用户名: 密码: 验证码:
无人艇操纵性与智能控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水面无人艇是一种能够在实际海洋环境下安全自主航行,并完成各种任务的海上智能运动平台。与有人驾驶的舰艇相比,无人艇具有许多突出的战术技术特点,它体积小隐蔽性好、航速高、机动灵活、无人员伤亡危险等,在未来非对称立体战争中,无人艇将完成诸如扫雷、电子信息战、情报侦察与监视(ISR)、反恐、精确打击和武力保护等特殊任务;在恶劣海况(如海上大风、巨浪、热带风暴、海雾等)的探测研究和预警预报方面,无人艇将发挥其重要作用,因而越来越多地受到了世界各国的重视。
     在高度动态和不可预测的海洋环境里,为了达到高度自治,无人艇需要灵活可靠的操纵性能、精确快速的控制能力来确保其他船只与自身的安全;同时,从加强无人艇的自适应性与智能性,改善无人艇工作性能的观点来看,其控制系统还应该具备良好的自适应、自学能力功能,从而需要引入人工智能来设计无人艇的智能控制系统。
     本论文以“翔龙号”无人艇为研究对象,首先通过分析高速滑行艇的操纵运动机理,并结合实艇试验数据辨识的方法,建立了无人艇五自由度的操纵性数学模型;其次,利用最小二乘支持向量机的回归原理,根据结构风险最小化准则的学习原理,对小样本的无人艇Z型试验数据引入线性核函数,通过分步辨识的方法,辨识了无人艇艏向响应方程中的一、二阶线性与非线性参数,并验证了二阶非线性响应方程具有很好泛化性能;然后,在该无人艇操纵运动模型的基础上,把S面控制算法和模型参考自适应规律的设计原理相结合,根据李雅普诺夫稳定性理论设计了基于参考模型的S面自适应艏向控制器,并验证了该控制算法具有较好的抗模型参数变化和外界干扰的能力;之后,把仿人智能控制的在线特征辨识、启发式直觉推理逻辑和多模态控制的优点与人类小脑的协调运动机理相结合,提出了基于小脑模型的仿人智能协调控制策略,设计了基于发动机、喷水推进器喷嘴和倒车斗协调运动的无人艇基础运动控制策略,并根据人体运动控制系统结构的特点,提出一种仿人智能的混合式分层递阶结构,并利用智能图式的学习进化原理,在实践中不断完善和改进,则形成一种混合仿人智能图式的体系结构;最后,通过无人艇的定艏向、定航线等海上试验验证了该仿人智能协调控制方法和基于混合仿人智能图式体系结构的无人艇自主驾控系统的可靠性和工程实用性。
Unmanned Surface Vehicle (USV) is one of intelligent motion platforms, which can navigate safely in the real marine environment and complete various tasks. Compared to the manned naval ships, the USV has a lot of outstanding tactical and technical characteristics, for instance, small volume, stealthy, high-speed, mobile and flexible, no dangerous about casualties and so on. The USV will complete special missions in the non-symmetric three-dimensional warfare, such as mine sweeping, electronic warfare, ISR (Intelligence, Surveillance and Reconnaissance), anti-terror, precision strike and force protection. And the USV will be useful in bad sea condition investigation and prediction, such as, gale at sea, billow, tropic storm, sea fog and so on. Therefore USV will be highlighted for special attention more and more around the world in the future.
     In the high-dynamic and uncertain ocean environment, in order to obtain highly autonomy, the USV must be endued with agile maneuver performance and precise control performance to insure the security for other ships and self. At the viewpoint of enhance the USV adaptability, intelligence, and functionality, the artificial intelligence should be introduced to designing the USV intelligent control system.
     In this thesis, the research object is "XIANG-LONG" USV. Firstly, the motion mechanism of the high-speed planing craft was analyzed, combine the system identification method, the five freedoms manoeuvring motion model was established. Secondly, according to the learning theory of structural risk minimize rule, the Least Squares Support Vector Machines (LS-SVM) based on linear kernel is adopted in the regression of the small stylebook zigzag motion data of the USV trial. Using the step by step identification method, the parameters were identified of the USV response models including the first-order linear, the first-order nonlinear, the second-order linear and the second-order nonlinear models. And the second-order nonlinear response model possessing well generalization was validated. Thirdly, on the base of the manoeuvring motion model of the USV, the S pane control arithmetic was combined with design theory of model reference adaptive rule; According to the Liapunov theorem of stability, the S pane adaptive controller was designed for the USV based on the model reference. And this control arithmetic was validated to be anti-parameter-changing and anti-jamming. And then the excellences of the human-simulated intelligent control, such as:characteristic identification on line, logic consequence of heuristic instinct and multi-mode control, were combined with the harmony motion mechanism of the human cerebella; The human-simulated intelligent harmony control strategy was proposed based on the cerebella model; And the USV motion control strategy was designed based on the harmony action of engine, the nozzle and deflector of the water-jet-propulsion. Fourthly, according to the structure characteristic of the human motion control system, a human-simulated intelligent hybrid hierarchical structure was proposed. Using the learning evolution theory of the human-simulated intelligent schema, this structure would be perfected and improved, then a system structure, named hybrid human simulated intelligent schema, would be formed. Finally, diversified trials were done at sea for the USV, such as, head keeping, and course tracking. The reliability and engineering practicability of the designed control method and designed system structure were validate by the USV trials results.
引文
[1]J.Veers and V.Bertram. Development of the USV Multi-Mission Surface Vehicle Ⅲ[C]. In 5th International Conference on Computer Applications and Information Technology in the Maritime Industries, May 2006:1-10.
    [2]P.Parfomak and J.Frittelli. Maritime Security:Potential Terrosist Attacks and Protection Priorities[D]. CRS Report for Congress,Jan.2007:2-5.
    [3]James Colito. Autonomous Mission Planning and Execution for Unmanned Surface Vehicles in Compliance with the Marine Rules of the Road[D]. University of Washington,2007:4-5.
    [4]玛丽安·劳洛尔,自主航行的无人艇[J].防务杂志,2008,6:22-27
    [5]Henry S. Kenyon. Robo Boats on the Horizon:Smart unmanned craft may replace war-fighters for both dangerous and routine operations[J]. SIGNAL Magazine,sep.2009:20-23.
    [6]US Department of the Navy. The Navy Unmanned Surface Vehicle (USV) Master Plan[D]. July 23,2007:67-70.
    [7]Seth Cooper, Matthew Norton. New Paradigms in Boat Design:An Exploration into Unmanned Surface Vehicles[J]. Association for Unmanned Vehicles Systems International's annual symposium. July,2002:5-8.
    [8]Fossen T I. Marine Control Systems-Guidance, Navigation and Control of Ships, Rigs and Underwater Vehicles [M]. Norwegian University of Science and Technology. Trondheim, Norway,2002.11-12
    [9]贾欣乐,张显库.船舶运动智能控制与鲁棒控制[M],大连海事大学出版社,2002:7-18
    [10]卜仁样.欠驱动水面船舶非线性反馈控制研究[D].大连:大连海事大学博士论文,2007.10:1-2
    [11]王小宁译,陆文理校.滑行艇动稳性[J].国外舰船工程,1998:11-18
    [12]A Rosen, K Garme. Model Experiment Addressing the Impact Pressure Distribution on Planing Craft in Waves[J]. International Journal of Small Craft Technology.2004:18-24
    [13]Yoshiho IKEDA, Toru KATAYAMA. Roll Damping Prediction Method for a High-Speed Planing Craft[J]. STAB2000, Proceedings of the 7th International Conference on Stability of Ship and Ocean Vehicles, Vol.B,2000:532-541
    [14]Y. IKEDA, H. Okumura, T. KATAYAMA. Stability of a Planing Craft in Turning Motion[C]. Contemporary Ideas on Ship Stability ELSEVIER Science Ltd. 2000:449-495
    [15]董文才,吴晓光,夏飞,岳国强.一种能考虑动升力影响的高速艇迎浪纵向运动的数学模型[J].海军工程大学学报,2005,17(4):32-37.
    [16]吴秀恒,刘祖源,施生达,冯学知.船舶操纵性[M].北京:国防工业出版社,2005:25-36
    [17]罗伟林.基于支持向量机方法的船舶操纵运动建模研究[D].上海:上海交通大学博士论文,2009:7.
    [18]Bech M. I., Some aspects of the stability of automatic course control of ship[J], Journal of Mechanical Engineering Science,1972,14(7):123-131.
    [19]Van Leeuwen G., A simplified non-linear model of a manoeuvring ship [R], Reprot No.262, Shipbuilding Laboratory, University of Tech. Delft,1970
    [20]野本谦作.船舶操纵性和控制及其在船舶设计中的应用[R],中国船舶科学研究中心报告,1985
    [21]Hayes M. N., Parameters Identification of Nonlinear Stochastic Systems Applied to Ocean Vehicle Dynamics[D], Ph.D. Dissertation, M.I.T.,1971:25-28
    [22]Abkowitz M. A., Measurement of hydrodynamic characteristic from ship maneuvering trials by system identification[J], Transactions of Society of Naval Architects and Marine Engineers,1980,8:283-318
    [23]Hwang W.-Y., Application of System Identification to Ship Maneuvering[D], Ph.D. Dissertation, M.I.T.,1980:12-15
    [24]Astrom K. J. and Kallstrom C. G., Identification of ship steering dynamics[J], Automatica,1976,12:9-22
    [25]Van Amerongen J., Adaptive steering of ships-a model reference approach[J], Automatica,1984,20(1):3-14
    [26]Holzhuter T., Robust identification in an adaptive track controller for ships[C].3rd IFAC Symposium on Adaptive Systems in Control and Signal Processing, Glasgow, UK,1989:275-280
    [27]Kallstrom C. G. and Astrom K. J., Experiences of system identification applied to ship steering[J], Automatica,1981,17:187-198
    [28]Zhou, W.-W. and Blanke M., Identification of a class of nonlinear state-space models using RPE techniques[J], IEEE Transaction on Automatic Control,1989,34(3):312-316
    [29]邹早建,吴秀恒.船舶操纵性非线性KT方程参数的辨识[J],武汉水运工程学院学报,1985,9(3):11-22
    [30]Rhee K.-P., Lee S.-Y., and Sung Y.-J., Estimation of manoeuvring coefficients from PMM test by genetic algorithm[C], International Symposium and Workshop on Force Acting on a Manoeuvring Vessel, Val de Reuil, France,1998:16-17
    [31]Haddara M. R. and Wang Y., Parametric identification of maneuvering models for ships[J], International Shipbuilding Progress,1999,46(445):5-27
    [32]Mahfouz A. B. and Haddara M. R., Effects of the damping and excitation on the identification of the hydrodynamic parameters for an underwater robotic vehicle[J], Ocean Engineering,2003,30:1005-1025
    [33]Luo W.-L. and Zou Z.-J., Identification of response models of ship maneuvering motion using Support Vector Machines[J], Journal of Ship Mechanics,2007,11(6):832-838
    [34]陈雪丽,程启明.船舶自动舵控制技术的发展[J],南京化工大学学报,2001,23(4):101-105
    [35]黄继起.自适应控制理论及其在船舶系统中的应用[M].北京:国防工业出版社,1992:32-39
    [36]李佳宁,易建强,赵冬斌,等.移动机器人体系结构研究进展[J].机器人2003,25(7):756-760
    [37]李彩虹.移动机器人智能体混合式体系结构研究[D].山东:山东大学博士学位论文,2007,09.:1-7
    [38]J.Albus,F.G.Proctor.A Reference Model Architecture for Intelligent Hybrid Control System.Proceedings of the International Federation of Automatic Control[C].San Francisco,CA,June 30-July 5,1996:1-7
    [39]J.S.Albus,R.Lumia,J.Fiala,et al.Overview of NASREM:The NASA/NBS Standard Reference Model for Telerobot Control System Architecture.Proceedings of the 20th International Symposium on Industrial Robots[C].Tokyo,Japan,October 4-6,1989:1-10
    [40]R.Brooks.A Robust Layered Control System for a Mobile Robot[C].IEEE Transaction on Robotics and Automation.1986,2(1):14-23
    [41]J.Connell.A Colony Architecture for an Artificial Creature[D].MIT AI Laboratory,1989:18-33
    [42]赵海文.基于多传感器的移动机器人行为控制研究[D].哈尔滨:哈尔滨工业大学博士论文,2007.03:3-4
    [43]P.Doherty,P.Haslum,F.Heintz,et al.A Distributed Architecture for Autonomous Unmanned Aerial Vehicle Experimentation[C]. The 7th International Symposium on Distributed Robotic Autonomous Systems (DARS2004).Toulouse,France,2004:1-10
    [44]蔡京平,贾云得.一种用于星球探测机器人的计算系统体系结构[J].小型微型计算机系统.2006,27(6):1102-1107
    [45]蔡自兴,周翔,李枚毅等.基于功能/行为集成的自主式移动机器人进化控制体系结构[J].机器人.2000,22(3):170-175
    [46]C.F.B.Rooney,R.P.S.Odonoghue,B.R.Duffy,et al.The Social Robot Architecture:Towards Sociality in a Real World Domain.Proceedings of Towards Intelligent Mobile Robots 99[C].Bristol,UK:University of Manchester,1999:77-84
    [47]董祖舜.快艇动力学[M].武汉:华中理工大学出版社,1991:1-5
    [48]吴恭兴,邹劲,孙寒冰,田守东.高速无人艇的运动建模及其视景仿真[J].大连海事大学学报,2010,36(1):9-13
    [49]李积德.船舶耐波性[M].北京:国防工业出版社,1981:38-40
    [50]贾欣乐,杨盐生.船舶运动数学模型——机理建模与辨识建模[M],大连海事大学出版社,大连,中国,1999:26-39
    [51]张孝双,彭秀艳,赵希人.基于神经网络方法的船舶姿态运动极短期预报与仿真[J].系统仿真学报,2002,14(5):641-643.
    [52]杨雪晶,赵希人,王显峰.基于神经网络的船舶运动建模及随机最优控制[J].系统仿真学报,2007,19(2):372-375.
    [53]王新洲.非线性模型参数估计理论与应用[M],武汉大学出版社,武汉,中国,2002:15-36
    [54]罗伟林,邹早建.基于岭回归方法的船舶操纵运动建模[J].船海工程,2009,38(6):17-19
    [55]贾欣乐,杨盐生.船舶运动数学模型——机理建模与辨识建模[M],大连海事大学出版社,大连,中国,1999:58-63
    [56]Ebada A. and Abdel-Maksoud M., Applying artificial intelligence (A.I.) to predict the limits of ship turning manoeuvres[J], Jahrbuch der Schiffbautechnischen Gesellschaft, 99 Band,2005:132-139
    [57]Hess D. and Faller W., Simulation of ship manoeuvres using recursive neural networks[C],23rd Symposium on Naval Hydrodynamics, Val de Reuil, France, September 2000:78-89
    [58]Hess D., Faller W., Lee J. et al., Ship maneuvering simulation in wind and waves:a nonlinear time-domain approach using recursive neural networks[C],26th Symposium on Naval Hydrodynamics, Rome, Italy, September 2006:36-48
    [59]Chiu F.-C., Chang T.-L., Go J., et al., A recursive neural networks model for ship maneuverability prediction[C], Proceedings of OCEAN'04. MTS/IEEE TECHNO-OCEAN'04, Kobe, Japan, November 2004,3:1211-1218
    [60]Moreira L. and Guedes Soares C., Dynamic model of manoeuvrability using recursive neural networks[J], Ocean Engineering,2003,30(13):1669-1697
    [61]Haddara M. R. and Wang Y., Parametric identification of maneuvering models for ships[J], International Shipbuilding Progress,1999,46(445):5-27
    [62]Vapnik V. N., An overview of statistical learning theory[J], IEEE Transaction on Neural Networks,1999,10(5):988-999
    [63]Vapnik V. N., The Nature of Statistical Learning Theory[M], Springer Verlag, New York, USA,1995:10-29
    [64]李应红,蔚询楷,刘建勋.支持向量机的工程应用[M],兵器工业出版社,北京:2004:13-16,32-34
    [65]Suykens J. A. K., De Brabanter J., Lukas L., et al., Weighted least squares support vector machines:robustness and sparse approximation[J], Neurocomputing, Special Issue on Fundamental and Information Processing Aspects of Neurocomputing,2002, 48:85-105
    [66]Suykens J. A. K., and Vandewalle J., Least squares support vector machines classifiers[J], Neural Processing Letters,1999,9:293-300
    [67]Suykens J. A. K., and Vandewalle J., Recurrent least squares support vector machines[J], IEEE Transactions on Circuits and Systems-I,2000,47(7):1109-1114
    [68]朱珉虎.滑行艇水动力计算[J].中外船舶科技,2004,4:30-37
    [69]董文才,黄祥兵,刘志华.深V型滑行艇横摇阻尼的实验确定.海军工程大学学报,2004,16(4):26-29
    [70]Fujino M., Experiment studies on ship manoeuvrability in restricted waters-Part I[J], International Shipbuilding Progress,1968,15(168):279-301
    [71]Fujino M., Experiment studies on ship manoeuvrability in restricted waters-Part II[J], International Shipbuilding Progress,1970,17(186):45-65
    [72]孙寒冰.单泵喷水推进式船舶的操纵性能研究[D].哈尔滨工程大学硕士学位论文,2010:51-52
    [73]陈复扬,姜斌.自适应控制与应用[M],国防工业出版社,北京:2009:34-38,32-34,47-54,71-79
    [74]刘学敏,徐玉如.水下机器人运动的S面控制方法[J].海洋工程,2001,19(3):81-84
    [75]王俊普.智能控制[M],中国科学技术大学出版社,合肥:1996:1-5
    [76]张震.浅谈智能控制的发展与应用[J].决策&信息,2008,48(12):135
    [77]郭光辉.仿人智能控制算法的现状及趋势[J].安徽职业技术学院学报,2007,6(3):13-15.
    [78]李祖枢,涂亚庆.仿人智能控制[M].北京:国防工业出版社,2002:98-102
    [79]Zhong Chen, Wei Yan, Guoyu Xu, Guanjie Wang. Hierarchical control theory and its application to power system automation[C]. Hong Kong, China.2004 IEEE International Conference on Electric Utility Deregulation, Restructuring and Power Technologies. Proceedings.2004:643-6.
    [80]雷李,李祖枢,王牛.基于仿人智能控制的足球机器人底层运动研究[J].哈尔滨:哈尔滨工业大学学报,2004(7):978—80.
    [81]王佳.仿人智能控制算法研究[D].江苏:南京理工大学硕士论文,2002:7-18.
    [82]Li Zu-shu, Zhang Hua, Wen Yong-ling, Wang Gui-ping. Human simulated intelligent control based on sensory-motor intelligent schemas[C]. Hangzhou, China. Fifth World Congresson Intelligent Control and Automation(IEEE Cat. No.04EX788).2004: 2423-2430.
    [83]Xie Jian, Li Zu-shu. Dynamic model and motion control analysis of three-link gymnastic robot on horizontal bar. Proceedings[C].2003 IEEE International Conference on Robotics, Intelligent Systems and Signal Processing(IEEE Cat. No.03EX707).2003:83-87.
    [84]苏字峰,李祖枢.一种新的参数在线自校正仿人智能控制算法[J].工业控制计算机,2003,16(11):29—31.
    [85]李祖枢,但远宏,温永玲,张华.小车三级摆摆起倒立的仿人智能控制[J].华中科技大学学报(自然科学版),2004(1):38—41.
    [86]汤士华,李一平,李硕.一种新的仿人控制方法研究[J].信息与控制,2005,34(3):360-364
    [87]张华.基于动觉智能图式的多级摆系统仿人智能运动控制[D].重庆大学,2006.04:36-39页.
    [88]Lee, S.M., Kwon, K.Y., Joh, J. A fuzzy logic for autonomous navigation of marine vehicle satisfying COLREG guidelines [J]. International Journal of Control, Automation and Systems,2004,2(2):171-181.
    [89]刘立君,吴林.遥控焊接力觉仿人智能参数校正级控制研究[J].机器人,2005,27(5):464-468
    [90]K.D.Do. Universal controllers for stabilization and tracking of under-actuated ships[J].Systems control Letters 47,2002:299-317.
    [91]Jasmin Velagi. Adaptive fuzzy ship autopilot for track-keeping[J].Control Engineering Practice 11,2003:433-440
    [92]韩冰.欠驱动船舶非线性控制研究[D].哈尔滨:哈尔滨工程大学博士论文,2004:14-23.
    [93]李铁山.船舶直线航迹控制非线性设计方法[D].大连:大连海事大学硕士论文,2005:6-15
    [94]WU Gongxing, ZOU Jin, WAN Lei, SUN Hanbin. Design of the basic motion control system for water-jet-propelled unmanned surface vehicle[J]. Control Theory&Application,2010,27 (2):257-262.
    [95]吉春正.风浪流环境中滑行艇操纵性研究[D].哈尔滨:哈尔滨工程大学硕士论文,2007:21-25
    [96]于歌,刘刚,房建成.小型无人机地面监控系统软件设计与实现[J].机械与电子,2007,7:24-26
    [97]甘永,毛宇峰,万磊,徐玉如.水下机器人半实物运动仿真系统的设计[J].系统仿真学报,2006,18(7):2026-2029
    [98]薛方正,李庆贽,徐心和.足球机器人控制体系结构的研究[J].控制与决策,2006,21(7):801-804
    [99]刘建成,于华男,徐玉如.水下机器人改进的S面控制方法[J].哈尔滨工程大学学报,2002,23(1):33-36

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700