. 1994, Vol. 11:59-65
    [60] Langran, G., Time in GIS. Taylor & Francis, Bristol, PA, 1992
    [61] Lee, Y. J., Spatial Query Processing Using Object Decomposition Method. Int. J. Inf. Technol, 1997, 3(1): 35-62
    [62] Lemon, A. M. and Jones, N. L., Building Solid Models from Boreholes and User-defined Cross-sectious. Computers & Geosciences, 2003, 29:547-555
    [63] Mallet, J. L., Discrete Smooth Interpolation. CAD, 1992, 24(4): 177-191
    [64] Mallet, J. L., Discrete Smooth Interpolation in Geometric Modeling. ACM Trans. Graphics, 1989, 8(2): 121-144
    [65] Mantyla, M., An Introduction to Solid Modeling. Computer Science Press, Rockville, 1988
    [66] NCDCDS. National committee for digital cartographic data standards, Issues in Digital Cartographic Data Standards, Report#7, A Report on Evaluation and Empirical Testing, Part5, "Testing the Interim Proposed Standard for Cartographic Features". Columbus OH, April 1986
    [67] NCDCDS. National committee for digital cartographic data standards, issues in digital cartographic data standards, Report#8, A Draft Proposed Standard for Digital Cartographic Data, Part Ⅳ, "Cartographic Features". Columbus OH: January 1987
    [68] OGC, The OpenGIS Abstract Specification Model, http//www.opengis.org/public/abstract.html,1997
    [69] Peuquet D. J., A Conceptual Framework and Comparison of Spatial Data Models. Cartographica, 1984, 21(4): 66-113
    [70] Piegl, L., Modifying the Shape of Rational B-Splines. Part 1: Curves. CAD, 1989, 21(8): 509-518
    [71] Piegl, L., Modifying the Shape of Rational B-Splines. Part 2: Surfaces. CAD, 1989, 21(9): 538-546
    [72] Piegl, L., Representation of Rational Bezier Curves and Surfaces by Reoursive Algorithms. CAD, 1986, 18(7): 361-366
    [73] Piegl, L. and Tiller, Algorithm for Degree Reduction of B-Splines Curves. CAD, 1995, 27(2): 101-110
    [74] Piegl, L. and Tiller, W., Curve and Surface Constructions Using Rational B-Splines. CAD, 1987, 19(9): 485-498
    [75] Piegl, L. and Tiller, W., Symbolic Operators for NURBS. CAD, 1997, 29(5): 461-472
    [76] Piegl, L. and Tiller, W., The NURBS Book. Springer, New York, 1995
    [77] Pilouk, M., Tempfli, K., Molenaar, M., A tetrahedron based 3D vector data model for Geoinformation. Proceedings of the 6th International GIS Workshop "Advanced Geographic Data Modeling" (C), 1994, Delft, the Netherlands
    [78] Renka, R. J., and Cline, A. K., A Triangle-Based Cl Interpolation Method. Rocky Mountain Journal of Mathematics, 1984, Vol. 14(1): 223-237
    [79] Riesenfeld, R. F., Applications of B-Spline Approximation to Geometric Problems of CAD. PhD Dissertation, Syracuse University, March 1973
    [80] Riesenfeld, R. F., Non-Uniform B-Spline Curves. Proceedings of Second USA-JAPAN Computer Conference, AFIPS, 1975, 551-555
    [81] Rugg, R. D., Feature definition: Methodology used by working group3 of the national committee for digital cartographic data standards, ACSM/ASPRS, 1988, 108-117
    [82] Rugg, R. D., Defining standard feature. Cartography and Geographic Information Systems, 1995, Vol.22, No.3, 195-204
    [83] Salge and Sclafer, A geographic data model based on HBDS concepts: The IGN Cartographic Data Base Model, Proceeding of AutoCarto-9, 1989, 110-118
    [84] Schoenberg, I. J., Contributions to the Problem of Approximation of Equidistant Data by Analytic Function. Quart, Appl. Maths, 1946, 4: 45-99, 112-141
    [85] Sederberg, I. W. and Parry, S. R., Free_Form Deformation of Solid Geometric Models. SIGGRAPH'86, ACM Comp. Graph., 1986, Vol. 20(4): 151-160
    [86] Sewash, J., et al, Implementation of the Feature-based DLG-F Data Model for the Transportation Data Maintenance. GIS/LIS, 1998
    [87] Shinji Masumoto, Venkatesh Raghavan, Tatsuya Nemoto, Kiyoji Shiono, Construction and Visualization of Three Dimensional Geologic Modeling Using GRASS GIS. Proceeding of the Open GIS-GRASS users Conference 2002, Trento, Italy, 2002: 11-13
    [88] Simon W. H., 3D Geoscience Modeling: Computer Techniques for Geological Characterization. Springer-Verlag, 1994
    [89] Soltes, J. W., A Feature-based Representation of Parts for CAD. B S Thesis. ME Department, MIT, June, 1978
    [90] Tang, A. Y, Adams, T. M. and Usery E. L., A Spatial Data Model Design for Feature-based Geographical Information Systems. IJGIS, 1996, Vol. 10, No.5,643-659
    [91] Terzopoulos, D., Platt, J. and Barr, A., Elastically Deformable Models. ACM, Computer Graphics, 1987, Vol. 24(4): 205-214
    [92] Terzopoulos, D., and Qin, H., Dynamic NURBS with Geometric Constraints for Interactive Sculpting. ACM, Transactions on Graphics, 1994, Vol. 13(2): 103-136
    [93] Tiller, W., Rational B-Splines for Curves and Surfaces Representation. IEEE CG&A, Sept. 1983, 61-69
    [94] Tipper, J. C., Reconstructing Three-dimensional Geological Systems: 1. The Topology and Geometry of Horizons in the Subsurface. Geoinformatics, 1993, 4(3): 199-207
    [95] Turner, A. K., etc., Three-dimensional Modeling with Geoscientific Information Systems. Kluwer Academic, Dordrecht, the Netherlands, 1992, Vol. 354:443-454
    [96] Usery, E. L., A Feature-based Geographic Information System Model. Photogrammetric Engineering and Remote Sensing, 1996, Vol.62, No.7, 833-838
    [97] Vergeest S. M., CAD Surface Data Exchange Using STEP. CAD, 1991, 23(1): 128-140
    [98] Versprille, K. J., Computer-Aided Design Applications of the Rational B-Spline Approximation Form. PhD Dissertation, Syracuse University, February, 1974
    [99] Welch, W. and Witckin, A., Variational Surface Modeling. ACM Computer Graphics, 1992, Vol. 26(2): 157-166
    [100] Wesselink, W. and Veltkamp, R. C., Interactive Design of Constrained Variational Curves. CAGD, 1995, Vol. 12: 533-546
    [101] Zhu Yang, Ray Tracing and Free Form Deformation of Solid Model. Technical Report, University of Minnesota, 1987
    [102] 陈常松,何建邦.面向数据共享目的的GIS语义数据模型[J].中国图象图形学报,1999a,4(1):13-18
    [103] 陈常松,何建邦.基于地理要素的资源与环境数据的组织方法[J].地理学报,1999b,54(4):373-382
    [104] 陈军.用非第一范式关系表达GIS时态属性数据[J].武汉测绘科技大学学报,1995,20(1):12-17
    [105] 陈军,蒋捷.多维动态GIS的空间数据建模、处理与分析[J].武汉测绘科技大学学报,2002,25(3):189-195
    [106] 陈树铭.地质三维数字化探讨.工程地质地理信息系统研讨会论文集,2000
    [107] 陈树铭.三维地质数字化研究展望.第五届岩土工程实录交流会岩土工程实录集,2000
    [108] 陈树铭,王满春,刘慧杰等.工程地质三维数字化及计算机三维实现.中国土木工程学会第十届年会论文集,2002
    [109] 崔伟宏,史文中,李小娟.基于特征的时空数据模型研究及在土地利用变化动态监测中的应用[J].测绘学报,2004,33(2):138-145
    [110] 戴吾蛟,邹峥嵘.基于体素的3DGIS数据模型研究[J].矿山测量,2001,1:20-22
    [111] 方海东,刘义怀等.三维地质建模及其工程应用[J].水文地质与工程地质,2002(3):52-55
    [112] 龚健雅.地理信息系统基础[M].北京:科学出版社,2001
    [113] 顾军,吴长彬.常用空间索引技术的分析[J].微型电脑应用,2001(12):40-42
    [114] 郭薇,郭菁,胡志勇.空间数据库索引技术[M].上海:上海交通大学出版社,2006
    [115] 韩国建等.矿体信息的八叉树存储和检索技术[J].测绘学报,1992,2l(1):13-17
    [116] 江斌,黄波,陆锋.GIS环境下的空间分析和地学视觉化[M].北京:高等教育出版社,2002
    [117] 琚娟,朱合华,李晓军等.数字地下空间基础平台数据组织方式研究及应用[J].计算机工程与应用,2006,42(26):192-194
    [118] 柯丽娜,刘登忠,刘海军.基于特征的时空数据模型用于地籍变更的探讨[J].测绘科学,2003,28(4):58-61
    [119] 李红旮.基于特征的时空三域数据模型及其在环境变迁中的应用[D].中国科学院遥感应用技术研究所:1999
    [120] 李学艺,陈松,王小椿.曲面间最小距离及其在曲面求交中的应用[J].机械科学与技术,2004,23(4):382-384
    [121] 刘湘南,黄方,王平等.GIS空间分析原理与方法[M].北京:科学出版社,2005
    [122] 齐安文,吴立新,李兵等.一种新的三维地学空间构模方法——类三棱柱法[J].煤炭学报,2004,27(2):158-163
    [123] 施法中.计算机辅助几何设计与非均匀有理B样条[M].北京:高等教育出版社,2001
    [124] 舒红,陈军,史文中.时空数据模型研究综述[J].计算机科学,1997,25(6):70-74
    [125] 宋德军,朱心雄.基于数学规划的曲面造型方法[J].工程图学学报,1997,2:78-84
    [126] 宋德军,朱心雄.用能量优化法构造N边域曲面[J].工程图学学报,1998,1:41-47
    [127] 宋德军.基于能量优化法的曲线曲面造型理论及应用研究[D].北京:北京航空航天大学,1998
    [128] 孙敏.面向对象的3D矢量GIS数据模型及拓朴关系的建立[J].测绘通报,1998(7):11-14
    [129] 魏占营等.地下巷道的三维建模及C++实现[J].武汉大学学报(信息科学版),2005,30(7):650-653
    [130] 吴江斌.基于Delaunay构网的城市三维地层信息系统核心技术研究与应用[D].上海:同济大学,2003
    [131] 吴立新,张瑞新等.3维地学模拟与虚拟矿山系统[J].测绘学报,2002,31(2):28-33
    [132] 吴立新,陈学习,史文中.基于GTP的地下工程与围岩一体化真三维空间构模[J].地理与地理信息科学,2003,19(6):1-6
    [133] 吴立新,史文中,Cheristepher Gold.3DGIS与3DGMS中的空间构模技术[J].地理与地理信息科学,2003,10(1):5-11
    [134] 吴立新,史文中.地理信息系统原理与算法[M].北京:科学出版社,2003
    [135] 席光,蔡永林.用改进遗传算法求取曲面间最小距离[J].计算机辅助设计与图形学学报,2002,14(3):209-213
    [136] 谢昆青等译.空间数据库[M].北京:机械工业出版社,2004,P:118-123.
    [137] 熊伟等.煤矿虚拟环境的巷道几何建模及关键算法研究[J].测绘通报,2002,8:15-16,21
    [138] 杨岳,罗意平.CAD/CAM原理与实践[M].北京:中国铁道出版社,2002
    [139] 叶勇庚.三维数字地层建模及其在隧道工程中的应用[D].上海:同济大学,2005
    [140] 张芳.场框架下的城市地下空间三维建模关键算法研究与应用[D].上海:同济大学,2006
    [141] 张建华.特征造型系统与有限元模型自动生成集成的研究与实现[D].西安:西安电子科技大学,1996
    [142] 张煜,白世伟.一种基于三棱柱体体元的3D地层建模方法与应用[J].中国图像图形学报,2001,6(3):285-290
    [143] 张玉峰.特征造型技术在有限元建模中的应用研究[D].武汉:武汉大学,2004
    [144] 郑国平.城市地下空间信息系统设计及关键技术研究[D].上海:同济大学,2004
    [145] 钟登华,李明超,王刚.大型水电工程地质信息三维可视化分析理论与应用[J].天津大学学报,2004,37(12):1046-1052
    [146] 钟登华,李明超,杨建敏.复杂工程岩体结构三维可视化构造及应用[J].岩石力学与工程学报,2005,24(4):575-580
    [147] 朱长青,史文中.空间分析建模与原理[M].北京:科学出版社,2006
    [148] 朱合华.从数字地球到数字地层——岩土工程发展新思维[J].岩土工程界,1998,12(12):15-17
    [149] 朱合华,叶为民,张先林.三维地层信息管理系统设计[J].岩土工程师,2002(3):25-29
    [150] 朱合华,郑国平,吴江斌.基于钻孔信息的地层数据模型研究[J].同济大学学报,2003,31(5):535-539
    [151] 朱心雄.自由曲线曲面造型技术[M].北京:科学出版社,2000

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700