用户名: 密码: 验证码:
虉草遗传连锁图谱构建与种质资源评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
虉草(Phalaris arundinacea L.)作为一种多年生冷季型禾草,以其丰富的地上生物量,高木质纤维素含量和高燃烧值等优势跻身草本能源植物之列。近年来,育种工作者们开始以培育具有良好能源品质性状的目标开展着虉草的育种工作。由于虉草遗传育种工具,例如遗传图谱等的缺乏,以及对现有虉草种质资源能源品质性状了解的欠缺,本研究从构建虉草遗传连锁图谱和虉草种质资源能源品质性状的分析两部分着手,从而协助推进虉草能源植物新品种的育种工作。
     本研究第一部分,采用木质素含量有显著差异的虉草双亲和阿魏酸含量有显著差异且高度杂合的双亲,采用“双拟测交”法构建2个作图群体。来自高羊茅和黑麦草的EST-SSR标记、TRAP标记和AFLP标记用于构建虉草遗传连锁图谱。具体结果如下:
     1)群体5145中,父本(RC-45)遗传连锁图中共包含有20个连锁群,65个标记共覆盖基因组长度为675.16cM,平均标记密度为10.55cM,基因组估计长度为1286.41cM,图谱覆盖率为52.5%。母本(RC-51)遗传连锁图谱由20个连锁群构成,69个标记共覆盖基因组长度为711.26cM,平均标记密度为10.46cM,基因组估计长度为1226.57cM,图谱覆盖率为58.0%。
     2)群体3242中,父本(RC-42)连锁图谱所构建的13个连锁群,75个标记共覆盖基因组长度为421.21cM,平均标记密度为5.69cM。母本(RC-32)连锁图谱所构建的16个连锁群,75个标记共覆盖基因组长度为661.76cM,平均标记密度为8.94cM。
     本研究第二部分,针对虉草5个能源品质性状(酸性洗涤纤维[ADF]、中性洗涤纤维[NDF]、酸性洗涤木质素[ADL]、灰分和热值)建立NIRS定标方程,并对来自美国的8个虉草品种和来自6个州的72个虉草材料的5个能源品质性状进行分析,研究结果如下:
     1)通过对不同种质材料在两地、两年和两个生长期的大量样本分析获得了虉草ADF、 NDF、ADL、灰分和热值的NIRS定标方程,可以运用到虉草能源品质性状评价及标准制定中。
     2)虉草的5个能源品质性状分别于2006和2007年,在美国康奈尔州伊萨卡市(ITH)和威斯康辛州阿灵顿市(ARL)表现出一定程度的差异。已育成的部分虉草品种和部分材料材料具备良好的能源品质。对基因型和环境互作效应的研究发现,5个性状均不受环境影响,ADF、 NDF、ADL和热值受基因型调控,而灰分含量不会受到基因型的调控。
     3)ADF与NDF、ADF与ADL、NDF与ADL、NDF与热值之间分别呈现显著正相关关系,而灰分与ADL、灰分与热值之间则呈现显著性负相关关系。五个能源品质性状在2006年与2007年间呈现了显著性正相关关系,在ITH和ARL两地之间也呈现了显著性正相关关系。
     4)"Marathon"和“RC-135”可作为生产液态燃料虉草品种选育的基础材料:"Chieft、 Palaton、RC-139、RC-140、RC-145"(热值高)和" RC-141、RC-143、RC-181、RC-185、 RC-193、RC-195"(木质素含量高且灰分含量低)可作为生产固态燃料虉草品种选育的基础材料。
Reed canarygrass is a perennial cool-season grass. Due to its high yield, high lignocelluloses content and high calorific value, reed canarygrass became to one of the highest potential bioenergy plants. Recently, breeders worked on breeding reed canarygrass cultivars with good bioenergy quality. The reed canarygrass breeding work moved slowly, since lacking of the genetic tools, such as genetic linkage maps, and understanding less about the bioenergy traits of reed canarygrass gerplasm. To assist the breeding work of reed canarygrass, this study focused on constructing genetic linkage maps of reed canarygrass and analyzing the bioenergy traits of its gerplasm.
     In the first study, the two mapping populations were both first generation (F1) which derived from four phenotypically (two for lignin content, another two for ferulate content) divergent, highly heterozygous reed canarygrass phenotypes by "two-way pseudo cross" strategy. The EST-SSR markers from tall fescue and ryegrass, TRAP markers and AFLP markers were used for constructing the genetic linkage maps. The information of the genetic linkage maps as follows,
     1) In population5145, the paternal (RC-45) genetic map contained65markers over20linkage groups (LGs). The total map distance of the paternal map was675.16cM, and the mean map distance between markers was10.55cM. The estimated genome size was1286.41cM, and the coverage of the map was52.5%. The maternal (RC-51) genetic map was composed of69markers over20linkage groups (LGs). The total map distance of the male map was711.26cM, and the mean map distance between markers was10.46cM. The estimated genome size was1226.57cM, and the coverage of the map was58.0%.
     2) In population5145, the paternal (RC-42) genetic map contained75markers over13linkage groups (LGs). The total map distance of the paternal map was421.21cM, and the mean map distance between markers was5.69cM. The maternal (RC-32) genetic map was composed of75markers over16linkage groups (LGs). The total map distance of the male map was661.76cM, and the mean map distance between markers was8.94cM.
     In the second study, the calibration equations of5bioenergy traits (ADF, NDF, ADL, ash and calorific value) were established, which were used to evaluate the bioenergy traits of8reed canarygrass cultivars and72reed canarygrass accessions were collected from6states of U.S. The study results as follows.
     1) The reed canarygrass samples collected from two locations, two years and two stages were used to establish the calibration equations of ADF, NDF, ADL, ash and calorific value. The calibration equations can be used for evaluating bioenergy traits of reed canarygrass and setting the standard of the bioenergy traits.
     2) The5phenotypic traits of reed canarygrass showed the variation over two years (2006and2007) in Ithaca, NY, USA (ITH) and Arlington, WI, USA (ARL). Although the cultivars had shown the good bioenergy quality, some of the accessions also had potential to become high quality biomass. The genotype and environment interaction showed that the phenotypic traits were not affected by environment, and the genotype affected the bioenergy traits except ash.
     3) ADF and NDF, ADF and ADL, NDF and ADL, NDF and calorific value were all positively correlated with each other. The negative correlation was between ash and ADL, ash and calorific value. The5bioenergy traits were all positively correlated between2006and2007. Also, the5bioenergy traits were all positively correlated between ITH and ARL.
     4)"Marathon" and "RC-135" can be used as the breeding materials for liquid bioenergy production."Chieft, Palaton, RC-139, RC-140, RC-145"(high calorific value) and "RC-141, RC-143, RC-181, RC-185, RC-193, RC-195"(high lignin content and low ash content) can be used as the breeding materials for solid bioenergy production.
引文
方程,韩建国.牧草遗传图谱构建研究概述.草地学报.2006.18(5):703707.
    耿以礼.中国主要禾本科植物种属检索表.科学出版社.北京.1957.111.
    郭本兆.中国植物志,第9(3)卷.科学出版社.北京.1987.175.
    黄琳凯.柳枝稷种质资源评价、分解标记开发及遗传连锁图谱构建.四川农业大学.2010.
    刘建超,褚群,蔡红光等.玉米SSR连锁图谱构建及叶面积的QTL定位.遗传.2010.32(6):625-631.
    卢杰,吕媛媛,李杰勤等.高丹草SSR引物设计及分子遗传框架图谱构建.中国草地学报.2009.31(2):28-33.
    吕澈妍,周博如,王雷等.用AFLP标记构建白桦遗传连锁图谱.植物生理学通讯,2009.45(8):775-780.
    苏晓华,张绮纹,郑先武等.美洲黑杨(Popus delloids Marsh)×青杨(P. cathayana Rehd.)分子连锁图谱的构建.林业科学.1998.346(6):29-37.
    辛业芸.分子标记技术在植物学研究中的应用.湖南农业科学.2002.(4):9-12.
    尹佟明,黄敏仁.AFLP分子标记及其在植物育种上的应用.生物工程进展.1997.17(1):6-12.
    张永亮,骆秀梅.荫草的研究进展.草地学报.2008.16(6):659666.
    Adler, PR, Sanderson, MA, Boateng, AA, et al. Biomass yield and biofuel quality of switchgrass harvested in fall or spring. Agron. J.2006.98(6):1518.
    Agblevor, FA, Besler, S, and Wiselogel, AE. Fast pyrolysis of stored biomass feedstocks. Energy Fuels 1995.9(4):635-640.
    Agblevor, FA, Rejai, B, Evans, RJ, et al. Pyrolytic analysis and catalytic upgrading of lignocellulosic materials by molecular beam mass spectrometry. In In Klass, D.L. (ed.). Energy from biomass and wastes ⅩⅥ. Elsevier Applied Sci. Pub, Chicago.1992.
    Aim, V, Fang, C, Busso, CS, et al. A linkage map of meadow fescue (Festuca pratensis Huds.) and comparative mapping with other Poaceae species. Theor. Appl. Genet.2003.108(1):25-40.
    Alway, FJ. Early trials and use of reed canary grass as a forage plant. Agron. J.1931.23(1):64.
    Ambastha, HNS. Cytological investigations in phalaris. Genetica 1957.28(1):64-98.
    Anderson. Taxonomy and distribution of the genus Phalaris. Iowa State J. Sci.1961.36:1-96.
    Anderson, WF, and Akin, DE. Structural and chemical properties of grass lignocelluloses related to conversion for biofuels. J. Ind. Microbiol. Biotechnol.2008.35(5):355-366.
    Anderson, IC, Buxton, DR, and Lawlor, PA. Yield and chemical composition of perennial grasses and alfalfa grown for maximum biomass. Proc. Forage Grassl. Conf.1991.128-132.
    Arrigo, N, Tuszynski, J W, Ehrich, D, et al. Evaluating the impact of scoring parameters on the structure of intra-specific genetic variation using RawGeno, an R package for automating AFLP scoring. BMC Bioinformatics 2009.10(1):33.
    Ashikari, M, Sakakibara, H, Lin, S, et al. Cytokinin oxidase regulates rice grain production. Science 2005.309(5735):741-745.
    Atienza, G, Satovic, Z, Petersen, K, et al. Preliminary genetic linkage map of Miscanthus sinensis with RAPD markers. Theor. Appl. Genet.2002.105(6-7):946-952.
    Barcaccia, G, Albertini, E, Tavoletti, S, et al. AFLP fingerprinting in Medicago spp.:Its development and application in linkage mapping. Plant Breed.1999.118(4):335-340.
    Baxter, LL, Miles, TR, Miles Jr., TR, et al. The behavior of inorganic material in biomass-fired power boilers:field and laboratory experiences. Fuel Process. Technol.1998.54(1-3):47-78.
    Bennett, OL, and Doss, BD. Effect of soil moisture level on root distribution of cool-season forage species. Agron. J.1960.52:204-207.
    Bert, PF, Charmet, G, Sourdille, P, et al. A high-density molecular map for ryegrass (Lolium perenne) using AFLP markers. Theor. Appl. Genet.1999.99(3-4):445-452.
    Bethel, CM, Sciara, EB, Estill, JC, et al. A framework linkage map of bermudagrass (Cynodon dactylon X transvaalensis) based on single-dose restriction fragments. Theor. Appl. Genet.2006.112(4): 727-737.
    Bittman, S. Reed Canarygrass:a Production Guide. Agriculture Canada, Information Services.1980.
    Blakeslee, LH, Harrison, CM, and Davis, JF. Ewe and lamb gains on bromegrass and reed canarygrass pasture. Mich. Agric. Exp. Stn. Q. Bull.1956.39:230-235.
    Blander, M. The inorganic chemistry of the combustion of aspen wood with added sulfur. Biomass Bioenergy 1997.12(4):289-293.
    Blears, MJ, Grandis, SAD, Lee, H, et al. Amplified fragment length polymorphism (AFLP):a review of the procedure and its applications. J. Ind. Microbiol. Biotechnol.1998.21(3):99-114.
    Botstein, D, White, RL, Skolnick, M, et al. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am. J. Hum. Genet.1980.32(3):314-331.
    Brummer, EC, Bouton, JH, and Kochert, G. Development of an RFLP map in diploid alfalfa. Theor. Appl. Genet.1993.86(2-3):329-332.
    Budak, H, Shearman, RC, Parmaksiz,I, et al. Molecular characterization of Buffalograss germplasm using sequence-related amplified polymorphism markers. Theor. Appl. Genet.2004.108(2):328-334.
    Burvall, J. Influence of harvest time and soil type on fuel quality in reed canary grass(Phalaris arundinacea L.). Biomass Bioenergy 1997.12(3):149-154.
    Byers, RA, and Zeiders, KE. Effect of spray irrigation with municipal sewage effluent on the cereal leaf beetle and the frit fly infesting reed canarygrass. J. Environ. Qual.1976.5(2):205.
    Cai, H, Inoue, M, Yuyama, N, et al. An AFLP-based linkage map of zoysiagrass(Zoysia japonica). Plant Breed.2004.123(6):543-548.
    Cai, H, Inoue, M, Yuyama, N, et al. Isolation, characterization and mapping of simple sequence repeat markers in zoysiagrass(Zoysia spp.). Theor. Appl. Genet.2005.112(1):158-166.
    Carlson, IT, Oram, RN, and Surprenant, J. Reed canarygrass and other Phalaris species. In Moser, L.E., Buxton, D.R. and M.D. Casler eds. Cool-Season Forage Grasses. Madison.1996.
    Casler, MD, Cherney, JH, and Brummer, EC. Biomass yield of naturalized populations and cultivars of reed canary grass. BioEnergy Res.2009a.2(3):165-173.
    Casler, MD, Phillips, MM, and Krohn, AL. DNA polymorphisms reveal geographic races of reed canarygrass. Crop Sci.2009b.49(6):2139.
    Cassida, KA, Muir, JP, Hussey, MA, et al. Biomass yield and stand characteristics of switchgrass in south central U.S. environments. Crop Sci.2005.45:673-681.
    Castiglioni, P, Ajmone-Marsan, P, van Wijk, R, et al. AFLP markers in a molecular linkage map of maize:codominant scoring and linkage group ditsribution. Theor. Appl. Genet.1999.99(3-4): 425-431.
    Castiglioni, P, Pozzi, C, Heun, M, et al. An AFLP-based procedure for the efficient mapping of mutations and DNA probes in barley. Genetics.1998.149(4):2039-2056.
    Chakraborty, N, Bae, J, Warnke, S, et al. Linkage map construction in allotetraploid creeping bentgrass (Agrostis stolonifera L.). Theor. Appl. Genet.2005.111(4):795-803.
    Chakravarti, A, Lasher, LK, and Reefer, JE. A maximum likelihood method for estimating genome length using genetic linkage data. Genetics.1991.128(1):175-182.
    Chandra, RP, Bura, R, Mabee, WE, et al. Substrate pretreatment:the key to effective enzymatic hydrolysis of lignocellulosics Adv. Biochem. Eng. Biotechnol.2007.108:67-93.
    Cheng, JJ. Biological process for ethanol production. In Biomass to renewable energy processes. In Cheng J. (ed.). CRC press, Boca Raton, FL.2010.
    Cherney, JH, Johnson, KD, Volenec, JJ, et al. Biomass potential of selected grass and legume crops. Energy Sources 1991.13(3):283-292.
    Choi, H-K, Kim, D, Uhm, T, et al. A sequence-based genetic map of Medicago truncatula and comparison of marker colinearity with M. sativa. Genetics 2004.166(3):1463-1502.
    Clarke, AC, and Meudt, HM. AFLP protocol.2005.
    Collard, BCY, Jahufer MZZ, Brouwer JB, et al. An introduction to markers, quantitative trait loci (QTL) mapping and markerassisted selection for crop improvement:The basic concepts. Euphytica. 2005.142:169-196.
    Cregan, PB, Jarvik, T, Bush, AL, et al. An integrated genetic linkage map of the soybean genome. Crop Pasture Sci.1999.36:1464-1490.
    Dale, BE, Leong, CK, Pham, TK, et al. Hydrolysis of lignocellulosics at low enzyme levels: Application of the AFEX process. Bioresour. Technol.1996.56(1):111-116.
    Dean, JR, and Clark, KW. Nitrogen fertilization of reed canarygrass and its effects on production and mineral element content. Can. J. Plant Sci.1972.52(3):325-331.
    Devos, KM, and Gale, MD. The use of random amplified polymorphic DNA markers in wheat. Theor. Appl. Genet.1992.84(5-6):567-572.
    Deynze, AEV, Sorrells, ME, Park, WD, et al. Anchor probes for comparative mapping of grass genera. Theor. Appl. Genet.1998.97(3):356-369.
    Dien, BS, Jung, H-JG, Vogel, KP, et al. Chemical composition and response to dilute-acid pretreatment and enzymatic saccharification of alfalfa, reed canarygrass, and switchgrass. Biomass Bioenergy 2006.30(10):880-891.
    Echt, CS, Kidwell, KK, Knapp, SJ, et al. Linkage mapping in diploid alfalfa (Medicago sativa). Genome 1994.37(1):61-71.
    Esposito, MA, Martin, EA, Cravero, VP, et al. Characterization of pea accessions by SRAP's markers. Sci. Hortic.2007.113(4):329-335.
    Eujayl, I, Baum, M, Powell, W, et al. A genetic linkage map of lentil(Lens sp.) based on RAPD and AFLP markers using recombinant inbred lines. Theor. Appl. Genet.1998.97(1-2):83-89.
    Faris, JD, Laddomada, B, and Gill, BS. Molecular mapping of segregation distortion loci in aegilops tauschii. Genetics 1998.149(1):319-327.
    Ferriol, M, Pico, B, de Cordova, PF, et al Molecular diversity of a germplasm collection of squash (Cucurbita moschata) determined by SRAP and AFLP markers. Crop Sci.2004.
    Fjellstrom, RG, Steiner, JJ, and Beuselinck, PR. Tetrasomic Linkage Mapping of RFLP, PCR, and Isozyme Loci in L. Crop Sci.2003.43(3):1006.
    Focus, RE. More Bioenergy Than Oil in Sweden.2010.Available at http://www.geosynthetica.net/more-bioenergy-than-oil-in-sweden/(verified 7 April 2014).
    Foolad, MR, Arulsekar, S, Becerra, V, et al. A genetic map of Prunus based on an interspecific cross between peach and almond. Theor. Appl. Genet.1995.91(2):262-269.
    Fratzl, P, and Weinkamer, R. Nature's hierarchical materials. Prog. Mater. Sci.2007.52(8):1263-1334.
    Futuyma, D, and Antonovics, J. Oxford Surveys in Evolutionary Biology. Oxford University Press, USA.1992.
    Gale, MD, and Devos, KM. Plant comparative genetics after 10 years. Science 1998.282(5389):656-659.
    Gibson, L. Biomass sweet spot. Biomass Power Therm.2010. (12):34-39.
    Giggey, MD, Crites, RW, and Brantner, KA. Spray irrigation of treated septage on reed canarygrass. J. Water Pollut. Control Fed.1989.61:333-342.
    Goldstein, IS. Organics Chemicals from Biomass. CRC Press, Boca Raton, Forida, USA.1981.
    Grable, AR, Willhite, FM, and McCuistion, WL. Hay production and nutrient uptake at high altitudes in Colorado with different grasses in conjunction with Alsike clover or nitrogen fertilizer. Agron. J. 1965.57(6):543.
    Graham, J, Smith, K, MacKenzie, K, et al. The construction of a genetic linkage map of red raspberry (Rubus idaeus subsp. idaeus) based on AFLPs, genomic-SSR and EST-SSR markers. Theor. Appl. Genet.2004.109(4):740-749.
    Grattapaglia, D, and Sederoff, R. Genetic linkage maps of Eucalyptus grandis and Eucalyptus urophylla using a pseudo-testcross:mapping strategy and RAPD markers. Genetics.1994.137(4):1121-1137.
    Grodzicker, T, Williams, J, Sharp, P, et al. Physical mapping of temperature-sensitive mutations of Adenoviruses. Cold Spring Harb. Symp. Quant. Biol.1974.39:439-446.
    Gupta, RB, and Demirbas, A. Biomass Availability in the world. In In Gupta, R.B. and A. Demirbas (ed.). Gasoline, diesel and ethanol biofuels from grasses and plants. Cambridge University press, New York, NY.2010.
    Gupta, PK, Varshney, RK, Sharma, PC, et al. Molecular markers and their applications in wheat breeding. Plant Breed.1999.118(5):369-390.
    Hamelinck, CN, Hooijdonk, G van, and Faaij, AP. Ethanol from lignocellulosic biomass:techno-economic performance in short-, middle-and long-term. Biomass Bioenergy 2005.28(4):384-410.
    Hanley, S, Barker, A, Van Ooijen, W, et al. A genetic linkage map of willow (Salix viminalis) based on AFLP and microsatellite markers. Theor. Appl. Genet.2002.105(6-7):1087-1096.
    Harris-Shultz, KR, Schwartz, BM, Hanna, WW, et al. Development, linkage mapping, and use of microsatellites in bermudagrass. J. Am. Soc. Hortic. Sci.2010.135(6):511-520.
    Harushima, Y, Yano, M, Shomura, A, et al. A high-density rice genetic linkage map with 2275 markers using a single F2 population. Genetics 1998.148(1):479-494.
    Hayward, MD, Forster, JW, Jones, JG, et al. Genetic analysis of Lolium. I. Identification of linkage groups and the establishment of a genetic map. Plant Breed.1998.117(5):451-455.
    Heinimo, J, Pakarinen, V, Ojanen, V, et al. International bioenergy trade-scenario study on international biomass market in 2020.2007.Available at http://www.doria.fi/handle/10024/31075 (verified 7 April 2014).
    Hemmat, M, Weeden, NF, Manganaris, AG, et al. Molecular marker linkage map for apple. J. Hered. 1994.85(1):4-11.
    Hillring, B. World trade in forest products and wood fuel. Biomass Bioenergy 2006.30(10):815-825.
    Hirata, M, Cai, H, Inoue, M, et al. Development of simple sequence repeat (SSR) markers and construction of an SSR-based linkage map in Italian ryegrass (Lolium multiflorum Lam.). Theor. Appl. Genet.2006.113(2):270-279.
    Hovin, AW, Marten, GC, and Stucker, RE. Cell wall constituents of reed canarygrass:genetic variability and relationship to digestibility and yield. Crop Sci.1976.16(4):575.
    Hu, J, Yue, B, and Vick, BA. Integration of TRAP markers onto a sunflower SSR marker linkage map constructed from 92 recombinant inbred lines. Helia 2007.30(46):25-36.
    Humphreys, MW, Yadav, RS, Cairns, AJ, et al. A changing climate for grassland research. New Phytol. 2006.169(1):9-26.
    Ihaka, R, and Gentleman, R. R:A language for data analysis and graphics. J Comput Graph Stat 1996.5: 299-314.
    Inoue, M, Gao, Z, Hirata, M, et al. Construction of a high-density linkage map of Italian ryegrass (Lolium multiflorum Lam) using restriction fragment length polymorphism, amplified fragment length polymorphism, and telomeric repeat associated sequence markers. Genome Natl. Res. Counc. Can.2004.47(1):57-65.
    Isobe, S, Klimenko, I, Ivashuta, S, et al. First RFLP linkage map of red clover(Trifolium pratense L.) based on cDNA probes and its transferability to other red clover germplasm. Theor. Appl. Genet. 2003.108(1):105-112.
    Isobe, S, Kolliker, R, Hisano, H, et al. Construction of a consensus linkage map for red clover (Trifolium pratense L.). BMC Plant Biol.2009.9:57.
    J. M. Kolkman, JDK. QTL Conferring Resistance and Avoidance to White Mold in Common Bean. Crop Sci.2003.43(2).
    Jackson, RC, and Hauber, DP. Polyploidy Vol.12 (1983, Hardcover).1983.
    Jakubowski, AR, Jackson, RD, Johnson, RC, et al. Genetic diversity and population structure of Eurasian populations of reed canarygrass:cytotypes, cultivars, and interspecific hybrids. Crop Pasture Sci.2011.62(11):982-991.
    Jiwen Yu, SY. High-density linkage map of cultivated allotetraploid cotton based on SSR, TRAP, SRAP and AFLP markers. J. Integr. Plant Biol.2007.49(5):716-724.
    Johnson, DK, Ashley, PA, Deutch, SP, et al. Compositional variability in herbaceous energy crops. In Portland, Oregon.1995.
    Johnson, JR, and Nichols, JT. Crude protein content of eleven grasses as affected by yearly variation, legume association, and fertilization. Agron. J.1969.61(1):65.
    Jones, ES, Hughes, LJ, Drayton, MC, et al. An SSR and AFLP molecular marker-based genetic map of white clover(Trifolium repens L.). Plant Sci.2003.165(3):531-539.
    Jones, ES, Mahoney, NL, Hayward, MD, et al. An enhanced molecular marker based genetic map of perennial ryegrass(Lolium perenne) reveals comparative relationships with other Poaceae genomes. Genome 2002.45(2):282-295.
    Julier, B, Flajoulot, S, Barre, P, et al. Construction of two genetic linkage maps in cultivated tetraploid alfalfa(Medicago sativa) using microsatellite and AFLP markers. BMC Plant Biol.2003.3(1):1-19.
    Jung, HJ. Analysis of forage fiber and cell walls in ruminant nutrition. J. Nutr.1997.127(5 Suppl): 810S-813S.
    Jung, HG, and Deetz, DA. Cell wall lignification and degradability. In In Jung, H.G. et al. (ed.). Forage cell wall structure and digestibility. ASA, CSSA, and SSSA, Madison, WI.1993.
    Jung, S, Main, D, Staton, M, et al. Synteny conservation between the Prunus genome and both the present and ancestral Arabidopsis genomes. BMC Genomics 2006.7:81.
    Kalo, P, Endre, G, Zimanyi, L, et al. Construction of an improved linkage map of diploid alfalfa (Medicago sativa). Theor. Appl. Genet.2000.100(5):641-657.
    Karkkainen, K, Koski, V, and Savolainen, O. Geographical variation in the inbreeding depression of scots pine. Evolution 1996.50(1):111.
    Keshwani, DR. Biomass chemistry. In In Cheng J. (ed.). Biomass to renewable energy processes. CRC press, Boca Raton, FL.2010.
    Kim, C, Zhang, D, Auckland, SA, et al. SSR-based genetic maps of Miscanthus sinensis and M. sacchariflorus, and their comparison to sorghum. Theor. Appl. Genet.2012.124(7):1325-1338.
    Kosambi, DD. The estimation o f map distances from recombination values. Ann Eugen 1944.12:172-175.
    Krueger, CR. Performance of bromegrass, orchardgrass and reed canarygrass grown at five nitrogen levels and with alfalfa. Research Division, College of Agricultural and Life Sciences, University of Wisconsin, Madison, WI.1970.
    Landstrom, S, Lomakka, L, and Andersson, S. Harvest in spring improves yield and quality of reed canary grass as a bioenergy crop. Biomass Bioenergy 1996.11(4):333-341.
    Lawrence, T, and Warder, FG. Evaluation of twenty grass populations as irrigated hay crops for southwestern Saskatchewan. Can. J. Plant Sci.1979.59(3):691-700.
    Lawrence, T, Warder, FG, and Ashford, R. Effect of stage and height of cutting on the crude protein content and crude protein yield of intermediate wheatgrass, bromegrass, and reed canarygrass. Can. J. Plant Sci.1971.51(1):41-48.
    Laxman, RS, and Lachke, AH. Bioethanol from lignocellulosic biomass. Part 1:Pretreatment of the substrates. In In Pandey, J., Rolin, A. (ed.). Handbook of plant-based biofuels. CRC Press, Boca. Raton, FL.2008.
    Lemus, R, Charles Brummer, E, Lee Burras, C, et al. Effects of nitrogen fertilization on biomass yield and quality in large fields of established switchgrass in southern Iowa, USA. Biomass Bioenergy 2008.32(12):1187-1194.
    Lewandowski, I, and Kicherer, A. Combustion quality of biomass:practical relevance and experiments to modify the biomass quality of Miscanthus × giganteus. Eur. J. Agron.1997.6(3-4):163-177.
    Lewandowski, I, Scurlock, JMO, Lindvall, E, et al. The development and current status of perennial rhizomatous grasses as energy crops in the US and Europe. Biomass Bioenergy 2003.25(4):335-361.
    Li, G, and Quiros, CF. Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction:its application to mapping and gene tagging in Brassica. Theor. Appl. Genet.2001.103(2-3):455-461.
    Li, M, Yuyama, N, Hirata, M, et al. Construction of a high-density SSR marker-based linkage map of zoysiagrass (Zoysia japonica Steud.). Euphytica 2009.170(3):327-338.
    Liu, BH. Statistical Genomics:Linkage, Mapping, and QTL Analysis. CRC Press.1997.
    Liu, L, Wu, Y, Wang, Y, et al. A high-density simple sequence repeat-based genetic linkage map of switchgrass. G3 Bethesda Md 2012.2(3):357-370.
    Lu, X, Yun, J, Mi, F, et al. Segregation based on the traits and molecular marker of near-isogenic line of Sorghum bicolor X Sorghum sudanenes. China Agric. Sci.2010.43(3):468-473.
    Lunde, CF, Mehlenbacher, SA, and Smith, DC. Segregation for resistance to Eastern Filbert Blight in progeny of 'Zimmerman' Hazelnut. J. Am. Soc. Hortic. Sci.2006.131(6):731-737.
    Luukkonen, P, Maloney, T, Rantanen, J, et al. Microcrystalline cellulose-water interaction—A novel approach using thermoporosimetry. Pharm. Res.2001.18(11):1562-1569.
    Lynch, M, and Walsh, B. Genetics and Analysis of Quantitative Traits. Sinauer Associates, Incorporated.1998.
    Malzer, GL, and Schoper, RP. Influence of time and rate of N application on yield and crude protein of three cool season grasses grown on organic soils. Can. J. Plant Sci.1984.64(2):319-328.
    Marten, GC. Reed canarygrass. p.207-216. In Heath, M.E., ed. Forages, the Science of Grassland Agriculture. Iowa State University Press, Ames, Iowa, U.S.A.1985.
    Marten, GC, Clapp, CE, and Larson, WE. Effects of municipal wastewater effluent and cutting management on persistence and yield of eight perennial forages. Agron. J.1979.71(4):650.
    Marten, GC, and Heath, ME. Reed canarygrass. p.263-276. In Heath, M.E., D.S. Metcalfe and R.F. Barnes (eds.). Forages, The Science of Grassland Agriculture Third Edition. The Iowa State University Press, USA.1973.
    Marten, GC, Jordan, RM, and Hovin, AW. Improved lamb performance associated with breeding for alkaloid reduction in reed canarygrass. Crop Sci.1981.21(2):295.
    McCouch, SR, Teytelman, L, Xu, Y, et al. Development and mapping of 2240 new SSR markers for rice (Oryza sativa L.) (supplement). DNA Res. Int. J. Rapid Publ. Rep. Genes Genomes 2002.9(6): 257-279.
    McElgunn, JD, and Lawrence, T. Salinity tolerance of altai wild ryegrass and other forage grasses. Can. J. Plant Sci.1973.53(2):303-307.
    McKendry, P. Energy production from biomass (part 1):overview of biomass. Bioresour. Technol. 2002.83(1):37-46.
    Mckenzie, RE. The ability of forage plants to survive early spring flooding. Sci Agric 1951.358-367.
    McLaughlin, SB, and Adams Kszos, L. Development of switchgrass (Panicum virgatum) as a bioenergy feedstock in the United States. Biomass Bioenergy 2005.28(6):515-535.
    McLaughlin, S, B, Samson, R, Bransby, D, et al. Evaluating physical, chemical, and energetic properties of perennial grasses as biofuels. In In Proc. Bioenergy 96. Nashville, TN.1996.
    McWilliam, J, and Neal-Smith, C. Tetraploid and hexaploid chromosome races of Phalaris arundinacea L. Aust. J. Agric. Res.1962.13(1):1-9.
    Merigliano, MF, and Lesica, P. The native status of reed canarygrass(Phalaris arundinacea L.) in the inland northwest, USA. Nat. Areas J.1998.18(3):223-230.
    Miles, TRJ, Baxter, LL, Jenkins, BM, et al. Alkali slagging problems with biomass fuels. In National Renewable Energy Laboratory, Golden, Colorado.1993.
    Miles, TR, Miles Jr, TR, Baxter, LL, et al. Boiler deposits from firing biomass fuels. Biomass Bioenergy 1996.10(2-3):125-138.
    Monti, A, Di Virgilio, N, and Venturi, G. Mineral composition and ash content of six major energy crops. Biomass Bioenergy 2008.32(3):216-223.
    Morgante, M, Hanafey, M, and Powell, W. Microsatellites are preferentially associated with nonrepetitive DNA in plant genomes. Nat. Genet.2002.30(2):194-200.
    Mott, IW, Larson, SR, Jones, TA, et al. A molecular genetic linkage map identifying the St and H subgenomes of Elymus (Poaceae:Triticeae) wheatgrass. Genome Natl. Res. Counc. Can.2011. 54(10):819-828.
    Mueller, and Wolfenbarger, AFLP genotyping and fingerprinting. Trends Ecol. Evol.1999.14(10): 389-394.
    Nikaido, A, Yoshimaru, H, Tsumura, Y, et al. Segregation distortion for AFLP markers in Cryptomeria japonica. Genes Genet. Syst.1999.74(2):55-59.
    Okada, M, Lanzatella, C, Saha, MC, et al. Complete switchgrass genetic maps reveal subgenome collinearity, preferential pairing and multilocus interactions. Genetics 2010.185(3):745-760.
    Van Ooijen, JW. Multipoint maximum likelihood mapping in a full-sib family of an outbreeding species. Genet. Res.2011.93(5):343-349.
    Ortiz, JPA, Pessino, SC, Bhat, V, et al. A genetic linkage map of diploid Paspalum notation. Crop Sci. 2001.41(3):823-830.
    Pahkala, K, Aalto, M, Isolahti, M, et al. Large-scale energy grass farming for power plants—A case study from Ostrobothnia, Finland. Biomass Bioenergy 2008.32(11):1009-1015.
    Parikka, M. Global biomass fuel resources. Biomass Bioenergy 2004.27(6):613-620.
    Partala, A, Mela, T, Esala, M, et al. Plant recovery of 15N-labelled nitrogen applied to reed canary grass grown for biomass. Nutr. Cycl. Agroecosystems 2001.61(3):273-281.
    Paterson, AH, Tanksley, SD, and Sorrels, ME. DNA markers in plant improvement. Adv. Agron.1991. 46:39-90.
    Perez, T, Albornoz, J, and Dominguez, A. An evaluation of RAPD fragment reproducibility and nature. Mol. Ecol.1998.7(10):1347-1357.
    Porceddu, A, Albertini, E, Barcaccia, G, et al. Linkage mapping in apomictic and sexual Kentucky bluegrass (Poa pratensis L.) genotypes using a two way pseudo-testcross strategy based on AFLP and SAMPL markers. Theor Appl Genet 2002.104(2-3):273-280.
    Postlethwait, JH, Johnson, SL, Midson, CN, et al. A genetic linkage map for the zebrafish. Science 1994.264(5159):699-703.
    Pradhan, AK, Gupta, V, Mukhopadhyay, A, et al. A high-density linkage map in Brassica juncea (Indian mustard) using AFLP and RFLP markers. Theor. Appl. Genet.2003.106(4):607-614.
    Qi, X, Stam, P, and Lindhout, P. Use of locus-specific AFLP markers to construct a high-density molecular map in barley. Theor. Appl. Genet.1998.96(3-4):376-384.
    Ramsay, L, Macaulay, M, Ivanissevich, S degli, et al. A simple sequence repeat-based linkage map of barley. Genetics 2000.156(4):1997-2005.
    Ribaut, JM, Banziger, M, Betran, J, et al. Use of molecular markers in plant breeding:Drought tolerance improvement in tropical maize. In In M. S. Kang (ed.). Quantitative genetics, genomics, and plant breeding. CAB International, Wallingford, UK.2002.
    Ridout, and Donini. Use of AFLP in cereals research. Trends Plant Sci.1999.4(2):76-79.
    Ritter, E, Gebhardt, C, and Salamini, F. Estimation of recombination frequencies and construction of RFLP linkage maps in plants from crosses between heterozygous parents. Genetics 1990.125(3): 645-654.
    Robert, CA, Workman, J Jr, Reeves, JB. Mear-infared spectroscopy in agriculture. (Ⅲ eds.). ASA, CSSA, and SSSA, Madison, WI, USA.2004.
    Roth, AM, Sample, DW, Ribic, CA, et al. Grassland bird response to harvesting switchgrass as a biomass energy crop. Biomass Bioenergy 2005.28(5):490-498.
    Rotter, D, Amundsen, K, Bonos, SA, et al. Molecular Genetic Linkage Map for Allotetraploid Colonial Bentgrass. Crop Sci.2009.49(5):1609.
    Ryswyk, AL van, Pringle, WL, and Neufeld, JH. Response of reed canarygrass grown on ten British Columbia organic soils to N, P, K and lime. Can. J. Soil Sci.1974.54(3):273-285.
    S B McLaughlin, DG de la TU. High-value renewable energy from prairie grasses. Environ. Sci. Amp Technol.2002.36(10):2122-9.
    Saha, MC, Mian, MAR, Eujayl, I, et al. Tall fescue EST-SSR markers with transferability across several grass species. Theor. Appl. Genet.2004.109(4):783-791.
    Saha, MC, Mian, R, Zwonitzer, JC, et al An SSR-and AFLP-based genetic linkage map of tall fescue (Festuca arundinacea Schreb.). Theor. Appl. Genet.2005.110(2):323-336.
    Sandal, N, Krusell, L, Radutoiu, S, et al. A genetic linkage map of the model legume Lotus japonicus and strategies for fast mapping of new loci. Genetics 2002.161(4):1673-1683.
    Sarath, G, Mitchell, R, Sattler, D, et al. Utilization of biomass and small grains for liquid fuels. J Ind Microb. Biotech 2008.35:343-354.
    Schmitt, MA, Russelle, MP, Randall, GW, et al. Effect of rate, timing, and placement of liquid Ddairy mManure on reed Ccanarygrass yield, jpa 1999.12(2):239.
    Schuelke, M. An economic method for the fluorescent labeling of PCR fragments. Nat. Biotechnol. 2000.18(2):233-234.
    Semagn, K, Bjornstad, A, and Ndjiondjop, MN. An overview of molecular marker methods for plants. Afr. J. Biotechnol.2006.5(25).
    Serba, DD. Buffalograss genetic linkage mapping, chinch bug resistance characteristics and turfgrass performance. ETD Collect. Univ. Neb.-Linc.2009.1-161.
    Serba, D, Wu, L, Daverdin, G, et al. Linkage maps of lowland and upland tetraploid switchgrass ecotypes. BioEnergy Res.2013.6(3):953-965.
    Shapouri, H, Duffield, JA, and Wang, MQ. The energy balance of corn ethanol:An update. Department of Agriculture, Economic Research Service.2002.
    Sheaffer, CC, Hovin, AW, and Rabas, DL. Yield and Composition of Orchardgrass, Tall Fescue, and Reed Canarygrass Mixtures 1. Agron. J.1981.73(1):101.
    Sheehan, H, Camobreco, V, Duffield, J, et al. Life cycle inventory of biodiesel and petroleum diesel for use in an Urban bus. National Renewable Energy Laboratory.1998.
    Sim, S, Chang, T, Curley, J, et al. Chromosomal rearrangements differentiating the ryegrass genome from the Triticeae, oat, and rice genomes using common heterologous RFLP probes. TAG Theor. Appl. Genet. Theor. Angew. Genet.2005.110(6):1011-1019.
    Sims, REH, Hastings, A, Schlamadinger, B, et al. Energy crops:current status and future prospects. Glob. Change Biol.2006.12(11):2054-2076.
    Smith, D, Bula, RJ, and Walgenbach, RP. Reed canarygrass. In In Forage management.5th ed. Kendall/Hunt Publishing Co., Dubuque, I A.1986.
    Smith, D, Rohweder, DA, and Jorgensen, NA. Chemical composition of three legume and four grass herbages harvested at early flower during three years. Agron. J.1974.66(6):817.
    Van Soest, PJ, Robertson, JB, and Lewis, BA. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci.1991.74(10):3583-3597.
    Song, Y, Liu, F, Zhu, Z, et al. Construction of a simple sequence repeat marker-based genetic linkage map in the autotetraploid forage grass Dactylis glomerata L. Grassl. Sci.2011.57(3):158-167.
    Starling, JL. Cytogenetic study of interspecific hybrids between Phalaris arundinacea and P. tuberosa. Crop Sci.1961.1(2):107.
    Staub, JE, Serquen, FC, and Gupta, M. Genetic markers, map construction, and their application in plant breeding. HortScience 1996.31(5):729-741.
    Stein, J, Pessino, SC, Martinez, EJ, et al. A genetic map of tetraploid Paspalum notatum Flugge (bahiagrass) based on single-dose molecular markers. Mol. Breed.2007.20(2):153-166.
    Studer, B, Asp, T, Frei, U, et al. Expressed sequence tag-derived microsatellite markers of perennial ryegrass (Lolium perenne L.). Mol. Breed.2008.21(4):533-548.
    Swaminathan, K, Chae, WB, Mitros, T, et al. A framework genetic map for Miscanthus sinensis from RNA seq-based markers shows recent tetraploidy. BMC Genomics 2012.13(1):142.
    Tahir, MHN, Casler, MD, Moore, KJ, et al. Biomass yield and quality of reed canarygrass under five harvest management systems for bioenergy production. BioEnergy Res.2011.4(2):111-119.
    Tavoletti, S, Veronesi, F, and Osborn, TC. RFLP linkage map of an alfalfa meiotic mutant based on an F, population. J. Hered.1996.87(2):167-170.
    Testolin, R, Huang, WG, Lain, O, et al. A kiwifruit (Actinidia spp.) linkage map based on microsatellites and integrated with AFLP markers. Theor. Appl. Genet.2001.103(1):30-36.
    Tillman, DA. Wood as an energy resource. Academic Press, New York.1978.
    Tyler, KD, Wang, G, Tyler, SD, et al. Factors affecting reliability and reproducibility of amplification-based DNA fingerprinting of representative bacterial pathogens. J. Clin. Microbiol.1997.35(2): 339-346.
    Uotila, P, and Pellinen, K. Chromosome Numbers in Vascular Plants from Finland. Finnish Botanical Publishing Board.1985.
    Vandemark, GJ, Ariss, JJ, Bauchan, GA, et al. Estimating genetic relationships among historical sources of alfalfa germplasm and selected cultivars with sequence related amplified polymorphisms. Euphytica 2006.152(1):9-16.
    Vermerris, W. Composition and biosynthesis of lignocellulosic biomass. In In Vermerris, W. (ed.). Genetic improvement of bioenergy crops. Springer Science and Business Media, New York, NY. 2008.
    Vetsch, JA, Randall, GW, and Russelle, GW. Reed canarygrass yield, crude protein, and nitrate N response to fertilizer N. J. Prod. Agric.1999.12:465-471.
    Virk, PS, Ford-Lloyd, BV, and Newbury*. Mapping AFLP markers associated with subspecific differentiation of Oryza sativa (rice) and an investigation of segregation distortion. Heredity 1998. 81(6):613-620.
    Vogel, KP, Dien, BS, Jung, HG et al. Quantifying actual and theoretical ethanol yields for switchgrass strans using NIRS analyses. Bioenerg. Res.2011.4:96110.
    Vogel, KP, and Pedersen, JF. Evaluation of a filter bag system for NDF, ADF, and IVDMD forage analysis.1999.
    Vos, P, Hogers, R, Bleeker, M, et al. AFLP:a new technique for DNA fingerprinting. Nucleic Acids Res.1995.23(21):4407-4414.
    Wang, Y-H, Thomas, CE, and Dean, RA. A genetic map of melon (Cucumis melo L.) based on amplified fragment length polymorphism (AFLP) markers. Theor. Appl. Genet.1997.95(5-6): 791-798.
    Warnke, SE, Barker, RE, Jung, G, et al. Genetic linkage mapping of an annual x perennial ryegrass population. Theor. Appl. Genet.2004.109(2):294-304.
    Weissinger, AK, and Allina, SM. An introduction to plant genomics. In In:R.F. Wilson, H. T. Stalker and E.C. Brummer eds. Legume Crop Genomics. AOCS Press, Champagn, IL.2004.
    Williams, M, Barnes, RF, and Cassady, JM. Characterization of alkaloids in palatable and unpalatable clones of Phalaris arundinacea L. Crop Sci.1971.11(2):213.
    Williams, JG, Kubelik, AR, Livak, KJ, et al DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res.1990.18(22):6531-6535.
    Wolf, DD. Yield reductions in reed canarygrass caused by frit Fly infestation. Crop Sci.1967.7(3):239.
    Woodman, HE, and Stewart, J. The mechanism of cellulose digestion in the ruminant organism. Ⅲ. The action of cellulose-splitting bacteria on the fibre of certain typical feeding stuffs. J. Agric. Sci. 1932.22(03):527-547.
    Wright, NA. Screening of herbaceous species for energy crops on wet soils in Ohio. p.263-277. In In Janick J. and Simon J.E. eds. Advances in New Crops. Imber Press, Portland, Oregon, USA.1988.
    Wrobel, C, Coulman, BE, and Smith, DL. The potential use of reed canarygrass(Phalaris arundinacea L.) as a biofuel crop. Acta Agric. Scand. Sect. B-Soil Plant Sci.2009.59(1):1-18.
    Wu, X, Larson, SR, Hu, Z, et al. Molecular genetic linkage maps for allotetraploid Leymus wildryes (Gramineae:Triticeae). Genome Natl. Res. Counc. Can. Genome Cons. Natl. Rech. Can.2003. 46(4):627-646.
    Xian-Liang, S, Xue-Zhen, S, and Tian-Zhen, Z. Segregation distortion and its effect on genetic mapping in plants. Chin. J. Agric. Biotechnol.2006.3(03):163-169.
    XiaoPeng Fu, GN. Genetic diversity of Dianthus accessions as assessed using two molecular marker systems (SRAPs and ISSRs) and morphological traits. Sci. Hortic.2008. (3):263-270.
    Xie, W, Robins, JG, and Bushman, BS. A genetic linkage map of tetraploid orchardgrass (Dactylis glomerata L.) and quantitative trait loci for heading date. Genome Natl. Res. Counc. Can.2012. 55(5):360-369.
    Xie, W, Zhang, X, Cai, H, et al. Genetic maps of SSR and SRAP markers in diploid orchardgrass (Dactylis glomerata L.) using the pseudo-testcross strategy. Genome Natl. Res. Counc. Can.2011. 54(3):212-221.
    Xu, WW, Sleper, DA, and Chao, S. Genome mapping of polyploid tall fescue (Festuca arundinacea Schreb.) with RFLP markers. Theor. Appl. Genet.1995.91(6-7):947-955.
    Xu, Y, Zhu, L, Xiao, J, et al. Chromosomal regions associated with segregation distortion of molecular markers in F2, backcross, doubled haploid, and recombinant inbred populations in rice (Oryza sativa L.). Mol. Gen. Genet. MGG 1997.253(5):535-545.
    Yaneshita, M, Kaneko, S, and Sasakuma, T. Allotetraploidy of Zoysia species with 2n=40 based on a RFLP genetic map. Theor. Appl. Genet.1999.98(5):751-756.
    Young, WP, Schupp, JM, Keim, P. DNA methylation and AFLP marker distribution in the soybean genome. Theor Appl Genet.1999.99:785-790
    Zeiders, KE. Stagonospora foliicola (Bres.) Bubak, a pathogen of reed canarygrass spray-irrigated with municipal effluent. Plant Dis. Report.1975.59:779-783.
    Zeiders, KE, and Sherwood, RT. Reaction of reed canarygrass genotypes to the leafspot pathogens Stagonospora foliicola and Helminthosporium catenarium. Crop Sci.1977.17(4):651.
    Zhang, T, Ge, M, Ye, X, et al. Construction of a linkage map for quantitative trait loci associated with economically important traits in creeping bentgrass (Agrostis stolonifera L.). Euphytica 2012. 188(3):347-360.
    Zhang, Y, Mian, MAR, and Bouton, JH. Recent molecular and genomic studies on stress tolerance of forage and turf grasses. Crop Sci.2006.46(2):497.
    Zhao, N, Yu, X, Jie, Q, et al. A genetic linkage map based on AFLP and SSR markers and mapping of QTL for dry-matter content in sweetpotato. Mol. Breed.2013.32(4):807-820.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700