用户名: 密码: 验证码:
110~220kV XLPE电缆绝缘在线检测技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
110~220kV XLPE电缆已成为电力系统的重要组成部分,XLPE电缆具有优良的介电性能和耐热性能、传输容量大、重量轻、电缆终端头结构简单、安装敷设方便。因此,随着电网的不断发展和城市电网改造的需要,XLPE电缆线路在电网中所占的比重日益增加。但是当其发生故障时,也会造成巨大的经济损失和严重的社会影响,所以,110~220kV XLPE电缆的安全运行对电力系统至关重要。
     随着状态检修观念的深入人心,在线检测技术得到了快速地发展。然而,XLPE电缆绝缘在线检测技术是电气设备绝缘在线检测领域长期存在的难题。特别是现有的低压XLPE电缆绝缘在线检测方法并不完全适用于110-220kV高压XLPE电缆。因此,本文针对110~220kV XLPE电缆的绝缘在线检测技术进行了系统的研究:
     1、对110-220kV高压XLPE电缆绝缘在线检测技术的研究意义、重要性及其发展历史进行综述,对XLPE电缆绝缘在线检测研究现状及检测方法进行评述,指出该领域研究的关键问题和发展方向。
     2、深入研究了XLPE电缆绝缘老化的基本理论。首先对水树枝的老化机理进行了研究。由研究可知水树枝长度随外加电压幅值和频率的增加而增加,针尖曲率半径越小,水树枝的长度越长;电缆的绝缘电阻、tanδ和接地线电流可以反应电缆的水树枝老化程度。然后对电树枝的老化机理进行研究,应用陷阱理论解释了XLPE电缆中电树枝的形成过程。最后对XLPE电缆中局部放电老化进行了理论研究。
     3、应用接地线电流法重点研究金属屏蔽层单端接地XLPE电缆绝缘在线检测方法。仿真研究表明电缆接地线电流和电缆的tanδ可以反映电缆的局部绝缘缺陷和电缆整体老化现象。提出以绝缘参数的发展趋势判断绝缘特性的诊断方法。并且应用虚拟仪器技术成功研制了基于接地线电流法的绝缘在线检测系统,该系统可以实时检测电缆的接地线电流、tanδ、绝缘等效电阻和绝缘等效电容。经过近三年的现场运行表明该系统稳定可靠,测量精确度高,方便运行人员及时了解电缆的绝缘状况。
     4、提出了一种新的金属屏蔽层交叉互联XLPE电缆绝缘在线检测方法。由于电缆的金属屏蔽层交叉互联,无法通过直接测量得到每根电缆的泄漏电流和tanδ,也就很难准确评判电缆的绝缘状况。因此本文提出通过测量A、B、C三相电缆首末端接地线电流的幅值和相位与电缆运行初期的接地线电流的幅值和相位之差反映每段电缆tanδ变化情况,以此反映电缆绝缘老化情况。利用向量图的分析方法论证了新方法的物理意义,根据电路理论推导出了电缆绝缘故障段位置与接地线电流幅值和相位变化量的对应关系。根据以上新方法建立了基于ART2A-E神经网络的交叉互联XLPE电缆绝缘故障段诊断算法,为交叉互联电缆的绝缘在线诊断开辟了新的途径。
     5、提出了基于宽带高频传感器和盲源分离算法的XLPE电缆局部放电信号提取技术。首先使用两个高频传感器分别测量流经试品和耦合电容的电流信号,然后应用改进盲源分离算法实现外界干扰信号与试品局部放电信号的分离。仿真试验和实验室模拟实验表明,该方法可以从局部放电和外界干扰信号的混合信号中准确的提取出局部放电信号。
     6、建立了以局部放电脉冲的时域负熵为X轴,以局部放电脉冲的频域负熵为Y轴的局部放电时频负熵谱图。计算机仿真实验和实验室模拟试验表明,不同局部放电类型的脉冲在时频负熵谱图中形成不同的聚类。由此,利用时频负熵谱图可以完成局部放电脉冲的分类,然后应用PCA算法实现局部放电脉冲的特征波形提取,并应用时频负熵谱图进行了局部放电脉冲的模式识别研究。
110~220kV XLPE power cable has been an important component of the power system. XLPE power cable has many advantages, such as excellent dielectric properties and heat resistance, large transmission capacity, light weight, simple structure of cable terminations, and facilitated installation. With the development of power grid and the needs of urban power network renovation, the proportion of XLPE cable lines is increasing in power system. But its failure would cause huge economic losses and serious social impact so the safe operation of power systems is important for 110~220kV XLPE cable.
     As the concept of condition-based maintenance has been accepted by people, on-line monitoring technology has been developing rapidly. However, XLPE cable insulation on-line detection technology is always a difficult problem of insulation monitoring technique. Particularly, the existing low-voltage XLPE cable insulation on-line detection method cannot always adapt to the 110~220kV high-voltage XLPE cables. Therefore, it is necessary for 110~220kV XLPE cable to carry out the specialized research.
     1、It is a summary of 110~220kV high voltage XLPE cable insulation online detection that whose importance, research significance and the history development have been made in this paper. And the author has made comments on various online insulation detection methods and research status, in which the key problem and development has been pointed out.
     2、It is a basic theory which has been made a deep research into the XLPE cable insulation. The research shows that the water tree length is increasing as voltage amplitude and frequency, and the smaller the tip radius of curvature, the longer the length of water tree. The cable insulation resistance, tan 8 and Grounding Current can respond to the degree of water tree aging. Secondly, the aging mechanism of electrical trees has been studied and the trap theory has been applied to explain the XLPE power cables in the formation of branches. Finally, partial discharge of XLPE cables to the theoretical study of aging has been studied.
     3、It is Single-ended earthing of metal shield layer XLPE cable insulation on-line detection which is made focus research on with Grounding Current. The study of simulation results shows that Grounding Current and tanδof cable can reflect the cable insulation defects. Then, the method on diagnosing of insulation characteristics has been proposed. Finally, an insulation on-line detection system is successfully developed by the application of the virtual instrument technology and Grounding Current method. This system can be real-time detection of the grounding line current, tanδ, insulation equivalent resistance and insulation equivalent capacitance. Through three years'site operating, the system is stable, reliable and accurate. The operating personnel can realize the situation of cable insulation with convenience.
     4、A new insulation on-line monitoring method on metal shielding layer of cross--bonding XLPE cable has been proposed in this paper. Because the metal shield layers of the cable is crossing, the leakage current and tanδof a single cable cannot be obtained through direct measuring. So it is impossible to judge accurately the situation of the cable insulation. It is calculating amplitude difference and phase angle difference between XLPE cable grounding line current and initial installation of the current grounding line that through which the result reflects the changes in each cable insulation condition. By analyzing the vector diagram, the author demonstrates the Physical Meaning of the new method. According to the theory of circuit, it has been deduced the relationship between the cable insulation fault location with variables of grounding--line current amplitude and phase. Based on ART2A-E neural network, Cross-Bonding XLPE cable insulation fault section diagnosis algorithm has been created. It is a new way for Cross-Bonding XLPE Power cable insulation diagnosis.
     5、It has been put forward to the new partial discharge signal extraction technology of XLPE cable which is based on broadband high-frequency sensors and blind source separation algorithm. Firstly, current signal of test object and coupling capacitor have been measured respectively with two high-frequency sensors. And then it improves blind source separation algorithm to realize partial discharge signals'separation from outside interference signals. Simulation tests and laboratory simulation experiments show that this method can extracting accurate partial discharge signal from mixed-signal of outside interference and partial discharge signal.
     6. It is the first time that the negative entropy as the measurement of Partial Discharge Pulse Shape of sparse or non-Gaussian according to their characteristics. A new vector graph is built, in which time domain Negentropy of PD pulse is the X-axis and frequency domain Negentropy of PD pulse is the Y-axis. Simulation tests and laboratory simulation experiments show that different types of partial discharge pulse can form clusters in the time-frequency spectrum. So classification of partial discharge pulse can be completed through the spectrum. And then the application of PCA algorithm can realize the extraction of partial discharge pulse characteristics. All of that have laid the foundation of the partial discharge pulse pattern recognition.
引文
1. 肖登明编著,电力设备在线监测与故障诊断[M],上海交通大学出版社2005年
    2. 罗红;关于110kV及以上等级XLPE电缆的在线检测[J];广东输电与变电技术,Guangdong Power Transmission Technology,2008(03):54
    3. 黄永祥.交联聚乙烯电缆主绝缘的缺陷及事故[C].江苏省电机工程学会高电压技术会议,2004年
    4. 潘志军,范芹.高压电缆头绝缘故障综合分析[J].浙江水利科技.2005.1
    5. 朱德恒,严璋,谈克雄等.电气设备状态监测与故障诊断[M].中国电力出版社.2009.3
    6. 罗俊华,周作春.电力电缆线路运行温度在线检测技术应用研究[J].高电压技术,2007.1(169-172)
    7. 彭 超,赵健康,苗付贵,分布式光纤测温技术在线监测电缆温度[J].高电压技术,2006,32(8):43-45.
    8. 郭文元,高良玉,雷 颖.高电压在线温度监测器的研制[J].高电压技术,1997,23(2) :22-25.
    9. 郭文元,雷 颖,高良玉.高压电气设备中导电连接处温度的状态监测[J].高电压技术,1996,22(3):33-35.
    10.陈金福,杨宝祥1光纤测温技术在韶关发电厂电缆防火中的应用[J].高电压技术,2004,30(12) :65-66.
    11.王力,李华春.110kV电缆分布式光纤测温系统运行情况分析[J].电力设备.2007,6(36-41)
    12.段建东,陈天翔等,用接地线电流法进行电力电缆绝缘在线监测的仿真计算[J],高压电器,2005.2(29-35)
    13.吴广宁.电气设备状态监测的理论与实践[M].清华大学出版社2005.10
    14.龙望成,高炎辉,关根志.交叉互联接线的交联聚乙烯(XLPE)电力电缆绝缘在线监测理论分析[J].电力自动化设备.2008.3(59-63)
    15.邱昌荣王乃庆,电工设备局部放电及其测试技术[M].机械工业出版社,1994
    16.李洪.独立分量分析在变压器局部放电信号检测中的应用研究[D].武汉大学博士学位论文.2007
    17.郭俊;吴广宁.局部放电检测技术的现状和发展[J].电工技术学报,2005年02期
    18.罗俊华,邱毓昌,马翠娇。基于局部放电频谱分析的XLPE电力电缆在线监测技术[J]。电工电能新技术2002,1,38-40。
    19.杜言,交联聚乙烯电缆局部放电在线监测及定位研究[D],重庆大学硕士学位论文2006年
    20. R.Malewski, Insulation diagnostic system for HV power transformer in service[C],IREQ CIGRE,1986
    21.李长玉,基于超高频法的XLPE电缆附件局部放电检测技术的研究[D],华北电力大学硕士学位论文,2005年
    22. Y.Ohki, Present stage of partial-discharge monitoring technique in after-laying tests for extra-high voltage XLPE gable lines[J], IEEE Electrical Insulation Magazine,2000.2
    23. D. Wenzel, et al.Recognition of partial discharges on Power Units byDirectional coupling[C]. the 9th ISH,1995
    24. K. Fukunaga, et al. New partial discharge detection method for live UHV/EHV cable joints[J], IEEE Trans. on El, Vol.27 No.3,1992.6
    25. Y Tian, et al. Partial discharge detection in high voltage cables using VHF capacitive coupler and screen interruption techniques[J], IEEE ISEI,2002.4
    26. Y Tian, et al. Comparson of on-line partial discharge detection methods for HV cable joints[J], IEEE Trans. on DEI,2002.8
    27. L Zhong, et al. Use of capacitive couplers for partial discharge measurements in power cables and joints[J], IEEE 7th International Conference on Solid Dielectrics,2001.6
    28. P.A.A.F. Wouters, et al. New on-line partial discharge measurement technique for polymer insulated cables and accessories[J], the 8th ISH,1993.8
    29.黄成军,郁惟铺.基于小波分解的自适应滤波算法在抑制局部放电窄带周期干扰中的应用[J].中国电机工程学报,2003.1(107-111)
    30.韩伯锋,电力电缆试验及检测技术[M],中国电力出版社,2007.9
    31.毕为民.变压器局部放电监测中以小波包去噪和统计量识别放电模式的研究[D].重庆大学博士学位论文.2003.3
    32.钱勇,黄成军,陈陈.基于经验模态分解的局部放电去噪方法[J].电力系统自动化.2005,12(53-57)
    33.贾嵘,徐其惠等。基于经验模态分解和固有模态函数重构的局部放电去噪方法[J].电工技术学报2008.1(13-18)
    34.李天云,高磊,聂永辉,金国彬.基于经验模式分解处理局部放电数据的自适应直接阈值算法[J].中国电机工程学报2006.15(29-34)
    35.于龙滨.局部放电测量的自适应滤波与实验研究[D].哈尔滨理工大学硕士学位论文.2004年3月
    36.王晓宁,朱德恒.现场局部放电信号中周期性窄带干扰的抑制[J].高电压技术2003.4(16-18)
    37.乐波,曹戌平.局部放电在线监测中的自适应数字滤波器研究[J].西安交通大学学报2003.6(617-621).
    38.满玉岩,高文胜,高凯,等.发电机局部放电的统计特征识别[J].电工技术学报,2006,21(4):41-45.
    39.淡文刚,陈祥训,郑健超.采用小波分析与神经网络技术的局部放电统计识别方法[J].中国电机工程学报,2002,22(9):1-5
    40.唐炬,孙才新,彭文雄,等.GIS局部放电检测中的小波包变换提取信号[J].电力系统自动化,2004,28(5):25-29.
    41.张晓星,孙才新,唐炬,等.基于统计不相关最优鉴别矢量集的GIS局部放电模式识别[J].电力系统自动化,2006,30(5):59-62.
    42.高凯,谈克雄,李福琪,等.利用矩特征进行发电机线棒模型的局部放电模式识别[J].电工技术学报,2001,16(4):61-64.
    43.廖瑞金等,交联聚乙烯电缆局部放电灰度图像的模式识别.高压电器[J],2007,3(85-91)
    44. Satish L,Zaengl W S.Can Fractal Features be Used for Recognizing 3-D Partial Discharge Patterns[J].IEEE trans on Dielectrics and Elect.Insulation,1995,2(3):352-359.
    45. Krivda A, Gulski E,Satish L,et al.The use of fractal features for recognition of 3-d discharge patterns[J].IEEE Trans.on Dielectrics and Elect.Insulation,1995,2(5):889-892.
    46. Hailong Zhang, Genzhi Guan. Wireless online insulation monitoring system of high-voltage electrical equipment based on bluetooth technology[C].Proceedings of the ⅪⅤth International Symposium on High Voltage Engineering 2005, (268,271)
    47. A Cavallini, G C Montanari, A Contin, et al. A new approach to the diagnosis of solid insulation systems based on PD signal inference [J]. IEEE Elec. Insulation Magazine,2003,19(2):23-30.
    48. A Cavallini, G C Montanari, F Puletti. A fuzzy logic algorithm to detect electrical trees in polymeric insulation systems [J]. IEEE Trans. on Dielectrics and Elect. Insulation,2005,12(6):1134-1144.
    49. A Contin, A Cavallini, G C Montanari, et al. Artificial intelligence methodology for separation and classification of partial discharge signals [C]. Conference on Elec. Insulation and Dielectric Phenomena. Victoria, BC, Canada:IEEE CS Press,2000.522-526.
    50. Montanari, G.C.; Cavallini, A.; Puletti, F;A new approach to partial discharge testing of HV cable systems[J]. Electrical Insulation Magazine, IEEE Volume 22, Issue 1, Jan.-Feb.2006 Page(s):14-23
    51. Tozzi, M.; Cavallini, A.; Montanari, G.C.;PD detection in extruded power cables:an approximate propagation model[J]. Burbui, G.L.G.;Dielectrics and Electrical Insulation, IEEE Transactions on Volume 15, Issue 3, June 2008 Page(s):832-840
    52. Tozzi, M.; Montanari, G.C.; Cavallini, A.;PD Detection Limits in Extruded Power Cables Through Wide and Ultra-Wide Bandwidth Detectors[J]. Dielectrics and Electrical Insulation, IEEE Transactions on.Volume 15, Issue 4, August 2008 Page(s):1183-1189
    53.王振远,谈克雄,朱德恒,王航.根据脉冲波形特征识别几种典型模型放电的研究[J].电工技术学报,1997,12(5):35-38
    54.郑重.基于脉冲波形的局部放电模式识别研究[D]清华大学硕士学位论文2000
    55.王猛谈克雄,局部放电脉冲波形的时频联合分析特征提取方法[J],电工技术学报,2002.4(76-79)
    56.司文荣,基于宽带检测的局放脉冲波形快速特征提取技术[J],电工电能新技术,2008.4(21-25)
    57.司文荣,李军浩;局部放电脉冲群的实用快速分类技术及应用[J],西安交通大学学报,2008.8(1021-1025)
    58.薛雪东,程旭德等.基于STFT的高压电气设备局放信号时频分析[J].高电压技术2008.1(70-73)
    59.刘卫东,刘尚合,王雷.采用Gabor变换的局部放电信号时频分析[J]高电压技术2007.8(40-43)
    60.王昌长,电力设备的在线监测与故障诊断[M],清华大学出版社.2006
    61. J. L. Chen and J.C. Filippini. The Morphology and Behavior of the Water Tree[J]. IEEE, Trans. on DEI,1993, (2):271-290.
    62. Jean-Pierre Crine. Electrical, Chemical and Mechanical Processes in Water Treeing[J]. IEEE, Trans, on DEI,1998,(5):681-694.
    63. R. Ross and J. J. Smit. Composition and Growth of Water Trees in XLPE[J]. IEEE, Trans. on EI, 1992, (3):519-533.
    64. E. F. Steennis and F. H. Kreuger. Water Treeing in Polyethylene Cables[J]. IEEE, Trans. on EI, 1990,(5):989-1028.
    65. D.W. Auckland, B.R. Varlow and M. Syamsuar. Mechanical Aspects of Water Treeing[J].IEEE, Trans. on Ei,1991, (4):790-797.
    66.党智敏,亢婕,屠德民,聚合物中水树的研究现状[J],电线电缆.2001.8.(30-33)
    67.豆朋,文习山,龚瑛.几种因素对水树生长影响的研究[J].绝缘材料.2005.1(33-36)
    68.王亓昌.交联聚乙烯(XLPE)电缆水树枝老化机理及试验方法[J].山东电力技术.2001.4(59-61)
    69.袁鹏,李彦明等.局部放电脉冲的Wigner时频分布特性研究[J]高压电器2008.6(524-527)
    70.马丽婵,郑晓泉,谢安生.交联聚乙烯电缆中电树枝的研究现状[J].绝缘材料.2007.40(5).(49-52)
    71.李盛涛,郑晓泉.聚合物电树枝化[M].机械工业出版社.2006
    72.谢安生,郑晓泉等,XLPE电缆绝缘中的电树枝结构及其生长特性[J].高电压技术.2007.6(168-173)
    73.郑晓泉,G CHEN. XLPE电缆绝缘中电树枝生长的阶段性特性实验研究[J].电工电能新技 术.2003.3(24-27)
    74.郑晓泉,谢安生,李盛涛.发展在XLPE电缆绝缘内外侧的电树枝[J].物理学报.2007,9(5494-5501)
    75.谢安生,李盛涛,郑晓泉.高频电压下交联聚乙烯电缆绝缘中电树枝生长的动力学模型[J].物理学报.2008,6(3828-3833)
    76.张秀阁,贺景亮,王洪新,关根志.工频电压下XLPE绝缘的电树枝老化实验研究[J],高电压技术.1998,4(57-59)
    77.郑晓泉G Chen, AE Davies交联聚乙烯电缆绝缘中的导电和非导电型电树枝[J].中国电机工程学报.2004,3(140-144)
    78.郑晓泉,G. Chen, A. E. Davies.交联聚乙烯电缆绝缘中的电树枝与绝缘结构亚微观缺陷[J].电工技术学报.2006,11(28-33)
    79.郑晓泉,G Chen, AE Davies,交联聚乙烯电缆绝缘中的双结构电树枝特性及其形态发展规律[J].中国电机工程学报,2006,2(79-85)
    80.马丽婵,郑晓泉,谢安生.交联聚乙烯电缆中电树枝的研究现状[J].绝缘材料.2007,40,5(49-52)
    81.王以田,郑晓泉.聚合物聚集态和残存应力对交联聚电树枝的影响[J].电工技术学报2004,7(44-48)
    82.张秀阁,贺景亮,关根志.交联聚乙烯电树枝老化实验研究[J].武汉水利电力大学学报.1999.3(63-66)
    83.雷清泉.工程电介质的最新进展[M].科学出版社.1999年
    84.李宗廷,王佩龙,赵光庭,刘进国.电力电缆施工手册[M].北京:中国电力出版社,2001.
    85.国标GB/T 4703-2007《电容式电压互感器》
    86.王洪新,程树康XLPE老化过程中交流绝缘参数特性[J].高电压技术,2005,31(3),7-9
    87. Hailong Zhang, Weimin Guan, and Genzhi Guan. On-Line Diagnosis of Faulty Insulators Based on Improved ART2 Neural Network[C]. Fifth International Symposium on Neural Networks, ISNN 2008 (465-472)
    88. A. Al-Arainy; The Performance of Strippable and Bonded Screened Medium-Voltage XLPE-Insulated Cables Under Long-Term Accelerated Aging[J]; IEEE TRANSACTIONS ON POWER DELIVERY, VOL.22, NO.2, APRIL 2007:744-751
    89. Hailong Zhang,Genzhi Guan.The Design of Insulation Online Monitoring System Based on Buletooth Technology and IEEE1451.5[C]; 8th International Power Engineering Conference, IPEC 2007, (1287-1291)
    90.张海龙,关根志等。基于改进ART2神经网络的故障绝缘子在线诊断[J].湖南大学学报(自然科 学版);2008.10(4145)
    91.顾民,葛良全,秦健.基于改进ART2网络的电力负荷脏数据辨识与调整[J];电力系统自动化,2007,31(16):70-74
    92.熊文贤,牟维祥.基于ART-2网络的日负荷特征曲线提取方法[J].电网技术,2007,31(1)89-91
    93.钱晓东,王正欧.基于算法改进的ART2数据聚类方法研究[J].哈尔滨工业大学学报;2006 38(9)1549-1600.
    94.熊文贤,牟维祥.基于ART-2网络的日负荷特征曲线提取方法[J].电网技术,2007,31(1)89-91
    95.李超顺;周建中等.基于混合模糊聚类分析的汽轮发电机组振动故障诊断[J].电力系统自动化.200832(5):80-84
    96.杨行峻,郑君里.人工神经网络与盲信号处理[M].北京:清华大学出版社,2003.
    97.吴芝路;王雪霞;刘翠岩;赵志杰;基于ART2A-E神经网络的数字调制识别[J],哈尔滨商业大学学报(自然科学版),
    98. Jutten C and Herault J.Blind separation of sources, part Ⅰ:an adaptive algorithm based on neuromimetic architecture [J].Signal Processing,1991,28:1-10
    99. Sorouchyari E. Blind separation of sources, part Ⅲ:Stability analysis [J].Signal Processing,1991,24(1):21-29.
    100. Comon P, juttten C,and herault J.Blind separation of sources, part Ⅱ:problems statement [J]. Signal Processing,1991,24(1):11-20
    101.Deville Y. A unified stability analysis of the Herault-Jutten source separation neural network [J].Signal Processing,1996,51(30:229-233.
    102. Deville Y. Analysis of the convergence properties of self-normalized source separation neural networks [J].IEEE transactions on Signal Processing.1999,47(5):1272-1287.
    103. Comon P. Independent component analysis, a new concept?[J].Signal processing,1994,36:287-314
    104. Bell A J and Sejnowski T J. An information maximization approach to blind separation and blind deconvolution [J].Neural computation,1995,7(6):1004-1034.
    105. Cichocki A, unbehauen R, and Rummert E. Robust learning algorithm for blind separation of signals [J].Electronic letters,1994,30(17):1386-1387.
    106. Cichocki A, unbehauen R, and Rummert E. Robust neural networks with on-line learning for blind identification and blind separation of sources [J]. IEEE Transactions on Circuits and Systems.1996,43(11):894-906
    107. Lee T W, Girolami M and Sejnowski T J. Independent component analysis using an extended infomax algorithm for mixed sub-Gaussian and super-Gaussian sources [J].neural computation,1998,10(3):609-633
    108. Amari S I. Natural gradient works efficiently in learning [J]. Neural Computation,1998,10:251-276
    109. Douglas S C and Amari S I. Natural gradient adaptation. In Haykin S,editor, Unsupervised adaptive filtering [M].New York, John Wiley&Sons,2000
    110. Amari S I, Cichocki A. Adaptive blind signal processing -neural network approaches [J].Proceedings of the IEEE,1998,86(10):2026-2048
    111. Yang H H,Amari S I and Cichocki A. Adaptive on-line learning algorithms for blind separation-maximum entropy and minimum mutal information[J]. Neural Computation,1997,7(9):1457-1482
    112. Amari S I. Superefficiency in blind source separation [J].IEEE Transactions on Signal processing,1999,47(4):936-944
    113. Amari S I. Douglas S C and Cichocki A et al. Multichannel blind deconvolution and equalization using the natural gradient[C].Proceeding of IEEE workshop Signal Processing Advanced Wireless Communications,1997:101-104
    114. Amari S I,Douglas S C and Cichocki A et al. novel on-line adaptive learning algorithms for blind deconvolution using the natural gradient approach [C].In proceedings of the 11th IFAC symposium on System Identification,1997,45(11):2692-2700
    115. Hyvarinen A. One unit contrast functions for independent component analysis:A statistical analysis[C],In neural network for Signal processing Ⅶ,1997:388-397
    116. Hyvarinen A. A family of fixed point algorithms for independent component analysis[C].In proceedings of ICASSP'97,1997:3917-3920.
    117. Hyvarinen A. Fast and robust fixed point algorithms for independent component analysis[J].IEEE Transactions on Neural network,1999,10(3):626-634
    118. Hyvarinen A.The fixed point algorithms and maximum likelihood estimation for independend component analysis[J].Neural Processing Letters,1999.
    119. Hyvarinen A and Oja E. A fast fixed point algorithms for independent component analysis[J]. Neural Computation,1997,9(7):1483-1492.
    120. Hyvarinen A.New approximations of differential entropy for independent component analysis and projection pursuit [C].In Advances in Neural information Processing system,1998,10:273-279
    121.张贤达,保铮.盲信号处理[J]电子学报,2001,29(12):1766-1771
    122.张贤达,朱孝龙,保铮。基于分阶段学习的盲信号分离[J].中国科学(E辑),2002,10(2):693-703
    123.刘琚,何振亚。盲源分离和盲反卷积[J].电子学报,2002,30(4):570-576
    124.张洪渊,史习智。一种任意信号源盲分离的高效算法[J].电子学报,2001,29(10):1392-1396
    125.张立明,斯华林。智能图像处理[M].科技教育出版社,2002.
    126. Te-Won Lee. ICA Theory and Applocations[M].Kluwer Academic Publishers,1998.
    127. Mark Girolami(Ed.).Adeances in Independent Component Analysis[M].Springer-Verlag,2000
    128. Hyvarinen A,Karhuner J and Oja E. Independent Component Analysis [M].John Wiley&Sons,Inc.2001.
    129. Cichocki A and Amari S I. Adaptive Blind Signal and Image Processing-Learning algorithms and Applications [M].John Wiley&Sons, Inc,2002.
    130. Roberts S and Everson R. Independent Component Analysis:Principles and Practice [M].Cambrige University Press.2001
    131.范洪欣,蔡建国;抑制电力电缆局部放电试验系统背景干扰的探讨[J];电线电缆;2007.2
    132.史习智盲信号处理-理论与实践[M].上海交通大学出版社,2008
    133.吴正国,唐劲松,章林柯等译.自适应盲信号与图像处理[M].北京:电子工业出版社,2005
    134.张发启等盲信号处理及应用[M].西安电子科技大学出版社.2006
    135. Aapo Hyvarinen;独立成分分析,[M]电子工业出版社,2007.6
    136.杨福生洪波;独立分量分析的原理与应用[M],清华大学出版社2006年
    137. S. Choi and A. Cichocki, Blind separation of nonstationary sources in noisy mixtures[J], Electronics Letters, vole.36, pp.848-849, April 2000.
    138. S. Choi and A. Cichocki, Blind separation of nonstationary and temporally correlated sources from noisy mixtures[J], IEEE Workshop on Neural Networks for Signal Processing, NNSP'2000, pp. 405-414, Sydney, Australia, Dec.11-13,2000. Related publications:
    139. S. Choi, A. Cichocki, and A. Belouchrani, Blind separation of second-order nonstationary and temporally colored sources[C], Proceedings of the 11th IEEE Signal Processing Workshop on Statistical Signal Processing, pp.444-447, Singapore,2001.
    140. S. Choi, A. Cichocki, and A. Belouchrani, Second order nonstationary source separation[C], Journal of VLSI Signal Processing,2002.
    141.D.-T. Pham and J.-F. Cardoso, Blind separation of instantaneous mixtures of non stationary sources[J], IEEE Trans. Signal Processing, vole.49, No 9, pp.1837-1848.
    142. S. Choi and A. Cichocki, Blind separation of nonstationary sources in noisy mixtures[J], Electronics Letters, vole.36, pp.848-849, April 2000.
    143. J.-F. Cardoso and A. Souloumiac, Blind beam-forming for non Gaussian signals[J], IEE Proceedings-F, pp.362-370, vole.140,1993.
    144. J.-F. Cardoso and A. Souloumiac, Jacobi angles for simultaneous diagonalization[J], In SIAM Journal of Matrix Analysis and Applications, vole.17, No 1, pp.161-164, Jan.1996.
    145. J.-F. Cardoso, On the performance of orthogonal source separation algorithms[C], In Proc. EUSIPCO, pp.776-779, Edinburgh, September 1994.
    146. J.-F. Cardoso, High-order contrasts for independent component analysis[J], Neural Computation, vole.11, no 1, pp.157-192, Jan.1999.
    147.DL417-2006电力设备局部放电现场测量导则[M]2006年
    148.杨永明,孙才新,顾乐观,一种抑制局部放电在线监测中周期性干扰的新方法[J],高电压技术,1998,24(2):41-43
    149.司文荣,李军浩,李彦明,等.局部放电脉冲信号ICA提取技术的初步研究[J].高电压技术,2008,34(6):1277-1282.
    150.司文荣,,李彦明等.采用独立成分分析的局部放电脉冲双通道提取技术研究[J].西安交通大学学报.2008.42(10):1264-1269
    151.周泽存,高电压技术[M],中国电力出版社1988年
    152. Carpenter G A, Grossberg S. A massively parallel architecture for a self-organizing neural pattern recognition machine[J]. Comp Vision Graphics and Image Process,1987,37(1):54-115.
    153. Carpenter G A, Grossberg S. ART-2:self-organization of stable category recognition codes for analog input pattern[J]. App Optics,1987,26(23):4919-4930.
    154. Carpenter G A, Grossberg S. ART-3:hierarchical search using chemical transmitters in self-organizing pattern recognition architectures[J]. Neural Networks,1990,3 (2):129-152.
    155. Carpenter G A, Grossberg S, Rosen D B. ART-2A:an adaptive resonance algorithm for rapid category learning and recognition[J]. Neural Networks,1991,4:493-504.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700