用户名: 密码: 验证码:
电动汽车控制策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
汽车工业是当今世界最大、最重要的工业部门之一,也是全世界大多数发达国家的支柱产业。由于电动机是电动汽车动力系统的核心,因此电动汽车的控制技术也必然是电动汽车核心技术之一。本文根据电动汽车的运行特性要求,以天津某电动汽车公司的具体项目为基础,研制了基于九千瓦异步电动机的电动汽车控制器ACEVC72-6。在此基础上对控制系统的整体效率、转矩的动态特性做了大量的研究和仿真工作,着重讨论了电动汽车在低速和启动时的大转矩快速跟随特性、中低速的节能特性、高速的快速弱磁特性以及再生制动控制策略的应用。
     根据电动汽车的使用特性要求,研究分析了全转速范围下的驱动控制策略和再生制动的机理、特性和控制策略。通过研究异步电机的调速方案,确定了电动汽车的基本控制策略为转矩闭环控制。提出电动汽车在平坦路面上中低速运行区段控制励磁优化效率,并基于损耗模型效率最优控制策略建立了数学模型。根据电动汽车本身特性及行驶特点的要求,结合变结构和转差频率矢量控制理论,以转速为切换对象进一步提出具有三种独立控制体系的变结构控制模型。低速时的恒磁通转差频率矢量控制策略能够保证电动汽车在低速启动时的转矩快速跟随性能;中低速时的变磁通效率优化矢量控制可以有效增加电动汽车的续航里程;高速时的变磁通最大转矩控制有效的改善了电动汽车提速性能。
     深入分析异步电机数学模型及自抗扰控制技术,利用自抗扰控制技术设计了控制系统的电流调节器。基于q轴电流调节器,搭建了速度扰动函数模型及结构框图,完成对异步电机速度的估计。自抗扰控制器不依赖于控制对象的模型,利用扩张观测器准确估计系统中的扰动,克服异步电机高次非线性强耦合及参数随温度变化的特性,能够实现异步电机控制系统的准确解耦和高性能控制。
     以二象限DC-DC直流斩波器驱动结构为模型,解析分析了PWM电路的微观过程,在能量回馈制动方面做了大量的研究。提出一种适用于电动汽车的再生制动控制策略—恒定回馈电流控制,并在理论上推导了恒定回馈电流控制的数学模型和克服再生制动系统工作死区的边界条件控制方程,分析了制动能量回馈效率与电机反电动势和回馈电流的关系。
     最后,通过MATLAB/SIMULINK仿真软件对各种控制方案和再生制动策略分别进行了仿真研究和对比,得出各种控制策略能够提高电动汽车性能的结论。同时将仿真结果与实验室和台架实验系统的实验结果做了相应的研究与比较,进一步验证了上述控制策略的可行性。
Automobile industry is one of the largest and the most important industry all the world, and it is also the main support industry in almost every developed country. Because motor is the core of the electric vehicle power system, naturally the motor’s control technology is the core technology in the field of electric vehicle. According to the traits of electric vehicle in this paper, on the basis of a practical project of Tianjin EV Co., we developed an electric vehicle controller ACEVC72-6 for a nine kilowatts asynchronous machine. In terms of high efficiency some works about dynamic torque and field weakening were done by simulations, and there are some emphases on quick torque respond, economizing on energy and maximum torque in the field weakening.
     According to the application traits of electric vehicle drive control strategy and regenerative brake strategy were studied in the range of whole speed. On the basis of analyzing sorts of asynchronous machine’s control strategy, the basic control strategy made is torque closed-loop control. Mathematic model on optimizing control strategy in medium speed was put forward on the basis of loss model, and this strategy was completed by controlling excitation. On account of electric vehicle’s own traits and running characteristics, combining with variable structure control (VSC) theory and variable frequency vector control theory, a novel VSC model with three independent control algorithms was put forward further. Variable frequency vector control strategy of constant flux guarantees the quickly dynamic torque in low speed. The efficiency optimization vector control strategy of variable flux increases the running distance of electric vehicle in medium speed. Maximum torque control strategy of variable flux effectively promotes the acceleration traits in high speed.
     Based on the comprehensively deep research on the AC induction machine mathematic model, a novel speed and current regulator, the active disturbance rejection controller (ADRC), is proposed to achieve high performance AC induction machine drive, which has great ability of adaptation and better performance against disturbance. What’s more, speed estimate was completed from the current regulator as above. The active disturbance rejection strategy is independence of plant models.
     ADRC is composed of three parts, tracking differentiator, extended state observer and nonlinear state error feedback control law. By using the extended state observer, the AC system has stronger robustness, which can overcome nonlinearity and coupling of the parameters of AC induction machine. Also, it can surmount parameters excursion caused by temperature change.
     Due to the model of DC-DC chopper in two quadrants, some researches of regenerative brake were done in this paper, and the microcosmic course of PWM circuit was analyzed. On this basis, a novel regenerative brake control strategy adaptable to electric vehicle was put forward-constant feedback current control. The mathematical model of constant feedback current control and control equations of overcoming regenerative brake’s dead zone were calculated. The relations of feedback efficiency of brake power, back electromotive force of motor and feedback current was studied.
     Finally, sorts of control strategies and regenerative brake strategy were simulated by MATLAB and got some good conclusions. At the same time simulation and experimental results were compared and studied, the control stratigies above was proved feasible further.
引文
[ 1 ] 李秀芬,雷跃峰,电动汽车关键技术研究,上海汽车,2006(1):8~10
    [ 2 ] 毕道治,电动车电池的开发现状及展望,电池工业,2000,5(2):56~63
    [ 3 ] 陈清源,孙立清,电动汽车的现状和发展趋势,科技导报,2005,23(4):24~28
    [ 4 ] 杜志强,从产业经济的角度分析我国电动汽车产业化中的关键点,上海汽车,2006(2):10~12
    [ 5 ] 冯世兰,阎蕊香,李嘉琪,电动车的开发,科技情报开发与经济,1994(3):33~34
    [ 6 ] 杨竞衡,电动汽车的电气传动系统,电气传动,1999(4):3 ~10
    [ 7 ] 麻友良,陈全世,混合电动汽车的结构与特性分析,汽车研究与开发,2000(4):20~22
    [ 8 ] 袁方伟,陈思忠,电动汽车电池管理系统的研究,汽车研究与开发,2003(3):41~44
    [ 9 ] 龙小乐,电动汽车燃料电池发展研究,大众用电,1996(4):16~18
    [ 10 ] 李佩衍,易翔翔,候福深,国外电动汽车发展现状及对我国电动汽车发展的启示,北京工业大学学报,2004(1):49~54
    [ 11 ] 杨遇春,国外燃料电池电动汽车开发现状,稀土信息,1999(6):12~13
    [ 12 ] 郭严,国外电动汽车技术发展趋势展望,中国机电工业,1999(9):18~19
    [ 13 ] 我国电动汽车近期发展目标,航天技术与民品,2000(6):12~14
    [ 14 ] 杜志强,我国发展电动汽车产业应该注意的几个问题,汽车研究开发,2005(11):22~24
    [ 15 ] 麻友良,陈全世,我国电动汽车发展问题探讨,武汉科技大学学报,2002(3):280~283
    [ 16 ] 陈红雨,国外铅蓄电池研究进展,蓄电池,2000(3):28~30
    [ 17 ] 王永胜,俞佳芝,混合动力汽车技术及发展前景,河南科技,2005(6):33~34
    [ 18 ] 张卫青,混合动力汽车的发展现状及其关键技术,重庆工学院学报,2006,20(5):19~22
    [ 19 ] 沈同全,程夕明,孙逢春,混合动力汽车的发展趋势,农业装备与车辆工程,2006(3):7~10
    [ 20 ] 冯启山,殷承良,朱禹,混合动力汽车动力性和经济性道路实验,机械工程学报,2005,53(12):24~26
    [ 21 ] 王震坡,姚利民,孙逢春,纯电动汽车能耗经济性评价体系初步探讨,北京理工大学,2005,25(6):479~486
    [ 22 ] Luo Ben. Energy usage and test study of EV6620:[硕士学位论文], Guangzhou: Colleage of Mechanical Engineering, South China University of Technology, 1998
    [ 23 ] Chen Yong. Sun Fengchun. Study on range and its related factors of electric vehicles, Journal of Beijing Institute of Technology, 2001, 21(5):578~582
    [ 24 ] 朱华,发展中的电动汽车用蓄电池,汽车电器,2005(1):1~2
    [ 25 ] 谭建成,电动汽车及其驱动技术(二),电机电器技术,1998,4(2):16~18
    [ 26 ] 郑萍,崔淑海,宋立伟,电动车用电机的发展趋势,微电机,1997,30(3):18~21
    [ 27 ] 宋慧,胡骅,电动汽车的现状及发展(Ⅵ),汽车电器,2000(6):42~46
    [ 28 ] 苑国良,电动汽车的蓄电池技术,汽车电器,2004(1):1~3
    [ 29 ] 邓隐北,娄彦珍,电动汽车的电机驱动系统,河南交通科技,1999,19(2):59~63
    [ 30 ] 刘皓春,全书海,王玉林,电动汽车驱动控制新技术,武汉汽车工业大学学报,1999,21(3):10~13
    [ 31 ] 刘庆华,韦忠朝,陈贤珍。电力电子技术在电动车中的应用,微特电机,1999(4):38~40
    [ 32 ] 丁志刚,蒋黔麟,电动车电驱动技术评述,微电机,1996,29(3):32~35
    [ 33 ] 周泉,电动汽车功率器件的性能与发展方向,汽车电器,2004(10):57~59
    [ 34 ] 余群明,王耀南,多能源电动汽车中的功率比较控制策略及仿真,计算机仿真,2004,21(8):174~178
    [ 35 ] 陈伯时,陈敏勋,交流调速系统,北京:机械工业出版社,1998.58~62
    [ 36 ] 高为炳,变结构理论基础,中国科学技术出版社,1990.113~121
    [ 37 ] 陈善早,刘永清,广义电机系统变结构控制设计与稳定性分析,华南理工大学学报,2000,28(1):48~52
    [ 38 ] 杨治平,曹长修,电机调速过程的模糊自适应变结构控制,重庆大学学报,2004,27(9):40~44
    [ 39 ] 温香彩,广义非线性系统的变结构控制理论,控制理论与应用,1999,16(1):87~90
    [ 40 ] 张传安,变结构控制理论在位置控制中的应用,江苏大学学报,1987,8(3):86~92
    [ 41 ] 高为炳,变结构控制的理论及设计方法,北京:科学出版社,1996.127~129
    [ 42 ] 胡跃明等,变结构控制理论与应用,北京:科学出版社,2003.58~66
    [ 43 ] 陈伯时,电力拖动与自动控制系统,北京:机械工业出版社,2003.255~264
    [ 45 ] W. W. Novotny, T. A. Limo, Vector control and dynamics of AC drives, Oxford Science Publications, 1996.101~112
    [ 46 ] 万军,马彦兵,董昌文,感应电动机转子磁场定向电流控制,机械与电子,2004(10):35~37
    [ 47 ] 陈伯时,电力拖动自动控制系统,北京:机械工业出版社,2003.234~239
    [ 48 ] 陈坚,交流电机数学模型及调速系统,国防大学出版社,1989.120~129
    [ 49 ] 范岩,何勇,基于 DSP 的转子磁场定向感应电机控制系统实现,微计算机信息,2006(11):127~129
    [ 50 ] 汤蕴缪,史乃,电机学,北京:机械工业出版社,2006.163~223
    [ 51 ] 陈伯时,电力拖动自动控制系统,机械工业出版社,2003.239~246
    [ 52 ] 韩京清,黄远灿,二阶跟踪—微分器的频率特性,数学的时间与认识,2003:33(3):71~74
    [ 53 ] 朱承元,杨涤,荆武兴,跟踪微分器参数与输入输出信号幅值频率关系,电机与控制学报,2005,9(4):376~380
    [ 54 ] 韩京清,非线性状态误差反馈控制率——NLSEF,控制与决策,1995,10(3):221~225
    [ 55 ] 杨俊蓬,一种非线性 PID 调节器的设计方法,基础自动化,2001,8(2):53~56
    [ 56 ] 王红梅,阮毅,徐静,定子电阻变化对异步电机按定子磁场定向控制系统性能的扰动分析,电气传动自动化,2004,26(1):14~17
    [ 57 ] 卢洁,卢骥,异步电机变频调速中的电机定子电阻在线自校正的鲁棒性研究,电气传动自动化,2003,25(6):23~24
    [ 58 ] 陈硕,辻峰男,山田英二,感应电机无速度传感器矢量控制系统的定子电阻在线辨识,2003,23(2):88~92
    [ 59 ] 何洪文,余晓江,孙逢春等,电动汽车电机驱动系统动力特性分析,中国电机工程学报,2006,26(6):136~140
    [ 60 ] 金敏捷,金如麟,谭佛娃,一种新颖的无位置(速度)传感器异步电机直接磁场定向控制策略,中小型电机,2002,29(2):34~37
    [ 61 ] ZOU Jiyong, XU Zhenlin, Novel sensorless vector control system of induction machine based on flux observer in field weakening, Transactions of Tianjin University, 2006, (12):1~5
    [ 62 ] 邵杰,混合动力及电动汽车驱动电机形式及技术参数,汽车电器,2006(3):13~15
    [ 63 ] 王国桂,间接磁场定向感应电动机传动装置的控制,舰载武器,1995,15(3):15~19
    [ 64 ] 沈滢,郝荣泰,感应电机矢量控制解耦算法的研究,北方交通大学学报,2003,27(2):54~57
    [ 65 ] 李汉强,矢量控制异步电机等效电路及其参数变化因素分析,武汉交通科技大学学报,1999,23(5):469~472
    [ 66 ] 郑萍,王明渝,感应电机无速度传感器矢量控制的速度估算方法,电工技术学报,2001(10):24~29
    [ 67 ] 樊双英,张爱玲,刘晓鹏,一种改进异步电动机定子磁链观测器的研究,电机与控制学报,2005,9(6):547~553
    [ 68 ] 杨文强,贾正春,异步电机转子磁链观测器的准确度分析与设计,2001,29(2):11~13
    [ 69 ] 崔江霞,杨战社,赵燕云,感应电动机模型参考自适应辨识及其应用,2006,26(2):263~267
    [ 70 ] 陈伯时,谢鸿鸣,交流传动系统的控制策略,电工技术学报,2000,15(5):11~15
    [ 71 ] 孙凯,许镇琳,邹积勇,基于自抗扰控制器的永磁同步电动机速度估计仿真研究,系统仿真学报,2006,13(12):13~18
    [ 72 ] 于春梅,杨胜波,一种新的复合控制方法在转速调节器中的应用,自动化博览,2001(3):16~17
    [ 73 ] 曾岳南,冯剁生,陈伯时,速度推算转差频率矢量控制,电气传动,2000(6):12~15
    [ 74 ] 曾岳南,陈林康,带电阻参数估计的异步电动机转差频率矢量控制,电力电子技术,2000(4):19~25
    [ 75 ] 马秀丽,丁宝,齐维贵,一种转差频率控制的变频调速系统,自动化技术与应用,1997(1):24~26
    [ 76 ] 杨兆华,唐东炜,异步电机矢量控制与转差频率控制的动态性能分析,中小型电机,1998,25(6):1~4
    [ 77 ] C Islas, A Battani, G Griva and F Profumo. Comparison of different schemes without shaft sensors for field oriented control drives, Proc IEEE Ind. Electron, Soc Annul. Meeting IECON, Bologna, Italy, 1994, 1579~1588
    [ 78 ] W A Hill, R A Turton, R J Dungan, and C L Schwalm. A vector-controlled cycloconverter drive for an icebreaker. IEEE Trans. Ind. Applicant., 1987, 23(6):1036~1042
    [ 79 ] 李家荣,无速度传感器异步电机矢量控制系统的研究,机械与电子,2005(7):28~30
    [ 80 ] 陈硕,感应电机无速度传感器矢量控制系统的定子电阻在线辨识,中国电机工程学报,2003,23(2):88~90
    [ 81 ] 蔡文,朱小龙,江友华,异步电动机定子电阻参数辨识的计算机实现,华北科技学院学报,2004,1(2):77~79
    [ 82 ] 许镇琳,何启莲,李国民等,异步机矢量控制系统的电机参数自设定,电工技术学报,1995(1):44~47
    [ 83 ] 颜钢锋,李锋,弱磁控制在变频矢量控制系统中的应用,工程设计学报,2005,12(2):101~104
    [ 84 ] 许俊逢,冯江华,许建平,电动汽车用永磁同步电机直接转矩弱磁控制,电气传动,2005,35(10):11~14
    [ 85 ] 刘海燕,王毅,刘杰,电动车用感应电机弱磁控制研究,电机与控制学报,2005,l9(5):452~460
    [ 86 ] ISERMAN R. Analysis and realization of a pulse-width modulator based on voltage space vector. IEEE Trans, Ind. App., 1988,24(1):142~150
    [ 87 ] DOYLE JC, A review of u for case studies in robust control, Reprints of IFAC 10th Triennial World Congress, Munich, FRG, 1987.365~372
    [ 88 ] 周克敏,鲁棒与最优控制,北京:北京国防工业出版社,2002.123~135
    [ 89 ] 谭惊涛,范衠,程善美,交流电机变频装置效率优化的策略,电气传动,1999(4):11~13
    [ 90 ] Bose B K, Patel N R, Rajashekara K, A neuron-fuzzy-based on-Line efficiency optimization control of a stator flux-oriented direct vector-controlled induction motor drive, IEEE Trans. On Ind. Electron, 1997, 44(2):270-273
    [ 91 ] 许俊峰,冯江华,许建平,考虑损耗模型永磁同步电机直接转矩控制,电力电子技术,2005,39(2):24~26
    [ 92 ] Rowan T M, Limo T A, A quantitative analysis of induction motor performance improvement by SCR voltage control, IEEE Trans. On Ind. Applica., 1983,19(3):543~553
    [ 93 ] Alexander K, Donald G, Control means for minimization of losses in AC and DC motor drives, IEEE Trans. On Ind. Applica., 1983,13(4):561~570
    [ 94 ] Kim H G, Sul S K, Park M H, Optimal efficiency drive of a current source inverter fed induction motor by flux control, IEEE Trans. On Ind. Applica., 1984,20(6):1453~1459
    [ 95 ] Kirschen D S, Novotny D W, Limo T A, Online efficiency optimization of a variable frequency induction motor drive, IEEE Trans. On Ind. Applica., 1985,21(3):610~615
    [ 96 ] 何光东,俞健等,利用斐波那契实现交流电机的效率最优控制,控制与决策,1999,14(4):349~353
    [ 97 ] Ta C M, Hori Y, Convergence improvement of efficiency-optimization control of induction motor drives, IEEE Trans. On Ind. Applica., 2001,37(6):1746~1753
    [ 98 ] 陈伯时,电力拖动自动控制系统,北京:机械工业出版社,2003.228~233
    [ 99 ] Rowan T M, Limo T A, A quantitative analysis of induction motor performance improvement by SCR voltage control, IEEE Trans. On Ind. Applica., 1983, 19(3):543~553
    [ 100 ] Anderson H R, Pedersen J K, Low cost optimized control strategy for a variable speed three phase induction motor, Conf. Rec. PESC’96, 1996.920~924
    [ 101 ] Choy I, Kwon S H, Choi J Y, et al. On-line efficiency optimization control of a slip angular frequency controlled induction motor drive using neural networks, IEEE IECON 22nd International Conference, 1996.1216~1221
    [ 102 ] 罗禹贡,李蓬,金达锋等,基于最优控制理论的制动能量回收策略研究,汽车工程,2006,28(4):356~360
    [ 103 ] 宋小庆等。电动装甲车无刷直流电机驱动系统的再生制动,微电机,2001(1):26~30
    [ 104 ] 张毅,杨林,朱建新等。电动汽车能量回馈的整车控制,汽车工程,2005,27(1):24~27
    [ 105 ] Panagiotidis M, Development and Use of a Regenerative Braking Model for a Paralleled Hybrid Electric Vehicle. Paper 2000-01-0995
    [ 106 ] 吴颖杰,王君艳,贡俊,能量回馈制动在电动汽车中的应用,上海电机学院学报,2006(3):47~51
    [ 107 ] 刘博,杜继宏,电动汽车制动能量回收控制策略的研究,自动化与仪器仪表,2004(3):34~36
    [ 108 ] 龙勇,张奕黄,采用电量控制阀控式蓄电池充电时间的研究,内燃机车,2006(5):13~15
    [ 109 ] 黄斐犁,王耀明等,电动汽车永磁无刷直流电机驱动系统低速能量回馈制动的研究,电工技术学报,1995(3):28~32
    [ 110 ] Li Jingcheng, Cao Binggang, Kang Longyun, Study on regenerative braking of electric vehicle, the 4th International Power Electronics and Motion control Conference(IPEMC), 2004.8
    [ 111 ] 赵辉,李铁才等,电池供电的永磁电动机系统的再生制动,电机与控制学报,1999,3(4):207~211
    [ 112 ] 赵会强,刘怀智,陈安红,电动汽车的再生制动研究,城市车辆,2006(4):34~36
    [ 113 ] 张承慧,杜春水,李柯,变频驱动异步电机再生制动及馈电技术,电机与控制学报,2006,10(4):356~360
    [ 114 ] 赵辉,轮式无刷直流电机驱动的电动车系统的研究,哈尔滨工业大学电机与电器,1999(12):17~20
    [ 115 ] Kost R, Sutton P, 2001 Joint ADVISOR/PSAT Vehicle Modeling Users Conference, Michigan, USCAR, 2001.7
    [ 116 ] 曹明柱,冯能莲,夏传超,电动汽车的建模与仿真,安徽农业大学学报,2006,33(2):277~280
    [ 117 ] 何明,裘杭萍,刘晓明,基于 XMSF 的建模与仿真研究,系统仿真学报,2005,17(5):1032~1036
    [ 118 ] Butler K L, Ehsani M, Kamath P, A Matlab-based modeling and simulation package for electric and hybrid electric vehicle design, IEEE Transaction on Vehicular Technology, 1999, 48(6): 1770~1778
    [ 119 ] Zou Jiyong, Xu Zhenlin, Sun Kai, A modified sensor-less vector control system of IM Based on flux observer, Journal of Harbin Institute of Technology, 2006(1):11~15
    [ 120 ] 王天将,许镇琳,张剑,基于 TMS320LF2407A 片内 PWM 通道的 D/A 功能实现,制造业自动化,2004,26(12):59~61
    [ 121 ] 王天将,许镇琳,张剑,感应电机矢量控制系统的神经网络转速辨识,计算机仿真,2005,22(6):121~123
    [ 122 ] 张剑,许镇琳,温旭辉,新型无位置传感器永磁同步电动机状态估计及其误差补偿方法研究,电工技术学报,2006,21(1):7~12
    [ 123 ] 赵春水,许镇琳,基于 TMS320LF240 的死区效应补偿技术,电力电子技术,2004,38(2):78~79
    [ 124 ] 许家群,电动汽车用永磁同步电动机传动控制系统的研究:[博士学位论文],沈阳:沈阳工业大学,2003
    [ 125 ] Duan Hai-bin, Wang Dao-bo, Zhu Jia-qiang, Parameter identification of Lugre friction model for flight simulation servo system based on ant colony algorithm, Transaction of Nanjing University of Aeronautics &Astronautics, 2004, 21(3):179~184
    [ 126 ] Canudas de Wit C, Lischinsky P, Adaptive friction compensation with partially known dynamic friction model, Int.J. Adaptive Control and signal Processing, 1997,11(12):65~80
    [ 127 ] Armstrong B, Dupont P, Canudas de Wit C, Survey of models, analysis tools and compensation methods for the control machines with friction. Automatica, 1994,30(7):1083~1138
    [ 128 ] Armstrong-Helouvry B, Stick-slip arising stribeck friction, Robotics and automation,1990,proceedings ,1990 IEEE International Conference ,1990,5 (l2):1377~1382
    [ 129 ] Jun Hu, Dongqi Zhu, Yongdong Li, Jingde Gao, Application of sliding observer to sensorless permanent magnet synchronous motor drive system, Power Electronics Specialists Conference, PESC’94 Record .,25th Annual IEEE,1994(1):532~536

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700