用户名: 密码: 验证码:
咸阳地压型热储流体基本特征及补给的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
咸阳地热田有其独特的中低温、低压热储流体,咸阳热储流体特征有异于一般常压热储流体。本论文在陕西省自然基金《咸阳地压热储流体的氢氧同位素演化及其对古地质环境的指示意义》(编号SJ08-ZT08),国家地质调查局项目《陕西关中地下热水的调查》(编号1212010535A98)的资助下,运用环境同位素和水文地球方法对咸阳地压型地热流体的补给循环及其赋存环境特征展开专项研究,深入分析和总结了咸阳热储流体的地压特征、同位素特征和水化学特征,并对咸阳热储流体的补给来源进行了探索性的研究,并得出以下结论:环境同位素δD、δ~(18)O、δ~(13)C、δ~(14)C、δ~(34)S的分布特征证明咸阳渭河以北热储环境比咸阳渭河以南更为封闭,咸阳渭河以南热储流体和西安热储流体有一定程度的水力联系。研究区热储流体主要水化学成分空间分布演化证实研究区地下热水水化学成分在平面上具有呈南北向变化的东西向带状分布规律,与研究区主干构造(渭河北岸断裂)一致,咸阳渭河以北为Cl-Na型水,咸阳渭河以南为HCO_3-Na型水。研究区同位素、水化学、主控构造的研究成果提示,咸阳热储流体来水方向主要来自西北方向。西北方向三个剖面同位素、水化学分布演化规律的研究,提供了咸阳热储流体补给的环境同位素证据,证明咸阳热储流体主要由渭北全新世前大气降水补给,基本不存在“深部水热循环系统中来自地幔物质补给”的可能。
The geothermal field of Xianyang has its own unique low-temperature, low-pressured geothermal waters. The paper is subsidized by the Shanxi Province Fund for nature《The meaning for oxyhydrogen isotope evolution about pressured geothermal waters to anciet geological environment in Xianyang》(NO.SJ08-ZT08), and the national geology Investigation Bureau Project《Geothermal water Investigation in Shanxi Guanzhong》(NO. 1212010535A98), it is launched the special research about the geopressured geothermal waters's characteristic of suppling circulation and environment in Xianyang by using the environmental isotope and hydrogeochemistry method, analyzed and summarized the geostatic pressure characteristic, the isotope characteristic and the hydrochemistry characteristic of geothermal waters in Xianyang thoroughly, and has conducted the exploring research to the Xianyang geothermal waters's source of recharge, then drew the following conclusion: Environmental isotopeδD,δ~(18)O,δ~(13)C,δ~(14)C,δ~(34)S distributed characteristic proves the geothermal environment in north of the Xianyang Weihe River is much closer compared to the south of Xianyang Weihe River, the geothermal waters has the certain extent water power relation between the south of the XianYang Weihe River and Xi'an. The main hydrochemistry ingredient spatial distribution evolution of geothermal waters in the research area is confirmed that hydrochemistry ingredient of geothermal water assumes the north to south of the belt-shaped distribution rule, agreement in main structure (the north shore of Weihe River break), the geothermal waters about the north of the Xianyang Weihe River is Cl-Na, the south of the Xianyang Weihe River is HCO_3 - Na. The research area's isotope, the hydrochemistry, the research results of the master control structure is prompted that the geothermal waters of Xianyang mainly comes from the northwest direction. The research of the isotopes, hydrochemistry distribution evolution rules about three section plane in the northwest direction, has been provided the evidence about suppling environmental isotope in Xianyang, confirmed that the geothermal waters of Xianyang is supplied by the mospheric water before the brand-new world in the north of the Weihe Basin, it is not possible to exist "the mantle material recharging from the depth and hot circulatory system".
引文
[1] Ian D.Clark, Peter Fritz. Environmental Isotopes in Hydrogeololgy [M]. New York: Lewis Publishers.1997:208-225.
    [2] Clark, I.D., Fritz, P., Michel, F.A. and Souther. J.G., 1982. Isotope hydrogeology and geothermometry of the Mount Meager geothermal area[J]. Canadian Journal of Earth Sciences, 19:1454-1473.
    [3] Clark, I.D., Fritz, P., Quinn, O.P., Rippon, P., Nash H and bin Ghalib al Said B., 1987. Modern and fossil groundwater in an arid environment, A look at the hydrogeology of Southern Oman. Use of Stable Isotopes in Water Resources Development[J], IAEA Symposium.299, March 1987, Vienna: 167-168.
    [4] Fritz, P., Chlark, I.D., Fontes, J.-Ch., Whiticar, M.J. and Faber, E., 1992. Deuterium and ~(13)C evidence for low temperature production of hydrogen and methane in a highly alkaline groundwater environment in Oman. In: Y. Kharaka and A.S., Maest (Eds.) proceedings of the 7~(th) International Symposium on Water-Rock Interaction, [J] July 1992. Park City, Utah, Balkema:793-796.
    [5] Giggenbach W F. The Use of Gas Chemistry in Delineating the Origin of Fluids Discharged Over the Taupo Volcanic Zone[J], In Proceedings of 5th International Volcanic Congress,Auck land P (s. n.) K,1986,47-50.
    [6] Carrillo-Rivera, J.J., Clark, I.D. and Fritz, P., 1992. Investigation recharge of shallow and paleo-groundwaters in the Villa de Reyes basin[J], SLP, Mexico with environmental isotopes. Applied Hydrogeology, 4:35-48.
    [7] 咸阳市地热资源管理办公室,陕西省咸阳市区地热资源详查报告[R],咸阳市国土资源局,2007.04
    [8] Bajjali, W., Clark, I.D. and Fritz, p., 1997. The artesian thermal groundwaters of northern Jordan: insights to their recharge history and age[J]. Journal of Hydrology, 187:355-382
    [9] Barker, J.F. and Fritz, P., 1981b. The occurrence and origin of methane in some groundwater flow systems. Canadian Journal of Earth Sciences, 18:1802-1816
    [10] Dakin, R.A., Farvolden, R.N., Cherry, J.A. and Fritz, P., 1983. Origin of dissolved solids in groundwaters of Mayne Island, British Columbia[J], Canada. Journal of Hydrology,63:233-270.
    [11] Frage, S.K. and Fritz, P., 1987. Geochemical trends for groundwaters from the Canadian Shield. In: P. Fritz and S. Frape (Eds.) Saline Water and Gases in Crytalline Rocks. Geological Association of Canada, Speical Paper 33:19-38.
    [12] Fritz, P. and Fontes, J.-Ch. (Eds.), 1980. Handbook of Environmental Isotope Geochemistry, Vol. Ⅰ, The Terrestrial Environment. [J], A. Elsevier, Amsterdam, The Netherlands, 545 p.
    [13] Fritz, P. and Reardon, E.J., 1979. Isotopic and chemical characteristics of mine water in the Sudbury area. AECL Technial Report 35, Atomic Energy of Canada Limited[J], Chalk River, Ontario, Canada, 37p.
    [14] Fritz, P., Basharmal, G.M., Drimmie, R.J., Ibsen, J. and Qureshi, R.M., 1989. Oxygen isotope exchange between sulphate and water during bacterical reduction of sulphnate[J]. Chemical Geology (Isotope Geoscience Section), 79:99-105.
    [15] Truesdell, A.H. and Hulston, J.R., 1980. Isotopic evidence of environments of geothermal systems, Chapter5. In: P. Fritz and J.-Ch. Fontes (Eds.), Handbook of Environmental Isotope Geochemistry, Vol. 1, The Terrestrial Environment., A. Elsevier, Amsterdam, The Netherlands: 179-226.
    [16]马致远,范基娇,苏艳.关中南部地下热水氢氧同位素组成的水文地质意义[J].地球科学与环境学报,2006.1,V28(1):41-47.
    [17]马致远.环境氘在非泉域隐伏岩溶地下水年龄及储水量计算中的应用[J].西北地质,1997.V18(3):70-72.
    [18]马致远,范基娇,牛光亮.关中地区地下热水的分类[J],煤田地质与勘探,2005(5):54-57
    [19]马致远.环境同位素方法在西北岩溶地下水研究中的应用[J],地质论评,2004,V31(3):78-83
    [20]马致远,侯光才.环境同位素技术在区域地下水资源补给及可更新中的应用[J],工程勘察,2005,V21(5):21-24.
    [21]马致远,牛光亮.隐伏岩溶水循环模式及可更新性的环境同位素研究[J],地质通报,2006,V7(6):756-762
    [22]马致远,高文义,郭建清.用天然氚确定隐伏岩溶水滞留时间及含水层系数[J],煤田地质与勘探,1997.8,V13(5):71-74
    [23]Zhiyuan Ma, Yan Su, Fang Liu,Wendi Wu, Feng Li, Genxu Mu. Isotope Constraints on Rock-Water Reaction of Geothermal Water in Guanzhong Basin, Shaanxi, China[J]. Proceeding of international water-rock reaction 2007, Taylor and Francis group, London, ISBN 978-0-41545136-9,:763-766
    [24]Zhiyuan Ma, Yinkang Zhou, Matthias Hinderer. Environmental Isotope Study on Recharge and groundwater residence time in a Covered Ordovician Carbonate Rock[J], The proceedings of Tenth Multidisciplinary Conference on Sinkholes and the Engineering and Environmental Impacts of Karst, U.S.A 2005.9:56-60
    [25]马致远,钱会,苏艳.关中盆地南部含水层之间相互关系的环境同位素水文地球化学证据[J], 地球科学与环境学报,2006,V(3);69-75.
    [26]马致远,钱会,范基娇.陕西关中地下热水环境同位素研究[J],中国矿业大学学报,2006.2,V(1):45-49.
    [27]Zhiyuan Ma. Estmating Hydrogeological Parameters In Covered Carbonate Rocks Using a Discrete-State Compartment Model and Environmental[J], Journal Of China University Of Minging and Technology, June, 2002. V20(3):123-127
    [28]王东生,王经兰.中国地下热水的基本类型和成因特征[J].第四纪地质,1996,V14(02),.76-79
    [29]秦大军,庞忠和,Jeffrey V.TURNER.西安地区地热水和渭北岩溶水同位素特征及相互关系[J],岩石学报,2005(5).34.39
    [30]Zhonghe Pang, Oxygen Shift as an Indicator of Water-Rock-Gas Interactions in Low Temperature Geothermal Systems in Sedimentary Basins[J], Proceeding of international water-rock reaction 2007 Taylor and Francis group, London, ISBN : 978-0-41545136-9 453-457
    [31]王基华,林元武,刘成龙.张家口南部地区温泉形成的氢氧稳定同位素及气体组成证据[J], 水文地质工程地质.2000,V25(2):30-33.
    [32]晁念英,王佩仪,刘存富.河北平原地下水氘过量参数特征[J].中国岩溶,2004,V23(4):335-338.
    [33]尹观,倪师军.地下水氘过量参数的演化[J].矿物岩石地球化学通报,2001,V20(4):409-411.
    [34]尹观,倪师军,张其春.氘过量参数及其水文地质学意义[J].成都理工大学学报,2001,V7(3):251-254.
    [35]王茜,尹观,范晓.四川牟尼沟珍珠泉和翡翠泉的同位素组成及氘过量 参数研究[J].矿物岩石地球化学通报,2001,V20(4):402-405.
    [36] 陶书华.西安附近地下热水的形成[J],水文地质工程地质,1999.5,V3(2):134-137
    [37] Tao Shuhua. The source of replenishment of geothermal water around Xi'An Science in China (Series E) August 2001,Vol 44 :320-324
    [38] 王润三,薛华峰.西安-咸阳地热田异常地层压力初步研究[J],西北大学学报,1999 V7(4):333-337.
    [39] 彭建兵等,渭河盆地活动断裂与地质灾害[M],西北大学出版社,1992.12
    [40] 陕西省关中盆地地热资源调查评价[R], 陕西省环境监测总站,2008.9
    [41] 马致远,余娟,李清.关中盆地地下热水环境同位素分布特征及其水文地质意义,地球科学环境学报,2008.6,396-401
    [42] 马致远,钱会.环境同位素地下水文学[M].陕西科技出版社,2004.10.
    [43] 万军伟,刘存富,晁念英.同位素水文学理论与实践[M].中国地质大学出版社,2003.10.
    [44] 钱会,马致远.水文地球化学[M].地质出版社,2005.10.
    [45] 苏艳,马致远,刘芳.西安咸阳地下热水氘过量研究,煤田地质与勘探,2007.1,V35(3):39-42
    [46] Juan Yu, Zhi-yuan Ma, Zhao-wei Wang, Oxygen and hydrogen isotope exchange of geopressured thermal water in the central Guanzhong basin[J]. Mining Science and Technology, 2009.1, V19(1):(115-119)
    [47] 咸阳市地质环境监测站,咸阳市区地下热水动态监测报告[R],咸阳市国土资源局,2005.10

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700