用户名: 密码: 验证码:
基于稀疏表示和特征选择的人脸识别方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人脸识别是模式识别和计算机视觉领域的一个前沿课题,由于其具有非接触性、隐蔽性、易于理解以及图像采集设备成本低等优点,已经被越来越多的应用于安全监控、人机交互、人工智能以及电子商务安全中。本文以数字图像人脸识别技术为研究背景,在分析现有人脸识别方法的基础上,结合模式识别的最新理论,针对人脸识别中的表情、光照、遮盖等复杂情况,深入研究了基于稀疏表示和特征选择的人脸识别问题。本文的主要研究成果总结如下:
     1)基于图嵌入理论的特征选择方法。在图嵌入特征选择方法中,由于受到噪声影响,数据点的K邻近图稳定性会降低。针对这一问题,本文提出了基于特征分数的递归特征消除方法(FS-RFE)和基于子集水平分数的递归特征消除方法(SL-RFE)。在FS-RFE方法中,我们递归地移除具有最小特征分数的特征,并动态更新图的结构,以减少由于特征中存在大噪声而引起的负面影响。在SL-RFE方法中,通过迭代计算子集水平分数,递归地删除噪声特征,并更新图的结构。在UMIST及Yale人脸数据集上的实验结果表明,与θG-MFA,θG-LDA,θG-LSDF等特征分数方法相比,本文提出的FS-RFE和SL-RFE方法能够明显提高人脸识别的准确度,并显著提高算法对高维噪声的鲁棒性。
     2)基于链式采样的特征选择方法。针对非线性超高维问题降维,本文在特征生成机(FGM)方法基础上,提出了一种新的基于链式采样的特征选择方法。FGM方法在每次迭代过程中,特征根据分数进行排序,并且形成一个新的特征子集,当问题维数很高时,特征分数计算及其排序时间是无法接受的。而本文提出的方法通过特征采样方法加速计算,将稠密特征存入缓存器,并且舍弃稀疏特征,在迭代过程中将具有最大分数的一些特征保留在缓存器中,并逐步更新缓存器中的特征,形成链式采样,最后通过对缓存器的特征进行再排序,找到具有最大特征分数的一些特征做为有效特征,可以大大降低计算复杂度。在超高维数据集上的实验结果表明了本文提出的基于链式采样特征选择方法的有效性。
     3)基于工作集的快速有效稀疏表示求解算法。稀疏表示问题计算复杂度随着字典规模的增加迅速增加。为此,本文提出了一种求解稀疏表示问题的快速分解梯度投影算法(FDGP)。通过最小化一个有界约束二次规划问题来求解稀疏表示问题,在梯度投影迭代过程中,并不求解整个问题,而是选择梯度存在最大变化的元素作为工作集,从而将大规模优化问题转换为一些小规模有界约束二次规划问题来求解,既节省了内存消耗,又显著提高了大规模稀疏表示问题的求解效率,并最终提高了人脸识别的精度和效率。
     4)基于小波域稀疏表示的人脸识别方法。本文提出了基于小波域稀疏表示的人脸识别算法。由于小波高频子带可以捕捉小的细节信息而低频子带可以很好的表示轮廓信息,本文采用小波变换来分解人脸图像,建立包含高频和低频信息的多频字典,对高频子带和低频子带进行稀疏表示,通过计算高频、低频子带在多频字典下的拟合效果来进行分类。实验表明,即使当人脸图像存在着强烈光照表情变化或者小幅遮挡时,所提出的方法也可以对人脸进行有效准确地识别,从而提高了人脸识别的鲁棒性。
     5)基于决策融合的人脸识别方法。常用的特征级融合识别过程中信息存在相互干扰的可能性,容易造成融合结果性能的下降。为此,本文提出了基于决策融合的人脸识别算法。注意到局部二值模式可以反映图像的局部特征,线性判别分析可以充分提取图像的整体特征,本文首先对人脸图像进行多个尺度和方向的Gabor变换,再采用线性判别分析和局部二值模式两种方法提取Gabor图像的特征,采用K-最近邻方法进行识别,对得到的识别结果进行决策级融合得到最终结果。实验结果表明基于决策融合的识别方法结果准确率高于Gabor-LBP和Gabor-LDA方法,并且此方法随着实验测试人数(类别数)的增加,识别率保持稳定。
     6)基于分布式压缩传感理论的多传感器融合人脸识别方法。利用近红外和可见光图像的传感器内和传感器间的内在联系,提出了基于分布式压缩传感的多传感器融合人脸识别算法,将可见光与近红外人脸图像整体作为分布式压缩传感的多源测量信号,利用分布式压缩传感理论,将多源信号分解成共同部分和差异部分,采用共同部分对图像进行识别。共同部分有效地融合了近红外和可见光图像,既可以保持可见光图像容易采集,样本图像多的优势,又可以利用近红外图像对光照不敏感的特性,应用在人脸识别数据库上,取得了很好的效果。
Face recognition is one of the cutting-edge research tompics in computer vision and pattern recognition areas. Because of its non-touchment and low-expense in system designing, face recognition has been widely applied in security surveillance, human-computer interaction, artificial intelligence, and electronic commerce etc. Targeting on the digital face image recognition, the negative effects that brought by the variety of light and expression, and the cover problems have been studied in the dissertation. By taking the more recent development in machine learning, this dissertation has thoroughly studied the face recognition based on sparse representation and feature selection. The main contributions of this dissertation can be summarized as follows:
     1) Graph embedding based feature selection.
     In the graph based feature selection, the stability of the K-nearest graph will degrade with the increasing noise features. In this dissertation, we developed two recursive feature elimination (RFE) methods using feature score (FS) and subset level (SL) score, respectively, for identifying the optimal feature subset. In FS-RFE method, we recursively remove the features with the least feature scores and update the graph with the selected features to reduce the negative influence on graph construction. In SL-RFE, we iteratively calculate the subset level score and recursively remove those feature with least scores based on the updated graph. The experimental results on UMIST and Yalefaces datasets verify that the proposed RFE method can achieve the state-of-art performance compared with the baseline methods such as θG-MFA, θG-LDA,θG-LSDF and SL, and can avoid the negative influence brought by the noise features on the graph effectively.
     2) Chain sampling methods for feature selection on ultrahigh dimensional problems.
     Regarding the dimension reduction in extremely high dimensional problems, in this dissertation, a sampling scheme is proposed to enhance the efficiency of recently developed Feature Generating Machines (FGM). In each iteration of FGM, the features are ordered by their scores to form a new feature subset. For high dimensional problems, the entire computational cost of feature ordering will become unbearable. Our method tries to keep those dense features in a buffer, drop those sparse features and speedup the algorithm using chain sampling on instances. In chain sampling, we just keep some features with the largest scores in the buffer when the iteration evolves and exchange the features in the buffer gradually. Finally, we reorder the features in the buffer and find the features with the biggest scores. Our proposed strategy can reduce this computational complexity significantly. Empirical studies on ultrahigh datasets on face image datasets showed the effectiveness of the proposed sampling method.
     3) Efficient large-scale sparse representation algorithm based on working set.
     The complexity of sparse representation will sharply increase with the scale of the dictionary. Regarding this issue, an efficient large-scale sparse representation algorithm, named fast decomposed gradient projection algorithm, is proposed in this dissertation for face recognition. In the proposed method, the sparse representation is addressed via solving a box-constrained quadratic programming problem. However, rather than solving the entire large scale problem, the proposed method selects those atoms with the largest absolute gradients as working set, which will transforms the original problem into a series of small box-constrained quadratic problems. By solving these small optimization problems, the large-scale sparse representation can be efficiently solved with very small memory requirements. The efficiency of the large-scale sparse representation can be greatly improved, which can make great improvements on the face recognition accuracy.
     4) Robust face recognition by sparse representation in wavelet domain.
     In this paper, we propose a novel robust face recognition algorithm by sparse representation in wavelet domain. Considering that the wavelet transform of an image can preserve its detailed and spatial distribution information it can be employed to extract the facial features. We construct multi-frequency dictionary which contains information of high frequency and low frequency, and obtain the sparse representation of high frencity and low frequency subband. Finally, we have the recognition result by compute the fitting of high frequency and low frequency subband in multi-frequency dictionary. The experimental results over two benchmark face databases demonstrate the robustness and improvements brought by the proposed algorithm.
     5) Face recognition method based on decision fusion.
     Most fusion methods on feature level needs to match different types of features. In addtion, because of the information collision of different types of features, the performance of the fusion results may be limited. To address this problem, a decision-level fusion method is proposed in this dissertation for face recognition. Notice that the local binary pattern (LBP) can reflect the local characteristics of the images, while the linear discriminant analysis (LDA) can efficiently extract the global image characteristics. Regarding this fact, we first do Gabor-transform on the images on multiple directions and scales, resulting in Gabor feature presentation of the face image. Then we extract the local features and global features by using the LBP and LDA, respectively. Finally, we fusion the recognition results from K-NN classification in decision level. Experimental results show that the proposed method based on the decision fusion shows superior performance than Gabor-LBP and Gabor-LDA method. More important, the proposed method shows stable performance over the increasing number of testing persons (testing classes).
     6) Face recognition method based on distributed compressive sensing of near infrared images and visible light images.
     By assuming that the infrared image and visible light image are sparse with respect to the whole image, we cast the near infrared image and visible light image of the same subject into an ensemble of inter-correlated image. To better capture the information of the two kinds of images to represent the near infrared and visible image of a given subject, we proposed to use the distributed compressive sensing to exploit the aforementioned sparsity of the assembled images. Finally, we proposed to do the image recognition based on the obtained distributed sparse coefficients, which is expected to obtain better performance than that with single near infrared image or visible light image. The experimental results on the benchmark dataset demonstrate the effectiveness of the proposed method.
引文
[1]杨涛,李子青,潘泉等.基于在线特征选择的实时多姿态人脸跟踪.自动化学报,2008,34(1):14-20
    [2]山世光,高文,唱轶钲等.人脸识别中的“误配准灾难”问题研究.计算机学报,2005,28(5):782-791
    [3]周杰,卢春雨,张长水等.人脸自动识别方法综述.电子学报,2000,28(4):102-106.
    [4]张文超,山世光,张洪明等.基于局部Gabor变化直方图序列的人脸描述与识别.软件学报,2006,17(12):2508-2517.
    [5]刘青山,卢汉清,马颂德.综述人脸识别中的子空间方法,自动化学报,2003,29(6):900-911.
    [6]Allen A L. Personal Descriptions. Lodon:Butterworth,1950
    [7]Parke F I. Computer Generated animation of faces. In:Proc of ACM Annual Conference,1972,451-457
    [8]Brunelli R, Poggio T. Face recognition:Feature versus templates. IEEE Transactions on Pattern Analysis and Machine Intelligence,1993,15(10): 1042-1052
    [9]Sirovich L, Kirby I. Application of Karhunen-Loeve procedure for the characterization of human faces. IEEE Transactions on Pattern Analysis and Machine Intelligence,1990,12(1):103-108
    [10]Turk M, Pentland A. Eigenfaces for recognition. Journal of Cognitive Neuroscience,1991,3(1):71-86
    [11]Comon P. Independent component analysis, a new concept?. Signal Processing, 1994,36(3):287-314
    [12]Belhumeur P, Hepanha J, Kriegman D. Eigenfaces vs. Fisherfaces:recognition using class specific linear projection. IEEE Transactions on Pattern Analysis and Machine Intelligence,1997,19 (7):711-720
    [13]Wright J, Yang A Y, Ganesh A, et al. Robust face recognition via sparse representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009,31(2):210-227
    [14]Gao S H, Tsang I W-H, and Chia L-T. Kernel sparse representation for image classification and face recognition. In:Proc of European Conference on Computer Vision,2010,1-14
    [15]Lawrence S, Giles C L, Tsoi A C, et al. Face recognition:a convolutional neural-network approach. IEEE Transactions on Neural Networks,1997,8(1): 98-113
    [16]Bledsoe W. Man machine facial recognition. Panoramic Research Inc,1966.
    [17]Kelly M D. Visual identification of people by computer. Stanford AI Project. 1971
    [18]Jaill A. Huang J. Integrating independent components and linear discriminant analysis for gender classification. In:Proc of Automatic Face and Gesture Recognition,2004,159-163
    [19]Xu D, Yan S, Tao D, et al. Marginal Fisher analysis and its variants for human gait recognition and content-based image retrieval. IEEE Transactions on Image Processing,2007,16 (11):2811-2821
    [20]Li H, Jiang T, Zhang K. Efficient and robust feature extraction by maximum margin criterion. IEEE Transactions on Neural Networks,2006,17 (1):157-165
    [21]He X, Niyogi P. Locality preserving projections. In:Proc of Advances in Neural Information Processing Systems,2003,153-160
    [22]Zhang D, Zhou Z, Chen S. Semi-supervised dimensionality reduction. In:Proc of SIAM Conference on Data Mining,2007,629-634
    [23]Cai D, He X, Han J. Semi-supervised discriminant analysis. In:Proc of International Conference on Computer Vision,2007,14-21
    [24]Scholkopf B, Smola A, Muller K. Kernel principal component analysis, in:B. Scholkopf, C. Burges, A. Smola (Eds.), Advances in Kernel Methods-Support Vector Learning, MIT Press, Cambridge, MA,1999,327-352
    [25]Tenenbaum J. Mapping a manifold of perceptual observations. In:Proc of Advances in Neural Information Processing Systems,1998,682-688
    [26]Roweis S, Saul L. Nonlinear dimensionality reduction by locally linear embedding. Science,2000,290(5500):2323-2326
    [27]Belkin M, Niyogi P. Laplacian Eigenmaps for dimensionality reduction and data representation. Neural Computing,2003,15(6):1373-1396
    [28]He X, Cai D, Yan S, Zhang H. Neighborhood preserving embedding. In:Proc of International Conference on Computer Vision,2005,17-21
    [29]Yan S C, Xu D, Zhang B Y, et al. Graph embedding:a general framework for dimensionality reduction. IEEE Transactions on Pattern Analysis and Machine Intelligence,2007,29(1):40-51
    [30]Huang K and Aviyente S. Sparse representation for signal classification. In:Proc of Neural Information Processing Systems,2006,609-616
    [31]Yang M and Zhang L. Gabor feature based sparse representation for face recognition with Gabor occlusion dictionary. In:Proc of European Conference on Computer Vision,2010,448-461
    [32]Cheng B, Yang J, Yan S, et al. Learning with l1-graph for image analysis. IEEE Transactions on Image Processing,2010,19(4):858-866
    [33]Yang J, Yu K, Gong Y, et al. Linear spatial pyramid matching using sparse coding for image classification. In:Proc of Computer Vision and Pattern Recognition,2009,1794-1801
    [34]Jun B, Lee J, Kim D. A novel illumination-robust face recognition using statistical and non-statistical method. Pattern Recognition Letters,2011,32(2): 329-336
    [35]Choi S, Choi C H, Kwak N. Face recognition based on 2D images under illumination and pose variations. Pattern Recognition Letters,2011,32(4): 561-571
    [36]Ruiz-del-Solar J, Quinteros J. Illumination compensation and normalization in eigenspace based face recognition:A comparative study of different pre-processing approaches. Pattern Recognition Letters,2008,29(14): 1966-1979
    [37]Wolff L, Socolinsky D, Eveland C. Quantitative measurement of illumination invariance for face recognition using thermal infrared imagery. IEEE Workshop on Computer Vision Beyond the Visible Spectrum:Methodsand Applications, Hawaii,2001
    [38]Hizem W, Allano L, Mellakh A, et al. Face recognition from synchronised visible and near-infrared images. IET Signal Processing,2009,3(4):282-288
    [39]Phillips P J, Hyeonjoon M, Rauss P, et al. The FERET evaluation methodology for face recognition algorithms. In:Proc of Computer Vision and Pattern Recognition,1997,137-143
    [40]Belhumeur E, Hespanha J and Kriegman D. Eigenfaees VS. Fisherfaees: Recognition using class specific linear projection. In:Proc of European Conference on Computer Vision,1996,45-56
    [41]Kuang-Chih L, Ho J, Kriegman D J. Acquiring linear subspaces for face recognition under variable lighting. IEEE Transactions on Pattern Analysis and Machine Intelligence,2005,27(5):684-698
    [42]Turk M, Pentland A. Eigenfaces for recognition. Journal of Cognitive Neuroscienc,1991,3(1):71-86
    [43]Dong H, Gu N. Asian face image database PF01. Tech. rep., Technical Report, Pohang University of Science and Technology,2001
    [44]Samaria E S, Harter A C. Parameterisation of a stochastic model for human face identification. In:Proc of the Second IEEE Workshop on Applications of Computer Vision,1994:138-142
    [45]Sim T, Baker S, Bsat M. The CMU pose, illumination, and expression database. IEEE Transactions on Pattern Analysis and Machine Intelligence,2003,25(12): 1615-1618
    [46]Marinez A R, Benavente R. The AR face database. Technical Report 24 Computer Vision Center Technical Report, Spam,1998
    [47]Hwang B W, Byun H, Roh M C,Lee S W. Performance Evaluation of Face Recognition Algorithms on the Asian Face Database, KFDB. Audio and Video Based Biometric Person Authentication.2003:557-565
    [48]BANCA database, http://banca.ee.surrey.ac.uk/
    [49]UMIST database, http://www.she+eld.ac.uk/eee/research/iel/research/face.html
    [50]SURREY database. http://www.ee.surrey.ac.uk/CVSSP/Datasets/NIRVis
    [51]CBSR NIR Face Dataset. http://www.cse.ohio-state.edu/otcbvs-bench/
    [52]PolyU NIR Face Database. http://www4.comp.polyu.edu.hk/-biometrics/polyudb_face.htm
    [53]Chang S G, Yu B, Vetterli M. Adaptive wavelet thresholding for image denoising and compression. IEEE Transactions on Image Processing,2000,9(9): 1532-1546
    [54]Elad M, Aharon M. Image denoising via sparse and redundant representations over learned dictionaries. IEEE Transactions on Image Processing,2006,15(12): 3736-3745
    [55]Yang J C, Wright J, Huang T, et al. Image super-resolution via sparse representation. IEEE Transactions on Image Processing,2010,19(11): 2861-2873
    [56]Viola P, Jones M. Rapid object detection using a boosted cascade of simple features. In:Proc of Computer Vision and Pattern Recognition,2001,511-518
    [57]Zhao J, Lu K and He X. Locality sensitive semi-supervised feature selection. Neurocomputing,2008,71(10-12):1842-1849
    [58]Duda R O, Hart P E and Stork D G. Pattern Classification, second ed. Hoboken. NJ:Wiley-Interscience,2000
    [59]Guyon I, Weston J, Barnhill S, et al. Gene selection for cancer classification using support vector machines. Machine Learning,2002,46(1-3):389-422
    [60]Wang L P, Zhou N N and Chu F. A general wrapper approach to selection of class-dependent features. IEEE Transactions on Neural Networks,2008,19(7): 1267-1278
    [61]Nie F, Xiang S, Jia Y, et al. Trace ratio criterion for feature selection. In:Proc of AAAI Conference on Artificial Intelligence,2008,671-676
    [62]Liu H, Li J and Wong L. A comparative study on feature selection and classification methods using gene expression profiles and proteomic patterns. Genome Informatics,2002,27:51-60
    [63]Golub T R, Slonim D K, Tamayo P, et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science, 1999,286(5439):531-537
    [64]Bishop C M. Neural networks for pattern recognition. Oxford:Oxford University, 1995
    [65]Nie F, Xiang S, Jia Y, et al. Trace ratio criterion for feature selection. In:Proc of AAAI Conference on Artificial Intelligence,2008,671-676
    [66]Cristianini N and Shawe T J. An introduction to SVM. Cambridge:Cambridge University Press,2000
    [67]Cai D, He X F, Han J W et al. Orthogonal laplacianfaces for face recognition. IEEE Transactions on Image Processing,2006,15(11):3608-3614
    [68]He X, Cai D and Niyogi P. Laplacian score for feature selection. In:Proc of Advances in Neural Information Processing Systems, Vancouver,2005,507-514
    [69]He X F, Yan S C, Hu Y X, et al. Face recognition using laplacianfaces. IEEE Transactions on Pattern Analysis and Machine Intelligence,2005,27(3): 328-340
    [70]He X. Learning a maximum margin subspace for image retrieval. IEEE Transactions on Knowledge and Data Engineering,2008,20(2):189-201
    [71]Drineas P and Mahoney M W. On the Nystrom method for approximating a gram matrix for improved kernel-based learning. Journal of machine learning research, 2005,6:2153-2175
    [72]Williams C K I and Seeger M. Using the Nystrom method to speed up kernel machines. In:Proc of Advances in Neural Information Processing Systems,2001, 682-688
    [73]Ye C, Yung N H C and Wang D W. A fuzzy controller with supervised learning assisted reinforcement learning algorithm for obstacle avoidance. IEEE Transactions on Systems, Man, and Cybernetics, Part B,2003,33(1):17-27
    [74]Li P, Church K W and Hastie T J. A sketch-basedsampling algorithm on sparse data. Stanford University, Tech. Rep.,2006
    [75]Li P, Church K W and Hastie T J. Conditional random sampling:A sketch-based sampling technique for sparse data. In:Proc of Advances in Neural Information Processing Systems,2007,873-880
    [76]Mao K Z. Feature subset selection for support vector machines through discriminative function pruning analysis. IEEE Transactions on Systems, Man, and Cybernetics, Part B,2004,34(1):60-67
    [77]Lashkia G V and Anthony L. Relevant, irredundant feature selection and noisy example elimination. IEEE Transactions on Systems, Man, and Cybernetics, Part B,2004,34(2):888-897
    [78]Lin D, Foster D P and Ungar L H. A risk ratio comparison of l0 and l1 penalized regressions. University of Pennsylvania, Tech. Rep.,2010
    [79]Zhang T. Analysis of multi-stage convex relaxation for sparse regularization. Journal of machine learning research,2010,11(3):1087-1107
    [80]Tan M, Tsang I W and Wang L. Learning sparse svm for feature selection on very high dimensional datasets.In:Proc. of Internal Conforence on Machine Learning,2010,1047-1054
    [81]Mutapcic A and Boyd S. Cutting-set methods for robust convex optimization with pessimizing oracles. Optimization Methods and Software,2009,24(3): 381-406
    [82]Narayanan A and Shmatikov V. Robust de-anonymization of large sparse datasets. In:Proc of IEEE Symposium on Security and Privacy,2008,111-125
    [83]Chang Y W, Hsieh C J, Chang K W, et al. Training and testing low-degree polynomial data mappings via linear SVM. Journal of machine learning research, 2010,11(4):1471-2175
    [84]Zukerman M. Introduction to queueing theory and stochastic teletraffic models. http://www.ee.cityu.edu.hk/zukerman/classnotes.pdf,2000
    [85]Grinstead C M and Snell J L. Introduction to Probability. American Mathematical Society,1997
    [86]Ma J, Saul L K, Savage S and Voelker G M. Identifying suspicious URLs:An application of large-scale online learning. In:Proc of International conference on Machine Learning,2009,681-688
    [87]Olshausen B A, Field D J. Sparse coding with an overcomplete basis set:a strategy employed by V1?. Vision Research,1997,37(33):3311-3325
    [88]汪雄良,王春玲.基于改进基追踪方法的信号去噪.电子技术应用.2005,8:19-21
    [89]孙玉宝,肖亮,韦志辉等.基于稀疏表示的低比特率可伸缩图像编码算法研究.光学学报,2008,28(s2):77-81
    [90]Mairal J, Elad M, Sapiro G. Sparse representation for color image restoration. IEEE Transactions on Image Processing.2008,17(1):53-69
    [91]张新鹏,王朔中.基于稀疏表示的密写编码.电子学报,2007,35(10):1892-1896
    [92]Mallat S, Zhang Z. Matching pursuit with time-frequency dictionaries. IEEE Transactions on Signal Processing,1993,41(12):3397-3415
    [93]Chen S S, Donoho D L, Saunders M A. Atomic decomposition by basis pursuit. SIAM Journal on Scientific Computing,1998,20(1):33-61
    [94]Gorodnitsky I F, Rao B D. Sparse signal reconstruction from limited data using FOCUSS:a re-weighted minimum norm algorithm. IEEE Transactions on Signal Processing,1997,45(3):600-616
    [95]Wipf D P, Rao B D. Sparse bayesian learning for basis selection. IEEE Transactions on Signal Processing,2004,52(8):2153-2164
    [96]Blumensath T, Davies M. Iterative thresholding for sparse approximations. Journal of Fourier Analysis and Applications,2008,14(5):629-654
    [97]Mallat S. A wavelet tour of signal processing. Academic Press, New York,1999
    [98]Candes E, Donoho D L. Curvelets-a surprisingly effective nonadaptive representation for objects with edges. Technical Report, Department of Statistics, Stanford University, USA,1999
    [99]Do M N, Vetterli M. The contourlet transform:An efficient directional multiresolution image representation. IEEE Transactions on Image Processing, 2005,14(12):2091-2106
    [100]孙玉宝,肖亮,韦志辉等.基于Gabor感知多成份字典的图像稀疏表示算法研究.自动化学报,2008,34(11):1379-1387
    [101]孙蒙,王正明.两类混合特征信号的超完备稀疏表示方法.电子学报,2007,35(7):1327-1332
    [102]Gersho A, Gray R M. Vector quantization and signal compression. Kluwer Academic, Norwell, MA,1991
    [103]Engan K, Aase S O, Hus(?)y J H. Multi-frame compression:Theory and design. Signal Processing,2000,80(10):2121-2140
    [104]Aharon M, Elad M, Bruckstein A. The K-SVD:An algorithm for designing of overcomplete dictionaries for sparse representations. IEEE Transactions on Signal Processing,2006,54(11):4311-4322
    [105]Mairal J, Bach F, Ponce J, et al. Discriminative learned dictionaries for local image analysis. In:Proc of Computer Vision and Pattern Recognition. Anchorage, Alaska,2008,1-8
    [106]Lewicki M S, Olshausen B A. A probabilistic framework for the adaptation and comparison of image codes. Optical Society of America A.1999,16(7): 1587-1601
    [107]Kreutz D K, Murray J F, Rao B D, et al. Dictionary learning algorithms for sparse representation. Neural Computation,2003,15(2):349-396
    [108]Zoutendijk G. Methods of feasible directions. Amesterdam. The Netherlands: Elsevier,1960
    [109]Candes E. andRomberg J.11-magic:recovery of sparse signals via convex programming, http://www.acm.caltech.edu/11magic/,2005
    [110]Figueiredo M A T, Nowak R D, Wright S J. Gradient projection for sparse reconstruction:Application to compressed sensing and other inverse problems. IEEE Journal of Selected Topics in Signal Processing,2007,1(4):586-597
    [111]Pati Y C, Rezaiifar R, Krishnaprasad P S. Orthogonal matching pursuit: Recursive function approximation with applications to wavelet decomposition. In:Proc. of the Asilomar Conference on Signals Systems and Computers,1993, 40-44
    [112]Daubechies I, Friese M D, Mol C D. An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Communications on Pure and Applied Mathematics,2004,57(11):1413-1457
    [113]Dias J B, Figueiredo M. A new TwIST:two-step iterative shrinkage/ thresholding algorithms for image restoration. IEEE Transactions on Image Processing,2007,16(12):2992-3004
    [114]Becker S, Bobin J, Candes E J. NESTA:A fast and accurate first-order method for sparse recovery. Technical Report, California Institute of Technology, April, 2009
    [115]Afonso M V, Bioucas-Dias J M, Figueiredo M A T. Fast image recovery using variable splitting and constrained optimization. IEEE Transactions on Image Processing,2010,19(9):2345-2356
    [116]Blumensath T, Davies M E. Gradient pursuits. IEEE Transactions on Signal Processing,2008.56(6):2370-2382
    [117]Lee K, Ho J, Kriegman D. Acquiring linear subspaces for face recognition under variable lighting. IEEE Transactions on Pattern Analysis and Machine Intelligence,2005,27(5):684-698
    [118]Gualtieri J A, Cromp R F. Support vector machines for hyperspectral remote sensing classification. In:Proc. of SPIE,1998, San Diego, CA,1998,221-232
    [119]Pan Z, Healey G, Prasad M, et al. Face recognition in hyperspectral images. IEEE Transactions on Pattern Analysis and Machine Intelligence,2003,25(12): 1552-1560
    [120]Li S Z, Chu R F, Liao S C, et al. Illumination invariant face recognition using near-infrared images. IEEE Transactions on Pattern Analysis and Machine Intelligence,2007,29(4):1-13
    [121]Ahonen T, Hadid A, and Pietikainen M. Face recognition with local binary patterns. In:Proc of European Conference on Computer Vision,2004,469-481
    [122]Duda R, Hart P, Stork D. Pattern Classification,2nd ed. John Wiley & Sons, 2001
    [123]何玉青,刘飞虎,冯光琴等.基于支持向量机的近红外人脸与虹膜融合算法,光子学报,2012,39(1):1-5
    [124]Li S Z, Chu R F, Ao M, et al. Highly accurate and fast face recognition using near infrared images, In:Proc of IAPR International Conference on Biometrics,2006,151-158
    [125]Wright J, Yang A Y, Ganesh A, Sastry S S, Ma Y. Robust face recognition via sparse representation. IEEE Transactions on Pattern Analysis and Machine Intelligence,2009,31(2):210-227
    [126]Yang M and Zhang L. Gabor feature based sparse representation for face recognition with Gabor occlusion dictionary. In:Proc of European Conference on Computer Vision,2010,448-461
    [127]Baron D, Wakin M B, Duarte M, Sarvotham S and Baraniuk R. Distributed compressed sensing, available at:http://dsp.rice.edu/cs/DCS112005.pdf
    [128]Afonso M V, Bioucas-Dias J M and igueiredo M A T F. Fast image recovery using variable splitting and constrained optimization. IEEE Transactions on Image Processing,2010,19(9):2345-2356
    [129]Nilsson M, Nordberg J and Claesson I. Face detection using local SMQT features and split up snow classifier. In:Proc of International Conference on Acoustics, Speech, and Signal Processing,2007,589-592
    [130]Yang J, Zhang D, Frangi A F, Yang J Y. Two-dimensional PCA:a new approach to appearance based face representation and recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence,2004,26(1):131-137
    [131]Chen T, Yin W, Zhou X S, Comaniciu D, Huang T S. Illumination normalization for face recognition and uneven background correction using total variation based image models. In:Proc of Computer Vision and Pattern Recognition,2005,2:532-539

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700