用户名: 密码: 验证码:
雷州半岛地下水循环规律及合理开发利用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
雷州半岛地区是广东省历史性干旱缺水最严重的区域之一,同时也是地下水水量比较丰富的地区。但该地区的一些地质环境问题(如海水入侵、岩溶塌陷、地面沉降等)凸显出了地下水资源未得到合理开发利用的弊端,因此,开展雷州半岛地区地下水赋存条件、地下水动态特征、地下水循环规律、及地下水资源合理开发利用的研究,对于有效开发雷州半岛地区地下水资源、保护地下水环境具有十分重要的实际意义和理论意义。
     本文通过收集整理雷州半岛地区基础地质、水文地质及地下水动态监测资料,以地下水系统思想为指导,以水文地质学、地下水动力学理论为基础,采用三维地质建模技术、地下水数值模拟技术和同位素技术,对雷州半岛地下水系统结构、地下水补径排特征、地下水循环规律和地下水资源开发利用及其相关的火山口对含水层结构的影响、对地下水循环规律的影响以及研究区自流井、泉等问题进行综合研究,取得了以下主要成果及认识:
     1、根据收集的有效钻孔2327个及地质图和剖面图,结合岩相古地理,研究了雷州半岛火山口对研究区地层结构和含水层结构的影响,建立了雷州半岛三维含水层结构模型。
     该地区含水层分布特征是:浅层含水岩组由埋深30-50m以内的松散岩类孔隙水和火山岩孔洞裂隙水组成,除沿海部分地区缺失或咸水区外广泛分布于全区。中层含水岩组广泛分布全区,仅在玄武岩台地地区随火山岩深度的增加而变薄或缺失,雷北主要为湛江组砂岩,至雷南由于湛江组变薄而逐渐过渡为下洋组上段第二岩组。深层含水岩组几乎遍布全区,仅在西北角及东北角由于基岩埋深浅而缺失,雷北由下洋组下段组成,至需南过渡为下洋组上段第一岩组及部分第二岩组。火山口及火山岩对研究区含水层结构具有重要的控制作用,主要体现在火山口将浅中深三个含水层贯通,使之具有很好的水力联系。
     2、基于雷州半岛地下水动态观测资料及地下水开发利用状况,结合含水层结构特征,对地下水循环规律及流场特征进行了研究,分析了火山口对地下水循环规律的影响。结果表明,雷州半岛地下水循环及其流场变化主要特征是:
     (1)浅层水因埋藏浅,易接受大气降雨及地表水体的入渗补给,且未集中开采,迄今未形成区域降落漏斗,流场的形态受地形地貌控制,等水位线与地形等高线形状相似,地下水总体由西北向东南迳流,南部石峁岭火山锥形成局部地下水高水头区,使地下水以石峁岭为中心向四周流动。地下水位仅有季节性波动,年变化幅度一般为2到3m,地下水水位均高于海平面,因此目前基本没有发生严重的海水入侵。
     (2)中层承压水流场特征是:平面上地下水总体由西北向东南方向流动;垂向上,由于火山口贯通浅中深三个含水岩组,使中层含水岩组接受浅层地下水补给;受人工开集中大量开采影响,水位总体持续下降,已形成多个中心的区域降落漏斗,水位下降2m线圈闭面积达1946km2,漏斗中心水位高程为-21.95m,近海地段除太平地段高于海平面2到5m,东山、东简一带接近海平面之外,其余地区水位均低于海平面。
     (3)深层承压水流场特征是:中层地下水流场受地形地貌控制比浅中层地下水受地形地貌约束程度小得多,在垂向上受火山口和断层控制,接受中层含水层补给。自二十世纪七十年代起集中开采,水位总体逐年下降,下降速率大;水位埋深2m等值线圈闭面积已达2315km2,漏斗中心水位标高-19.68m,埋深达到25m。不同层位地下水位变化总的规律是由浅至深,变化幅度逐渐增大,降落漏斗面积增大。
     3、研究了自流井、泉的数值模拟方法。在对自流井、泉的水动力性质进行分析基础上,总结了自流井与泉流数值模拟的特点,分析了自流井与泉的数值模拟的主要难点,提出了相应的解决方案。通过物理模拟试验,发现管道内的实际渗透系数与理想公式计算得到的渗透系数相差1-2个数量级,从而为渗流-管流模型进行自流井、泉数值模拟时的参数选取提供重要参考依据。
     4、结合雷州半岛地区水文、气象、及各种测试分析资料和地下水动态资料,根据雷州半岛地区地下水系统自流井、泉等特殊的水文地质条件,对MODFLOW程序进行了修改,建立了基于渗流-管流理论的地下水数值模型,更加合理地刻画了自流井、泉等水文地质要素,对雷州半岛地区地下水资源量进行了计算评价。
     5、选择石峁岭典型火山口区,建立了地下水示踪剂迁移数值模型,计算了火山口地区地下水补径排时间。结果表明第一含水层的地下水年龄比第二含水层的地下水年龄要小,与同位素结果相吻合,其主要原因是在第一含水层与第二含水层之间有一个隔水层,而且隔水层的厚度较大。同时MODPATH表明第一含水层的流线的捕获时间都是1到2年左右,而第二含水层的地下水捕获时间是6年左右,地下水年龄明显比第一含水层的要大。
     6、根据雷州半岛地区地下水开发现状和潜在需求,设计了两种开发方案,利用所建立数值的模型,对开采方案进行了预测对比。按2010年开采水平,增加20%开采,如果都安排在赤坎、霞山、坡头水源地开采,那么就在2015年后会出现超采现象,所以在规划开采量布局时,除了上述3个水源地按照计算的开采外,欠缺部分按排在铺仔、太平水源地开采补充,并扩大地表水供水能力作为地下水不足部分的补充。如果在2015年及2020年分别在铺仔、东海岛及太平三个水源地开采地下水送到市区或就地工业用水,将会形成次级漏斗中心,同时产生水位迭加,三个水源地的预测水位降迭加,三个水源地的预测水位降2015年铺仔为14.88m、东山为9.37m、太平为13.25m;2020年预测水位下降幅度不大,铺仔为15.63m、东山为10.25m、太平为14.30m。
     论文主要特色及创新点:
     (1)根据研究区地下水系统自流井、泉的能够要素特征,采用渗流-管流模型刻画自流井和泉,并修改了MODFLOW程序,实现了对自流井、泉以及混合开采(或注水)井的模拟。
     (2)揭示了火山口对地下水循环特征的影响和控制作用,建立了火山口示踪剂迁移数值模型,计算了火山口附近地下水循环时间。
     (3)通过物理模拟试验,发现管道内的实际渗透系数与理想公式计算得到的渗透系数相差1-2个数量级,从而为渗流-管流模型进行自流井、泉数值模拟时的参数选取提供重要参考依据。
     问题及建议:
     边界条件的确定也是数值模拟中的难点之一。在数值模型的建立过程中,中、深层侧向边界在海域中的位置难以确定,对于水流模型,可以采用等效边界,但溶质运移模型,等效边界就存在明显不足。
     建议在以后的工作中,如能收集到研究区的边界资料或有专门的调查研究项目,尽可能对边界条件进行更为准确的刻画。
Leizhou peninsula is the most serious drought and water shotage regions in the Guangdong Province, but also is rich in groundwater. Some geological environment problems (Such as sea water intrusion, karst collapse, ground subsidence) highlights the groundwater resource did not get reasonable development and utilization of malpractice. Therefore, it is very important to investigate groundwater storage conditions, characteristics of groundwater fluctuation, groundwater circulation pattern, and the rational exploitation of groundwater resources in Leizhou Peninsula. It is very significant in practical and theory not only for effective development of groundwater resources, protection of groundwater environment, but also for the Leizhou Peninsula sea water intrusion prevention.
     Through the collection of Leizhou peninsula area of geology, hydrogeology and groundwater dynamic monitoring data, underguiding of groundwater system theory, based on hydrogeological fundmental theory, groundwater dynamic theory and Hydrogeologic chemical theory, using groundwater numerical simulation technology and three-dimensional geological modeling, on the Leizhou Peninsula groundwater recharge runoff drainage of groundwater, groundwater circulation pattern and optimization of exploitation and their relevant problems are studied, the main achievements are as followings:
     1. Based on the2327borehols, combined with the lithofacies palaeogeography, the impact of crater or volcano formation on the stratigraohic structure in the studied area has been studied and the structure of the aquifer model is established.
     the chracteristics of aquifer are:the burial depth of the shallow water varies from30m to50m, is consist of loose rock pore water and all the volcano rock cave fissure water, widely distributed in the study area, except for the coastal and brackish water areas. Intermediate confined aquifer water is widely distributed in the study area, it becomes thinner or vanishes as the depth of the volcanic rocks increase in the basalt platform region. The north part of Leizhou Penisula is mainly consisted of sandstones of Zhanjiang group, in the South part of Leizhou Penisula, the Zhanjiang group becomes thinner and gradually transition to the upper group of Xiayang group. Deep confined groundwater almost distributed throughout the region, is only lack of in the northwest corner and the northeast corner of the bedrock buried depth. Lei north from under the ocean group segments, to the south of transition for the thunder under the ocean group upper part the first rock group and part of the second rock group.
     2. According to the observation data of groundwater water table, and the situation of development and utilization of groundwater resource in Leizhou Penisula, the characteristics of groundwater flow field are studied, the impaction of volcano cater on groundwater flow pattern is studied. It is recognized that groundwater flow field is mainly affected by the hydrogeological conditions, groundwater exploitation mode. The mainly characteristics are as followings:
     (1) Shallow aquifer is easy to accept the precipitation and surface water infiltration, and is not concentrated mining, hitherto unreported form regional drawdown funnel, the flow patterns affected by topography, the ground water table contour is similar with terrain contour. Groundwater runoff overall from northwest to Southeast. Groundwater table is only seasonal fluctuation, the yearly amplitude is generally2-3m, all most above sea level.
     (2) The groundwater flow field in the middle confined aquifer has a gradual evalution from natural flow field to artificial exploitation flow. Original condition groundwater flow is generally from northwest to Southeast. Due to the concentration of a large number of exploitation, the groundwater level continued to decline, the central region descend funnel has been formed, the area with groundwater level drop2m is1946km2, funnel center water level is-21.95m. groundwater level is above sea level2-5m in very few of offshore area, the reast offshore area are below the sea level.
     (3) The groundwater table in deep confined aquifer is drawdown continuously since the concentrated mining groundwater in1970s; the area of ground water drawdown is greater than2m already amounted to2315km2, the groundwater level in funnel center is-19.68m. the groundwater level changes in different layers is from shallow to deep, change rate increase, funnel area increase.
     3. hydraulic features of the artesian well and spring are analysized, and the numerical methods for modeling artesian flow and soring flow are investigated. An example is designed to test the methods.
     4. Based on the Leizhou Peninsula3-D aquifer structure model, and the combination of hydrology, meteorology, and all kinds of test data analysis and groundwater dynamic data, a groundwater numerical model is built by using seepage-pipe flow model theory, which taking multilayered pumping well and artesian springs into accounted in the model. the MODFLOW software is modified to realize the calculate the multilayerd aquifer and artician springs flow.
     5. The groundwater recharge and discharge time in the volcano area is calculated by the groundwater numerical model. The results show that groundwater age in the first aquifer is smaller than the one in the second aquifer, and this is consist with tisotope results. the main reason is that there is an aquifuge between the first and second aquifer, and aquifuge thickness is large. At the same time that the first MODPATH aquifer flow acquisition time is about1-2years, while the second aquifer groundwater capture time is6years, groundwater age in the second aquifer is greater than the one in the first aquifer.
     6. According to the Leizhou peninsula area of groundwater exploitation and potential demand, two kinds of development programs are designed. The programs were predicted and compared by using the numerical model. The results shownthat:for the program based on the exploitation amount, increase by20%yearly, if this amount watwe is all exploited in Chikan, Xiashan and Potou resource area, then in2015will appear the over-extraction phenomenon. Thus programming exploitation amount layout, in addition to the3water sources in accordance with the calculation of the exploiting, the lack of part according to the row in the Puzai and Taiping water exploiting g supplement, and expand the supply of surface water groundwater insufficient ability as part of the supplementary. If groundwater is exploited for downtown or in situ industrial use from the three groundwater exploitations-Puzai, East Island and Taiping-respectively in2015and2020, a secondary cone center will be formed, three forecasting groundwater level superposition will arise at the same time. In2015, the groundwater level superposition in Puzai will be14.88m, in Dongshan it will be9.37m, in Taiping it will bw13.25m; in2020the forecasting groundwater level will drop a little, the groundwater level superposition in Puzai will be15.63m, in Dongshan it will be10.25m, in Taiping it will be14.30m.
     Main findings:
     (1) According to the characteristic of groundwater system with many artesian wells and springs in the Leizhou Penisula, the MODFLOW program is modified based on the seepage-pipe flow model to simulate the ground water flow in the springs and artesian wells system.
     (2) the impaction and control function on the flow pattern of groundwater are revealed, the tracer migration numerical model is established and is used to calculate the groundwater circulation time in the volcanic area.
     (3) based on physical experiment, it is found that the real conductive coefficient in practice is lto2orders magnitude greater than that calculated from the ideal formula, this result is very helpful for determing the parameters in using seepage-pipe flow model to simulate artesian well, springs flow in aquifer systems.
     Sugestions:
     The determination of boundary condition is one of the difficulties in numerical simulation. When establishing the numerical model, the boundaries are assumed to be constant heads, equivalent to the sea surface elevation. In fact, only the first layer is completely consistent with the assumption. For the intermediate and deep aquifer, the boundaries in the sea are hard to be determined. In the flow modeling, equivalent boundaries are used, but noticeable defects will occur in solute transport model. For more accurate characterization of boundary conditions, more boundary data and specialized investigations are needed in further studies.
引文
[1]王大纯,张人权,史毅虹,等.地下水系统理论.水文地质学基础[M].北京:地质出版社,1995.
    [2]Toth J. A theoretical analysis of groundwater in small drainage basin [J]. Journal of Geophysics Research,1963,67(11):4375-4387.
    [3]Toth J. Gravity-induced cross-fomaational flow of formation fluids, Red Earth Region, Alberta, Canada:analysis, patterns and evolution [J]. Water Resources Res,1978,14(5):805-843.
    [4]陈梦熊,马凤山.中国地下水资源与环境[M].北京:地震出版社,2002,7:385-417.
    [5]刘宇,贾静.基于Matlab小型潜水盆地地下水流动系统模拟研究[J].地下水,2009,31(3):1-3.
    [6]侯光才,林学钰,苏小四,等.鄂尔多斯白垩系盆地地下水系统研究[J].吉林大学学报(地学版)2006,(3):391-398.
    [7]赵振宏,侯光才,王冬,等.地下水流系统特征-以白垩系地下水盆地为例[J].地下水,2007,29(3):14-16.
    [8]Yin LH, Hou GC, Tao ZP, Li Y. Origin and recharge estimates of groundwater in the Ordos Plateau [J]. P. R. China. Environ Earth Sci.2009,12:1-19.
    [9]范鹏飞.华北平原地下水循环演化及预测[J].地球学报,1998,12:1-19.
    [10]河北省地质调查院.华北平原(河北部分)地下水资源调查评价报告[R].2003.
    [11]张宗祜,沈照理,等.华北平原地下水环境演化[M].北京:地质出版社,2002.
    [12]杨勇,郭华明.大同盆地地下水循环演化分析[J].岩土工程技术,2003,2:192-196.
    [13]乔晓英.准噶尔盆地南缘地下水环境演化及其可再生性研究[D].长安大学,2008.
    [14]张光辉,刘少玉,谢悦波,等.西北内陆黑河流域水循环与地下水形成演化模式[M].北京:地质出版社,2005.
    [15]Wang Wei and Zhang Ge. Numerical simulation of groundwater flowing to horizontal seepage wells under a river [J]. Hydrogeology Journal,2007,15:1211-1220
    [16]Tang Zhonghua and Jiu J. Jiao. A two-dimensional analytical solution for groundwater flow in a leaky confined aquifer system near open tidal water, HYDROLOGICAL PROCESSES, Hydrol. Process.,2001,15,573-585, DOI:10.1002/hyp.166
    [17]Neuman S P, Witherspoon P A.. Theory of flow in a confined two-aqurfer systerm. Water Resour. Res.,1969,5 (4):803-816.
    [18]Neuman, S.P. Theory of flow in unconfined aquifers considering delayed response of the water table. Water Resour. Res.,1972,8 (4):1031-1045.
    [19]Neuman S P, and Narasimhan T. N.. Mixed Explicit-implicit interactive finite element scheme for diffusion-type problms, I:Theory, Int. J. Num. Methods in Eng.,1977,11:803-816.
    [20]Li, H.L., Jiao, J.J.. Analytical studies of groundwater-head fluctuation in a coastal confined aquifer overlain by a semipermeable layer with storage. Adv. Water Resour.2001 (a),24 (5):565-573.
    [21]Li, H.L., Jiao, J.J. Tide-induced groundwater fluctuation in a coastal leaky confined aquifer system extending under the sea. Water Resour. Res.,2001b.,37 (5):1165-1171.
    [22]Li, H.L., Jiao, J.J., Luk, M., Cheung, K.,. Tide-induced groundwater level fluctuation in coastal aquifers bounded by L-shaped coastlines. Water Resour. Res.2002a,38(3):1024. doi:10.1029/2001WR000556.
    [23]Chen Chongxi, Fang Shuzhen, Lin Min,2D coupled 3D:A new numerical method for dual-structured-aquifer system, Journal of China University of Geosciences,1995,6 (1):114-117.
    [24]Liggett J A, Liu P L. Unsteady flow in confined aquifers:A comparison of two boundary integral methods, Water Resources Research,1979,15 (4)
    [25]Lin Min, Chen Chongxi. Analysis Models of Groundwater Flowing to Spring in Karst Aquifer, In Proceedings of IAH 21st Congress. Gulin, China, Oct.1988,10-15:646-653
    [26]Jiu Jimmy Jiao, Zhonghua Tang. An analytical solution of groundwater response to tidal fluctuation in a leaky confined aquifer, WATER RESOURCES RESEARCH,199,35 (3): 747-751.
    [27]Li, G. M.、 C. X. Chen. Determining the length of confined aquifer roof extending under the sea by tidel method, Journal of Hydrology,1991(123),97-104
    [28]王才川,王文科,张渊等.河流-地下水水流模型研究进展[J].地下水,2010,32(6),4-7.
    [29]王丽亚、李文鹏、周仰效等,北京平原区域地下水流模拟,水文地质工程地质,2009,(1),p11-17
    [30]王文科,孔金玲,段磊等.黄河流域河水与地下水转化关系研究[J].中国科学(E辑),2004,34(水资源专辑),23-33
    [31]王文科,李俊亭,王刽等.河流与地下水关系的演化及若干科学问题,吉林大学学报(地球科学版),2007,37,(2),231-238.
    [32]王文科.地下水有限分析数值模拟的理论与方法,陕西科学技术出版社,西安,1996.
    [33]王旭升、陈崇希.改进的The is井流模型及其解析解——考虑含水层顶板的挠曲作用[J].地球科学,2002,27(2),199-202.
    [34]王旭升、陈崇希,焦赳赳.承压含水层井流-盖层弯曲效应的解析理论[J].地球科学,2003,28(5),545-550.
    [35]王旭升,周剑.黑河流域地下水流数值模拟的研究进展[J].工程勘察,2009.,(9):35-38.
    [36]吴吉春,薛禹群等.山西柳林泉域地下水流数值模拟[J].水文地质工程地质,2001.,(2),18-20
    [37]薛禹群,谢春红.承压含水层中井附近地下水流的对数插值法[J].水文地质工程地质论丛,1987:,(2):27-36
    [38]薛禹群,吴吉春,面临21世纪的中国地下水模拟问题[J].水文地质工程地质,1999,5,1-3
    [39]曾德钦.关于混合水位研究岩石渗透能力的探讨[J].水文地质工程地质,1958,5,21-23
    [40]张宏仁,有限单元法与有限差分庆的对比分析[J].北京市地质局水文一大队内部油印稿,1977.
    [41]张宏仁,李俊亭.有限元法与有限差分法在解渗流问题中的对比[J].水文地质工程地质,1979,2:50-55
    [42]张宏仁.解渗流问题数值方法对比[J].水文地质工程地质,1984,4:23-29
    [43]张宏仁.有限元法的水头反常问题[J].水文地质工程地质,1992,19(5):22-24
    [44]张宏仁.偏微分方程数值解法在地学应用中的对比分析[J].地质学报,1993,67(3):266-274
    [45]张宏仁.有限差分法的改进,水文地质工程地质[J].1994,2:27-30
    [46]张宏仁.通过现象揭示本质——地下水理论研究的任务[J].水文地质工程地质,1997,4:14-14
    [47]吕康林.关于有限单元法节点水头反常的分析讨论[J].水文地质工程地质,1988,(2):38-41
    [48]李俊亭、聂洪起.水文地质计算的单元均衡法[J].河北地质学院学报,1978,3(2):1-5
    [49]高敬亮.混合抽水试验理论与实践问题的讨论[J].水文地质工程地质,1958,5:23-27
    [50]高钟.关于“混合抽水试验理论与实践问题”的简化[J].水文地质工程地质,1959,1:21-23
    [51]葛亮韬,顾谦隆,高洪烈.多含水层混合井理论及流量测井法[M].北京:地质出版社,1984
    [52]葛亮韬.关于混合抽水试验分层计算方法的探讨[J].水文地质工程地质.1957,9:31-38
    [53]葛亮韬.再论混合抽水试验,水文地质工程地质[J].1959,12:25-28
    [54]黎明,刘文波,陈崇希MODFLOW能模拟地下水混合井流吗?[J].水文地质工程地质,2003,30(5):116-117
    [55]陈崇希,彭再丰.晋陕交界处天桥区开采地下水对天桥坝基稳定性的影响及其补给区可能引发的环境地质问题的研究,黄河治理与水资源开发利用—黄河中上游能源基地环境地质问题演化及防治对策研究(“八五”国家重点科技攻关项目85-926-05-03子专题科学技术报告)[M].中国地质大学(武汉)环境地质研究所,1995,7-24页
    [56]陈崇希,刘文波.2003.陕西渭北东部岩溶水资源数值模拟研究——三维地下水流模型(含混合井自流井)(科学技术报告)[R].中国地质大学(武汉)环境地质研究所
    [57]陈崇希,韩巍.2005.甘肃疏勒河流域地下水资源合理配置研究——三维地下水流数值模拟(含混合井自流井)(科学技术报告)[R].中国地质大学(武汉)环境地质研究所。
    [58]张光辉,费宇红,申建梅,等.降雨补给地下水过程中包气带变化对入渗的影响[M].水利学报,2007,38(5):611-617
    [59]吴吉春,薛禹群.地下水动力学[M].北京:水利出版社,2009.
    [60]薛禹群,朱学愚.地下水动力学[M].北京:地质出版社,1979.
    [61]薛禹群,谢春红.水文地质学的数值方法[M].煤炭工业出版社,1980.
    [62]薛禹群主编(朱学愚,贾贵庭,滕绪金,刘金山).地下水动力学原理[M].北京:地质出版社,1986.
    [63]薛禹群,谢春红,吴吉春,刘培民,时洪文等.海水入侵、咸淡水界面运移规律研究[M],科学出版社,1991.
    [64]薛禹群主编(朱学愚,吴吉春,李同斌,林绍志,贾贵庭).地下水动力学[M].北京:地质出版社,1997.
    [65]薛禹群,谢春红.地下水数值模拟[M],科学出版社,2007.
    [66]薛禹群,吴吉春主编.地下水动力学[M].北京:地质出版社,2010.
    [67]杨金忠,蔡树英,王旭升.地下水运动数学模型[M].北京:科学出版社,2009.
    [68]杨天行,傅泽周,刘金山,林学钰.地下水向井的非稳定运动原理及计算方法[M].北京:地质出版社,1980.
    [69]张蔚榛主编(李文渊,沈荣开,叶自桐,张瑜芳,徐玉佩).地下水非稳定流计算和地下水资源评价[M].北京:科学出版社,1983.
    [70]张蔚榛主编(沈荣开,张瑜芳,徐玉佩).地下水与土壤下动力学[M].北京:中国水利水电出版社,1996.
    [71]罗焕炎,陈雨孙.地下水运动的数值模拟[M].北京:中国工业出版社,1988.
    [72]孙讷正.地下水流的数学模型和数值方法[M].北京:地质出版社,1981.
    [73]李俊亭.地下水数值模拟[M].北京:地质出版社,1989.
    [74]陈明佑、陈崇希、陈爱光、欧永和.水文地质数值解法的若干问题[J].地球科学,1981,(2),193-222
    [75]陈雨荪.单井水力学[M].北京:中国建筑工业出版社,1977.
    [76]陈雨荪.地下水运动与资源评价[M].北京:中国建筑工业出版社,1986.
    [77]刘文波,(导师:陈崇希),陕西省渭北东部岩溶水开采动态预测——裂隙-孔隙双重介质三维流模型[D].中国地质大学研究生院博士学位论文,2001.
    [78]万军伟,(导师:陈崇希).水平井流动系统的数值模拟方法及其应用研究——以美国丹佛地区地下水抽汲系统为例[D].中国地质大学研究生院博士学位论文,2002.
    [79]胡立堂,(导师:陈崇希).地下水三维流多边形有限差分模拟软件及实例应用[D].中国地质大学研究生院博士学位论文,2004.
    [80]成建梅.(导师:陈崇希)滨海多层含水系统海水入侵三维水质模型及应用[D].中国地质大学研究生院博士学位论文,1999.
    [81]陈崇希,胡立堂,王旭升.地下水流模拟系统PGMS(1.0版)简介[J].水文地质工程地质,2007,34(6):Ⅰ-Ⅱ
    [82]Narasimhan T N, Witherspoon P A. An integrated finite difference method for analying fluid flow in porous media. Water Resources Research,1976,12(1):57-64.
    [83]Numan S P, Narasimhan T N, Witherspoon P A. Application of mixed oplicit-implicit finite element method to nonlinear diffusion type problems, Finite elements in water resources. Proceedings 1st International Conference on Finite Elements in Water Resources. 1976. Part 1,153-186.
    [84]Chen, C.X., Wan, J.W., Zhan, H. Theoretical and experimental studies of couple seepage-pipe flow to a horizontal well, Journal of Hydrology,2003,28(1):159-171.
    [85]陈崇希.地下水混合井流解析模型[J].水文地质工程地质,2012,39(5):1-9
    [86]王文科,李俊亭.地下水数值模拟的发展与展望[J].西北地质,1995,第16卷第4期,52-56.
    [87]杨金忠,蔡树英,叶自桐.区域地下水溶质运移随机理论的研究与进展[J].水科学进展.1998,9(1):84-98.
    [88]王旭升,自流井有限差分模拟的校正模型[J]。地球科学,2008,33(1):112-116.
    [89]吴吉春,薛禹群等.2001.山西柳林泉域地下水流数值模拟,水文地质工程地质,(2),18-20
    [90]万力,将小伟,王旭升.含水层的一种普遍规律:渗透系数随深度衰减[J].高校地质学报,2010,16(1):7-12.
    [91]陈崇希.岩溶管道—裂隙—空隙三重空隙介质地下水流模型及模拟方法研究[J].地球科学,1995,20(4),361-366
    [92]陈崇希,万军伟,詹红兵等.“渗流-管流耦合模型”的物理模拟及其数值模拟[J].-水文地质工程地质,2004,1:1-8.
    [93]陈崇希,胡立堂.2008.渗流-管流耦合模型及其应用[J].水文地质工程地质,35(3)70-75
    [94]吴吉春,薛禹群,谢春红.越流含水层系统中的溶质运移方程[J].水文地质工程地质,1998,1:30-31.
    [95]赵勇胜.水文地质数值模型应用中存在的问题及模型评价方法的探讨[J].吉林水利,1996年第11期,6-8.
    [96]薛禹群,谢春红,吴吉春.水文地质数值法存在的问题及其对策[J].地球科学进展,1996,11(5):472-474.
    [97]薛禹群,吴吉春.面临21世纪的中国地下水模拟问题。水文地质工程地质,1999,5:1-3.
    [98]薛禹群,吴吉春.地下水数值模拟在我国——回顾与展望.水文地质工程地质,1997(4):21-24.
    [99]吴剑锋,朱学愚.由MODFLOW浅谈地下水流数值模拟软件的发展趋势[J].工程勘察,2000,3(02):10-15.
    [100]郝治福,康绍忠.地下水系统数值模拟的研究现状和发展[J].水利水电科技进展.2000,3(02):10-15.
    [101]魏林宏,束龙仓,郝振纯.地下水流数值模拟研究现状及发展趋势[J].重庆大学学报:自然科学版.2000,3(02):10-15.
    [102]束龙仓,刘波,等.傍河水源地水位降落漏斗的扩展分析[J],河海大学学报(自然科学版),2006,34(1):6-8.
    [103]陈锁忠,马千程.苏锡常地区GIS与地下水开采及地面沉降模型系统集成分析[J].水文地质程地质,1999,26(5):8-13.
    [104]祝晓彬.地下水模拟系统(GMS)软件[J].水文地质工程地质,2003,30(5):53-55.
    [105]Harbaugh A W, McDonald M G. Users Documentation for MODFLOW-96, an update to the U. S. Geological Survey Modular Finite-Difference Ground-Water Flow Model[R]. U.S. Geological Survey,1996.
    [106]Harbaugh A W, Banta E R, Hill M C, et al MODFLOW-2000, The U. S. Geological Survey Modular Ground-Water Model-User Guide to Modularization Concepts and the Ground-Water Flow Process [R].U. S. Geological Survey,2000.
    [107]陈冬琴.GMS软件在杭嘉湖地下水资源评价中的应用[J].软件导刊,2007,29(5):49-50.
    [108]姜蓓蕾,吴吉春,杨仪.常州市湖典型地块浅层地下水数值模拟[J].水文地质工程地质,2004,31(6):29-32.
    [109]兰盈盈,赵文康,等.吉林省洮儿河扇形地地下水库数值模拟[J].人民长江,2006,37(8):15-17.
    [110]肖长来,范伟,梁秀娟.沈阳市城区地下水位调控模拟研究[J].干旱区资源与环境,2007,21(11):31-34.
    [111]赵同红,宁立波,王现国.新郑市浅层地下水流数值模拟及评价[J].地下水,2007,29(6):43-46.
    [112]邵景力,赵宗壮,等.华北平原地下水流模拟及地下水资源评价[J].资源科学,2009,31(3):361-367.
    [113]马兴旺,李保国,等.绿洲区土地利用对地下水影响的数值模拟分析:以民勤绿洲为例[J].资源科学,2002,24(2):49-55.
    [114]邵景力,崔亚莉,等.黄河下游影响带(河南段)三维地下水流数值模拟模型及其应用[J].吉林大学学报(地球科学版),2003,33(1):51-55.
    [115]孟茜,杨同勇,刘娟.准格尔旗深层地下裂隙水数值模拟[J].能源技术与管理,2009,34(4):20-22.
    [116]Zheng CM, Wang PP. MT3DMS:A modular three-dimensional multispecies transport model for simulation of advection, dispersion, and chemical reactions of contaminan ts in groundwater systems; documentation and users guide, Contract Report SERDP991[R]. U. S. Army Engineer Research and Development Center, Vicksburg, Mississipp,1999.
    [117]Zheng CM. MT3DMS v5.2:A modular three-dimensional multispecies transport model for simulation of advection, dispersion, and chemical reactions of contaminants in groundwater systems [R]. U.S.Army Engineer Research and Development Center, Vcksburg, Mississipp,2006.
    [118]梁秀娟,林学钰,等.GMS与苏锡常地区地下水流模拟[J].人民长江,2005,36(11):26-28.
    [119]自利平,王金生.GMS在临汾盆地地下水数值模拟中的应用[J].山西建筑,2004,30(16):78-79.
    [120]王佳武,王钊Visual Modflow在第四系松散层地下水数他模拟中的应用--以渭南市北郊水源地为例[J].陕西地质,2007,25(2):72-80.
    [121]贾金生,白冰,刘吕明Visual Modflow在地下水模拟中的应用--以河北省栾城县为例[J].河北农业大学学报,2003,26(2):71-78.
    [122]李文跃,张博,等.Visual Modflow在大庆龙西地区地下水数值模拟中的应用[J].世界地质,2003,22(2):161-165.
    [123]李平,卢文喜,等.Visual Modflow在地下水数值模拟中的应用--以公主岭市黄龙工业园水源地为例[J].工程勘察,2006,34(3):24-27.
    [124]李宏卿,吴琼,等.Visual Modflow在地下水资源评价中的应用[J].工程勘察,2005,33(3):27-28.
    [125]鲁程鹏,等.基于灵敏度分析的地下水数值模拟精度适应性评价[J].河海大学学报:自然科学版.
    [126]郝治福,康绍忠.地下水系统数值模拟的研究现状和发展趋势[J].水利水电科技进展,2006.
    [127]武强,董东林,等.水资源评价的可视化专业软件(Visual Modflow)与应用潜力[J].水文地质工程地质,1999,26(5):21-23.
    [128]杨青青,卢义喜,马洪云.Visual Modflow在吉林省西部地下水数值模拟中的应用[J].水文地质工程地质,2005,32(3):67-69.
    [129]郑红梅,刘明柱Visual Modflow在天津市地下水数值模拟中的应用[J].华北水利水电学院学报,2007,28(2):8-11.
    [130]刘记成,王现国,等Visual Modflow在邬州沿黄水源地地下水资源评价中的应用[J].地下水,2007,29(4):91-92.
    [131]贾振兴,魏放,等.Visual Modflow在临汾市土门供水水源地保护区划分中的应用[J].太原理大学学报,2007,38(2):119-121.
    [132]Bear JL, Bachnmt Y. Introduction 013 to modeling of transport phenomena in porous media[M]. Kluwer Academic Publishers, Dordrecht,1991,14:16-21.
    [133]张国伟,孙亚军,等.FEFLOW在区域地下水流场演化数值模拟中的应用[J].1991,14:16-21.
    [134]张立志.基于FEFLOW的大兴区地下水动态模拟研究.北京,中国地质大学(北京),2009:18-19.
    [135]刘英,包安明,陈曦.塔里木河下游地区地下水空间分布动态模拟[J].资源科学,2006,28(5):95-101.
    [136]郑春苗,万力等.2009.中国地下水科学发展的机遇与挑战[M],北京:科学出版社
    [137]Woolfenden LR, Ginn TR. Modeled groundwater age distributions [J], Ground Water,2009,47(4):547-557.
    [138]Ginn T R. On the distribution of multi-component mixtures over generalized exposure time in groundwater flow and reactive transport:Foundations, formulations for groundwater age, geochemical heterogeneity, and biodegradation [J]. Water Resources Research,1999,35(5):1395-1408.
    [139]Adb E1 Samie, S.G. and Sadek, M. A.,2001. Groundwater recharge and flow in the Lower Cretaceous Nubian Sandstone aquifer in the Sinai Peninsula, using isotopic techniques and hydrochemistry. Hydrogeology Journal,9(4):378-389.
    [140]Reilly T E, Plummer L N, Phillips P J, et al. The use of simulation and multiple environmental tracers to quantify flow in a shallow aquifer [J]. Water Resource Research,1994,30(2):421-433.
    [141]Goode D J. Direct simulation of groundwater age [J]. Water Resource Research, 1996,32(2):289-296.
    [142]Engesgaard P, Molson J. Direct simulation of groundwater age in Rabis Creek aquifer, Denmark [J]. Ground Water,1998,36(4):577-582.
    [143]Engesgaard P, Jensen KH, Molson J, et al. Large-scale dispersion in a sandy aquifer:Simulation of subsurface transport of environmental tritium [J]. Water Resources Research,1996,32(11):3253-3266.
    [144]Varni M, Carrera J. Simulation of ground water age distributions [J]. Water Resources Research,1998,34:3271-3281.
    [145]Bethke CM, Johnson T M. Paradox of ground water age:Correction [J]. Geology, 2002,30(4):385-388.
    [146]Bethke CM, Johnson TM. Groundwater age [J]. Ground Water,2002,40 (4):337-339.
    [147]Castro MC, Goblet P. Calculation of ground water age---A comparative analysis [J]. Ground Water,2005,43(3):368-380.
    [148]Cornaton F, Perroch et P. Ground water age, life expectancy, and transit time distributions in advective-dispersive systems:1. Generalized reservoir theory [J]. Advances in Water Resources,2006,29(9):1267-1291.
    [149]Ginn TR. Comment on "Groundwater age, life expectancy, and transit time distributions in advective-dispersive systems:1. Genera lized reservoir theory, " by F. Cornaton and P. Perrochet [J]. Advances in Water Resources, 2007,30:1056-1057.
    [150]Cornaton F, Perrochet P. Reply to "Comment on groundwater age, life expectancy and transit time distributions in advective-dispersive systems: 1. Generalized reservoir theory" by Timothy R. G inn [J]. Advances in Water Resources,2007,30:1058-1059.
    [151]Woolfenden L R, Ginn T R. Modeled groundwater age distributions [J]. Ground Water,2009,47(4):547-557.
    [152]Ginn TR. On the distribution of multi-component mixtures over generalized exposure time in groundwater flow and reactive transport:Foundations, formulations for groundwater age, geochemical heterogeneity, and biodegradation [J]. Water Resources Research,1999,35(5):1395-1408.
    [153]潘彦燕,吴剑锋,吴吉春.非均质含水层中地下水年龄数值模拟[J].地下水,2010,32(6):21-26.
    [154]Kazemi GA, Lehr JH, Perrochet P. Ground water age [M]. John Wiley & sons, Inc., New Jersey, USA.2006:6.
    [155]Broers HP. The spatial distribution of ground water age for different geohydrological situations in the Netherlands:Implications for groundwater quality monitoring at the regional scale [J]. Journal of Hydrology,2004, 299:84-106.
    [156]Maloszewski P, Zuber A. Influence of matrix diffusion and exchange reactions on radio carbonages in fissured carbonate aquifers [J]. Water Resource Research, 1991,27(8):1937-1945.
    [157]张治平.关于湛江系地层及“雷州半岛-海南岛北部”自流水盆地的发现.水文地质工程地质,1957,4:19-23.
    [158]孔中恒.雷州半岛火山岩的水文地质特征与富水规律[J].热带地理,2004,24(2):136-139.
    [159]广东省地质局.中华人民共和国区域水文地质普查报告(1:200000)-雷州半岛F—49[R].1981,237p.
    [160]江火荣.雷州半岛台地地下水资源量分析[J].广东水利水电,2000,6:40,44.
    [161]曹基富,易志红.湛江市硇洲岛水资源开发利用现状及对策.地下水,2006,28(2):11-13.
    [162]曾黄锦.雷州半岛地下水开发利用对环境影响的分析[J].水利水电快报,2006,27(7):8-10.
    [163]吴海燕.湛江市地下水开发过程中引发的主要环境地质问题[J].人民珠江,2007,4:56-57.
    [164]符诗存,董卓斌.湛江市地面沉降影响因素分析[J].南方国土资源,2008,3:28-29
    [165]罗树文,吴捷.湛江市区滨海平原地面沉降现状与防治对策[J].中国地质灾害与防治学报,2006,17(3):98-102.
    [166]杨瑞生.湛江市区地质灾害易发区划分与防治对策[J].决策管理,2008,3:54.
    [167]梁池生,周训,陈明佑.雷州半岛防海水入侵最优地下水开采方案探讨[J].现代地质,2002,16(4):429-434.
    [168]苏肇.湛江市地下水防海水入侵的开发利用保护对策[J].工程勘察,1997,2:27-33.
    [169]罗强,苏肇汉.硇洲岛地下水海水入侵的特征分析及治理对策[J].地质灾害与环境保护,2007,18(2):28-32.
    [170]梁彬,关碧珠,崔光中.广东湛江开发巨型盆地防治海水入侵研究[J].中国岩溶,2001,21(1):1.
    [171]翁剑伟.湛江市地下水回灌方案分析[J].广东水利水电,2010,3:26-29.
    [172]余江,丁丽光,李文辉,等.湛江市地下水流场演变特征[J].水文地质工程地质,2006,5:95-98.
    [173]李文辉,黎贵群.湛江市区地下水水位下降原因分析及防治措施[J].西部探矿工程,2007,5:75-77.
    [174]陈俊鸿,林旭钿,许扬生.雷州半岛降雨历程影响地下水动态变化的特征[J].水文地质工程地质,2004,4:101-105.
    [175]陈科,徐达.湛江市城区地下水污染因子灰色关联分析[J].广东水利水电,2009,3:37-39.
    [176]李辉,陈鸿汉,何江涛.湛江市浅层地下水防污性能评价[J].华北水利水电学院学报,2006,27(4):98-100.
    [177]梁靖,郑王琼.广东湛江冯村垃圾场对浅层地下水污染评价与防治对策[J].地质灾 害与环境保护,2009,20(3):63-67.
    [178]姚锦梅,周训,谢朝海.湛江市深层承压水铁分布和地球化学模拟研究[J].现代地质,2009,23(6):1174-1179.
    [179]姚锦梅,周训,李娟,等.广东雷州半岛玄武岩地下水水文地球化学特征及演化模拟[J].地质通报,2007,26(3):327-334.
    [180]梁靖.湛江冯村垃圾场对中深层承压水污染的可能性及其防治[J].水资源保护,2010,26(3):30-32.
    [181]刘南发.湛江市高铁锰地下水成因分析及利用对策探讨[J].西部探矿工程,2004,11:217.
    [182]LI Xi-bin, SUN Xiao-yan, YU Hua-ming, BAO xian-wen. Numerical Study of the Donghai Dam Impact on the Hydrodynamic Environment of Zhanjiang Bay [J]. Marine Science Bulletin,2010,12 (1):16-29.
    [183]应秩甫,王鸿寿.湛江湾的围海造地与潮汐通道系统[J].中山大学学报(自然科学版),1996,35(6):101-105.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700