用户名: 密码: 验证码:
目标跟踪系统中的鲁棒性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着计算机科学、电子技术、人工智能等的发展与普及,目标跟踪技术已广泛地应用到民用和军事上,如一些重要场所的视频监控系统、自主导航、智能交通监控系统、人机交互系统、视频压缩等。近年来,大量研究人员对目标跟踪进行了广泛、深入的研究,并针对各种应用环境提出了有效的视频目标跟踪算法。然而,由于目标跟踪系统相当复杂,故研究具有鲁棒性强、实用性好的目标跟踪算法仍然是计算机视觉领域的研究热点之一。
     本文对目标跟踪系统中的目标特征选择、目标表示模型、相似性度量、目标定位算法这四个方面开展了深入研究,提出了一些新方法。论文的主要研究内容和成果概括如下:
     1.当背景与目标的颜色分布比较相似时,CAMSHIFT目标跟踪算法就不能成功跟踪目标,为此,本文提出了一种基于自适应高斯混合模型的目标稳定分布提取算法。该算法首先用一种快速有效的自适应高斯混合模型建模方法对目标和背景建模,用改进的巴氏距离评估目标模型中所有高斯单元的区分能力,选择出具有较高区分能力的高斯单元,并由它们生成目标的稳定分布。实验结果表明该算法能够成功提取目标的稳定分布,并能找到目标中的稳定部分,将目标稳定分布应用到CAMSHIFT算法后能成功跟踪目标,从而提高了目标跟踪性能。
     2.现有的基于距离度量的目标特征选择方法大多只适合度量两个单峰分布之间的距离,而实际上目标和背景分布往往是呈多峰分布的,为此,本文提出了一种基于改进的巴氏距离的目标特征选择方法。对于每一个特征,用高斯混合模型对目标和背景建模,然后用改进的巴氏距离评估目标模型中每个高斯单元的区分能力,累加之和作为该特征的区分能力,并以此作为特征选择的依据。静态图像上的主观实验结果表明本文提出的度量方法能有效地度量两个多峰分布之间的距离,能够选择出具有高区分能力的特征,用这些高区分能力的特征做目标跟踪,显著提高了目标跟踪的稳定性。
     3.针对传统的基于EM算法的高斯混合模型建模耗时太大问题,提出了一种在灰度和像素坐标的联合空间进行快速高斯混合建模的方法,并利用积分图像加快候选模型参数计算速度。同时,本文还提出了一种基于近似对称KL距离的度量方法来计算目标高斯混合模型与候选目标高斯混合模型之间的相似度。实验结果表明本文提出的建模方法可以大幅减少目标建模时间和候选模型参数估计时间,本文提出的度量方法具有较强的区分能力且稳定,显著地提升了目标跟踪性能。
     4.现有空间直方图相似性度量方法要么不稳定,要么区分能力不够强,为此,本文提出了两种新的空间直方图相似性度量方法:一种是基于对称KL距离的度量方法,一种是基于改进JSD距离的度量方法。前者利用了对称KL距离具有较强的区分能力,后者是通过合理利用高斯的权重来加强JSD距离度量方法的区分能力。理论和实验证明了本文提出的两种度量方法既稳定,又具有较强的区分能力,优于现有的度量方法,目标跟踪性能得到了大幅度的提升。
With the development and popularization of computer science, electronic technology and artificial intelligence, object tracking technology has been widely applied to both civilian and military, such as visual surveillance, autonomous navigation, intellginet traffic monitor system, human-computer interaction system, video compression. In recent years, a large number of rearchers have studied the object tracking extensively and in-depth. Many effective video tracking algorithms are proposed for a variety of application environments. However, the object tracking system is quite complex.. Therefore, it is still one of the hot research fields of computer vision to develop a strong robustness and good applicability object tracking algorithm.
     To deal with the difficult problem in tracking object, the research is focused on three major components of the object tracking system:feature selection, target presentation model, similarity measure and target localization algorithm in this dissertation. And several new effective methods have been proposed. The main contents and contribtuons of this dissertation are summarized as follows:
     1. When the background and object have the similar color distribution, CAMSHIFT tracking algorithm can not successfully track the object. Thus, the robust distribution extraction algorithm based on adaptive Gaussian Mixture Model (GMM) is proposed. First, a fast and efficient adaptive GMM modeling method is used to model the target and background. The separability of each Gaussian component of object model is evaluated by the improved Bhattacharyya distance. The Gaussian components of object model that have a high separability are selected to generate the robust distribution. Experimental results show our algorithm can successfully extract the robust distribution and find the stable part of the object. When the robust distribution is applied to CAMSHIFT tracking algorithm, the accurate and robust tracking results are obtained and the tracking performance is improved.
     2. The existing feature selection methods based on distance measure are mostly only suitable to measure the distance between the two unimodal distributions. However, in fact, the background and object distributions are often multimodal distribution. Therefore, we propose a new feature selection based on improved Bhattacharyya distance. For each feature, the object and background is modeled with a GMM. The improved Bhattacharyya distance is used to evaluate the discriminability of each Gaussian component of object model, which is added together to represent the separability of this feature. Feature selection is done according to the separability of each feature. The subjective experimental results on the static images show that our measure can effectively evaluate the distance between two multi-peak distributions, and select the most discriminative features to track the object, which helps to improve the tracking performance.
     3. The traditional EM-based GMM modeling method is more time-consuming. A fast and effective GMM modeling method in a joint gray-spatial space is proposed. And the integral image is used to improve the computational efficiency of the candidate model parameters. Meanwhile, the approximate symmetric KL divergence between two GMMs is proposed to compute the similarity between the object GMM and the candidate GMM. The expremental results show the proposed modeling method can significantly reduce the target modeling time and the computational time of the parameters of the candidate model, and the proposed measure is robust and has a strong discriminability. Moreover, the tracking performance is significantly improved.
     4. The existing spatiogram similarity measures are either not robust, or not discriminative enough. Two spatiogram similarity measures are proposed:one is based on the symmetric KL divergence, and another is based on improved Jensen-Shannon Divergence (JSD). The former takes advantage of the strong discriminability of the symmetric KL divergence. The latter makes full use of the weight of the Gaussian component to strengthen the discriminability of JSD. Theorectical and experimental results show that our proposed two measures are better than existing measures, and the tracking performace is greatly improved.
引文
[1]刘传才.图像理解与计算机视觉.厦门:厦门大学出版社,2002.
    [2]Canny J. A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence,1986,8(6):679-698.
    [3]Liu C. A Bayesian discriminating features method for face detection. IEEE Transactions on Pattern Analysis and Machine Intelligence,2003,25(6):725-740.
    [4]Dong G, Xie M. Color clustering and learning for image segmentation based on neural networks. IEEE Transactions on Neural Networks,2005,16(4):925-936.
    [5]Salzmann M, Pilet J, Ilic S, et al. Surface Deformation Models for Nonrigid 3D Shape Recovery. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007,29(8):1481-1487.
    [6]Nicolescu M, Medioni G. A voting-based computational framework for visual motion analysis and interpretation. IEEE Transactions on Pattern Analysis and Machine Intelligence,2005,27(5):739-752.
    [7]Stewart A, Langer M. Toward accurate recovery of shape from shading under diffuse lighting. IEEE Transactions on Pattern Analysis and Machine Intelligence,1997, 19(9):1020-1025.
    [8]McLachlan D. Similarity Function for Pattern Recognition. Journal of Applied Physics,1961,32(9):1795-1796.
    [9]Xu G, Ma Y F, Zhang H J, et al. An HMM-based framework for video semantic analysis. IEEE Transactions on Circuits and Systems for Video Technology,2005, 15(11):1422-1433.
    [10]Cohen I. and Medioni G. Detecting and tracking moving objects for video surveillance. In:Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Fort Collins, CO, USA:IEEE,1999:319-325.
    [11]Sage K. and Young S. Security applications of computer vision. IEEE Aerospace and Electronics Systems Magazine,1999,14(4):pp.19-29.
    [12]Collins R.T. and Lipton A.J. Introduction to the special section on video surveillance. IEEE Transactions on Pattern Analysis and Machine Intelligence,2000,22(8): pp.745-746.
    [13]Haritaoglu I., Harwood D. and Davis L. S. W4:Real-time surveillance of people and their activities. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000,22(8):809-830.
    [14]KaewTrakulPong P. and Bowden R. A real time adaptive visual surveillance system for tracking low-resolution color targets in dynamically changing scenes. Image and Vision Computing,2003,21(10):913-929.
    [15]Zhao T. and Nevatia R. Tracking multiple humans in complex situations. IEEE Transactions on Pattern Analysis and Machine Intelligence,2004,26(9):1208-1221.
    [16]Sikora T. The MPEG-4 video standard verification model. IEEE Trans on Circuits Systems for Video Technology,1997,7(1):19-31.
    [17]Wang J., Cohen M. F. Very low frame-rate video streaming for face-to-face teleconference. In:Proceedings of Data Compression Conference. Washington, DC, USA:IEEE,2005:309-318.
    [18]Tieu K., Viola P. Boosting image retrieval. In:Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Hilton Head Island, SC, USA:IEEE,2000:228-235.
    [19]Fablet R., P. Bouthemy. Non-parametric motion activity analysis for statistical retrieval with partial query. Journal of Mathematical Imaging and Vision,2001, 14(3):257-270.
    [20]Tang C.W. Spatiotemporal Visual Considerations for Video Coding. IEEE Transactions on Multimedia.2007,9 (2):231-238.
    [21]Agrafiotis D., Davies S. J. C., Canagarajah N., et al. Towards efficient context-specific video coding based on gaze-tracking analysis. ACM Transactions on Multimedia Computer Communications and Applications.2007,3 (4):1-15.
    [22]Bobick A.F., Wilson A.D. A state-based technique for the summarization of recognition of gesture. In:Proceedings of International Conference on Computer Vision, Washington, DC, USA:IEEE,1995:382-388.
    [23]Darell T., Moghaddam B., Pentland A. Active face tracking and pose estimation in an Interactive Room. In:Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco, CA, USA:IEEE, 1996:67-72.
    [24]Nait-Charif H., McKenna S. J. Head tracking and action recognition in a smart meeting room. In:Proceedings of IEEE International Workshop on Performance Evaluation of Tracking and Surveillance, Graz, Austria:IEEE,2003:24-31.
    [25]Pentland A. Looking at people:sensing for ubiquitous and wearable computing. IEEE Transactions on Pattern Analysis and Machine Intelligence.2000,22 (1): 107-119.
    [26]Zhu Z. G, Xu G Y. VISATRAM:a real-time vision system for automatic traffic monitoring. Image and Vision Computing.2000,18 (10):781-794.
    [27]Pai C.J., Tyan H.R., Liang Y.M., et al. Pedestrian detection and tracking at crossroads. Pattern Recognition.2004,37 (5):1026-1034.
    [28]Masoud O., Papanikolopoulos N. P. A novel method for tracking and counting pedestrians in real-time using a single camera. IEEE Transaction on Vehicular Technology,2001,50(5):1267-1278.
    [29]Bardinet E., Cohen L. D., Ayache N. Tracking medical 3D data with a parametric deformable model, Proceedings of International Symposium on Computer Vision. Ispra, Italy:IEEE,1995:299-304.
    [30]Guerrero J., Salcudean S. E., McEwen J. A., et al. Real-Time Vessel Segmentation and Tracking for Ultrasound Imaging Applications. IEEE Transactions on Medical Imaging.2007,26 (8):1079-1090.
    [31]Shi P. et al. A model -based integrated approach to track myocardial deformation using displacement and velocity constraints. In:Proceedings of International Conference on Computer Vision, Cambridge, MA, USA:IEEE,1995:687-692.
    [32]Remondino F.3-D reconstruction of static human body shape from image sequence. Computer Vision and Image Understanding.2004,93 (1):65-85.
    [33]Salzmann M, Pilet J, Ilic S, et al. Surface Deformation Models for Nonrigid 3D Shape Recovery. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007,29(8):1481-1487.
    [34]Papanikolopoulos N. P., Khosla P. K., Kanade T. Visual tracking of a moving target by a camera mounted on a robot:a combination of control and vision. IEEE Transactions on Robotics and Automation,1993,9(1):14-35.
    [35]Davison A., Murray D. Mobile robot localization using active vision. In: Proceedings of European Conference on Computer Vision, London, UK: Springer-Verlag,1998:809-825.
    [36]Jung B., Sukhatme G S. A generalized region-based approach for multi-target tracking in outdoor environments. In:Proceedings of IEEE International Conference on Robotics and Automation, New Orleans, LA, United States:IEEE,2004: 2189-2195.
    [37]Lee M. W., Cohen I., Jung S. K. Particle filter with analytical inference for human body tracking. In:Proceedings of IEEE Workshop on Motion and Video Computing, Washington, DC, USA:IEEE,2002:159-165.
    [38]Ning H. Z., Tan T. N., Wang L., et al. People tracking based on motion model and motion constraints with automatic initialization. Pattern Recognition,2004,37(7): 1423-1440.
    [39]Xiang T. and Gong S. G Beyond tracking:Modelling activity and understanding behaviour. International Journal of Computer Vision,2006,67(1):21-51.
    [40]Hager GD., Hager P.N. Efficient region tracking with parametric models of geometry and illumination. IEEE Transactions on Pattern Analysis and Machine Intelligence,1998,20(10):1025-1039.
    [41]Black M. J. and Jepson A. D. EigenTracking:Robust matching and tracking of articulated objects using a view-based representation. International Journal of Computer Vision,1998,26(1):63-84.
    [42]Comaniciu D., Ramesh V, Meer P. Real-time tracking of non-rigid objects using mean shift. In:Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Hilton Head, SC, USA:IEEE,2000:142-149.
    [43]Isard M., MacCormick J. BraMBLe:a Bayesian multiple-blob tracker. In: Proceedings of IEEE International Conference on Computer Vision, Vancouver, British Columbia,2001:34-41.
    [44]Bradski G. R. Real time face and object tracking as a component of a perceptual user interface. In:Proceedings of the fourth IEEE Workshop on Applications of Computer Vision,1998:214-219.
    [45]Raja Y., McKenna S.J., Gong S.G. Color model selection and adaptation in dynamic scenes. In:Proceedings of European Conference on Computer Vision, Freiburg, Germany:Springer-Verlag,1998:460-474.
    [46]Xu Richard Y. D., Allen John G., Jin Jesse S. Robust real-time tracking of non-rigid objects. In:Proceedings of the Pan-Sydney area workshop on Visual information processing. Darlinghurst, Australia:Australian Computer Society, Inc.,2004:95-98.
    [47]Collins R.T., Liu Y., Leordeanu M. Online selection of discriminative tracking features. IEEE Transactions on Pattern Analysis Machine Intelligence,2005,27(10): 1631-1643.
    [48]Liang D., Huang Q., Jiang S., et al. Mean-shift blob tracking with adaptive feature selection and scale adaptation. In:Proceedings of the 14th IEEE International Conference on Image Processing, San Antonio, Texas, USA:IEEE,2007:369-372.
    [49]He W., Zhao X., Zhang L. Online feature extraction and selection for object tracking. In:Proceedings of IEEE International Conference on Mechatronics and Automation, Harbin, China:IEEE,2007:3497-3502.
    [50]Wang J. Y., Chen X. L., Gao W. Online selecting discriminative tracking features using particle filter. In:Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition, San Diego, CA, USA:IEEE,2005: 1037-1042.
    [51]Nedovic V., Liem M., Corzilius M., et al. Kernel-based object tracking using adaptive feature selection, en Project Report,2005, Faculty of Science, Information & Communication Technology, U. van Amsterdam.
    [52]Venkataraman V., Fan G., Fan X. Target tracking with online feature selection in FLIR imagery. In:Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition, Minneapolis, Minnesota, USA:IEEE,2007:1-8.
    [53]黎宁,史以桢,周建江.一种基于自适应特征选择的目标实时跟踪算法[J].光电工程,2009,36(7):1-7.
    [54]Avidan S. Support vector tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence,2004,26 (8):1064-1072.
    [55]Li M., Kwok J., Lu B. Online multiple instance learning with no regret. In: Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition, San Francisco, CA, USA:IEEE,2010:1395-1401.
    [56]Grabner H., Leistner C., Bischof H. Semi-supervised on-line boosting for robust tracking. In:Proceedings of the European Conference on Computer Vision, Marseille, France:Springer-Verlag,2008:234-247.
    [57]Avidan S. Ensemble tracking. IEEE Transactions on Pattern Analysis Machine Intelligence,2007,29(2):261-271.
    [58]Grabner H., Grabner M., Bischof H. Real-time tracking via on-line boosting. In: Proceedings of the British Machine Vision Conference, Edinburgh, UK,2006: 47-56.
    [59]张良春,夏利民.一种自适应特征选择的运动目标实时跟踪算法[J].小型微型计算机系统,2008,29(7):1324-1328.
    [60]颜佳,吴敏渊.遮挡环境下采用在线Boosting的目标跟踪[J].光学精密工程,2012,20(2):439-446.
    [61]Lu L., Hager G. A nonparametric treatment for location/segmentation based visual tracking. In:Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition, Minneapolis, Minnesota, USA:IEEE,2007:1-8.
    [62]Viola P., Jones M. Rapid object detection using a boosted cascade of simple features. In:Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Kauai, HI, USA:IEEE,2001:511-518.
    [63]Tuzel O., Porikli F., Meer P. Region covariance:A fast descriptor for detection and classification, In:Proceedings of European Conference on Computer Vision, Graz, Austria:Springer-Verlag,2006:6611-675.
    [64]Wang H., Suter D., Schindler K., et al. Adaptive object tracking based on an effective appearance filter. IEEE transactions on Pattern Analysis and Machine Intelligence,2007,29(9):1661-1667.
    [65]Bhattacharyya, A. On a measure of divergence between two statistical populations defined by their probability distribution. Bulletin of the Calcutta Mathematical Society,1943,35:99-110.
    [66]Comaniciu D., Ramesh V., Meer P. Kernel-based object tracking. IEEE Transactions on Pattern Analysis Machine Intelligence,2003,25(5):564-577.
    [67]Nummiaro K., Koller-Meier E., Gool L. V. An adaptive color-based particle filter. Image and Vision Computing,2003,21:99-110.
    [68]Smeaton A.F., O'Conaire C., O'Connor N.E. An improved spatiogram similarity measure for robust object localization. In:Proceedings of ICASSP. Honolulu:IEEE, 2007:1067-1072.
    [69]Davis L. S, Yang C.J., Duraiswami R. Efficient mean-shift tracking via a new similarity measure. In:Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, San Diego, CA, USA:IEEE,2005:176-183.
    [70]Zhu G., Zeng Q., Wang C. Efficient edge-based object tracking. Pattern Recognition, 2006,39(11):2223-2228.
    [71]Murshed M., Dewan M.A.A., Oksam Chae. Moving object tracking - a parametric edge tracking approach. In:Proceedings of International Conference on Computers and Information Technology, Dhaka, Bengal:IEEE,2009:471-476.
    [72]Liu Weijin, Zhang Yujin. Real time object tracking using fused color and edge cues. In:Proceedings of International Symposium on Signal Processing and Its Applications, Sharjah, United Arab Emirate:IEEE,2007:1-4.
    [73]Maggio E., Smeraldi F., Cavallaro A. Combining color and orientation for adaptive particle filter-based tracking. In:Proceedings of British Machine Vision Conference, Oxford, UK,2005:659-668.
    [74]Yang C., Duraiswami R., Davis L. Fast multiple object tracking via a hierarchical particle filter. In:Proceedings of IEEE International Conference on Computer Vision, Beijing, China:IEEE,2005:212-219.
    [75]Yang Yang, Wang Zhiliang, Sun Dehui, et al. Automatic Object Tracking Using Edge Orientation Histogram Based CamShift. In:Proceedings of International Conference on Information and Computing, Wuxi, China:IEEE,2010:231-234.
    [76]Paragios N., Deriche R. Geodesic active contours and level sets for the detection and tracking of moving objects. IEEE Transactions on Pattern Analysis Machine Intelligence,2000,22 (3):266-280.
    [77]Peterfreund N. Robust tracking of position and velocity with Kalman snakes. IEEE Transactions on Pattern Analysis and Machine Intelligence,1999,21(6):564-569.
    [78]Isard M., Blake A. CONDENSATION-Conditional density propagation for visual tracking, International Journal of Computer Vision,1998,29(1):5-28.
    [79]Li P. H., Zhang T. W., Pece A. E. C. Visual contour tracking based on particle filters. Image and Vision Computing,2003,21(1):111-123.
    [80]Chen Y., Rui Y., Huang T. S. JPDAF based HMM for real-time contour tracking. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Kauai, Hawaii, USA:IEEE,2001:543-550.
    [81]Haralick R., Shanmugam B., Dinstein I. Textural features for image classification. IEEE Trans. Syst. Man Cybern.1973,33(3):610-622.
    [82]Grabner H., Leistner C., Bischof H. Semi-supervised on-line boosting for robust tracking. In:Proceedings of the European Conference on Computer Vision, Marseille, France:Springer-Verlag,2008:234-247.
    [83]Li M., Kwok J., Lu B. Online multiple instance learning with no regret. In: Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition, San Francisco, CA, USA:IEEE,2010:1395-1401.
    [84]Li A., Tang F. Guo Y., et al. Discriminative nonorthogonal binary subspace tracking. In:Proceedings of the European Conference on Computer Vision, Crete, Greece: Springer-Verlag,2010:258-271.
    [85]Nguyen H.T., Smeulders A.W.M. Tracking aspects of the foreground against the background. In:Proceedings of European Conference on Computer Vision, Prague, Czech Republic:Springer-Verlag,2004:446-456.
    [86]Norouznezhad E., Bigdeli A., Postula A., et al. Robust object tracking using local oriented energy features and its hardware/software implementation. In:Proceedings of 11th International Conference on Control Automation Robotics & Vision, Singapore:IEEE,2010:2060-2066.
    [87]Jepson A. D., Fleet D. J., El-Maraghi T. F. Robust online appearance models for visual tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003,25(10):1296-1311.
    [88]Viola P., Jones M. J. Robust real-time face detection. International Journal of Computer Vision,2004,57(2):137-154.
    [89]Dong L., Schwartz S. DCT-based object tracking in compressed video. In: Proceedings of the IEEE Acoustics, Speech and Signal Processing (ICASSP), Toulouse, France:IEEE,2006:14-19.
    [90]Ning J., Zhang L., Zhang D., et al. Robust object tracking using joint color-texture histogram. International Journal of Pattern Recognition and Artificial Intelligence (IJPRAI),2009,7(23):1245-1264.
    [91]Ying H. W., Qiu X. N., Song J. T., et al. Particle filtering object tracking based on texture and color. In:Proceedings of 2010 International Symposium on Intelligence Information Processing and Trusted Computing, Huanggang, China:IEEE,2010: 626-630.
    [92]Yin J., Han Y., Li J., et al. Research on real-time object tracking by improved camshift. In:Proceedings of 2009 International Symposium on Computer Network and Multimedia Technology, Wuhan, China:IEEE,2009:1-4.
    [93]Gu S., Zheng Y., Tomasi C. Efficient visual object tracking with online nearest neighbor classifier. In:Proceedings of the 10th Asian Conference on Computer Vision, Queenstown, New Zealand:Springer-Verlag,2010:271-282.
    [94]Chang W., Chen C., Hung Y. Discriminative descriptor-based observation model for visual tracking. In:Proceedings of 18th International Conference on Pattern Recognition, Hong Kong:IEEE,2006:83-86.
    [95]Tissainayagam P., Suter D. Object tracking in image sequences using point features. Pattern Recognition,2005,38(1):105-113.
    [96]Tsuduki Y, Fujiyoshi H. A method for visualizing pedestrian traffic flow using SIFT feature point tracking. In Proceedings of 3rd Pacific-Rim Symposium on Image and Video Technology, Tokyo, Japan:Springer-Verlag,2009:25-36.
    [97]Xu S., Huo H., Fan T. Object tracking based on time-varying saliency. In: Proceedings of International Society for Photogrammetry and Remote Sensing, Beijing, China,2008:175-180.
    [98]Zhang S., Stentiford F. A salincy based object tracking method. In:Proceedings of sixth International Workshop on Content-Based Multimedia Indexing, London, UK: IEEE,2008:512-517.
    [99]Bazzani L., Cristani M., Bicego M., et al. Online subjective feature selection for occlusion management in tracking applications. In:Proceedings of the 16th IEEE International Conference on Image Processing, Cairo, Egypt:IEEE,2009: 3617-3620.
    [100]Wang J., Yagi Y. Patch-based adaptive tracking using spatial and appearance information. In:Proceedings of the 15th IEEE International Conference on Image Processing, San Diego, CA, USA:IEEE,2008:1564-1567.
    [101]周超,韩波,李平,et al.基于自适应特征的地标跟踪算法[J].计算机工程,2011,37(24):155-157.
    [102]杨心力,杨恢先,冷爱莲.在线特征选择和遮挡处理的目标跟踪[J].计算机应用研究,2011,28(7):2797-2800.
    [103]徐建军,危自福,毕笃彦.基于在线特征选择的粒子滤波跟踪算法[J].光电工程,2010,37(6):23-28,72.
    [104]Hager G.D., Hager P.N. Efficient region tracking with parametric models of geometry and illumination. IEEE Transactions on Pattern Analysis and Machine Intelligence,1998,20(10):1025-1039.
    [105]Matthews I., Ishikawa T., Baker S. The template update problem. IEEE Transactions on Pattern Analysis and Machine Intelligence,26(6):810-815,2004.
    [106]Stamou G. N., Nikolaidis N., Pitas I. Object tracking based on multiscale morphological templates. In:Proceedings of European Signal Processing Conference, Antalya, Turkey,2005:1-4.
    [107]Mao D., Cao Y.Y., Xu J.H, et al. Object tracking integrating template matching and mean shift algorithm. In:Proceedings of the IEEE International Conference on Multimedia Technology, Hangzhou, China:IEEE,2011:3583-3586.
    [108]Chen J.H., Chen C.S., Chen Y.S. Fast algorithm for robust template matching with m-estimator. IEEE Transactions on Signal Processing,51(1):230-243, January 2003.
    [109]Feng T., Hai T. Fast multi-scale template matching using binary features. In: Proceedings of the IEEE Workshop on Applications of Computer Vision, Washington, USA:IEEE,2007:36-36.
    [110]Briechle K., Hanebeck U. D. Template matching using fast normalized cross correlation. In:Proceedings of SPIE:Optical Pattern Recognition XII, Orlando, Florida, USA,2001:95-102.
    [111]Kass M., Witkin A., Terzopoulous D. Snakes:active contour models. International Journal of Computer Vision,1988,1(4):321-331.
    [112]Leymarie F., Levine M. D. Tracking deformable objects in the plane using an active contour model. IEEE Transactions on Pattern Analysis and Machine Intelligence. 1993,15 (6):617-634.
    [113]P. Perez, C. Hue, J. Vermaak, et al. Color-based probabilistic tracking. In: Proceedings of 7th European Conference on Computer Vision, Copenhagen, Denmark:Springer-Verlag,2002:661-675.
    [114]Bircfield S.T., Rangarajan S. Spatiograms versus histograms for region-based tracking. In:Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. San Diego:IEEE,2005:1158-1163.
    [115]O'Connor N.E., O'Conaire C., Smeaton A.F. Thermo-visual feature fusion for object tracking using multiple spatiogram trackers. Machine Vision and Application, 2008,19(5-6):483-494.
    [116]Li Y., Ai H. Z. Huang C., et al. Robust head tracking with particles based on multiple cues. In:Proceedings of ECCV Workshop on HCI. Graz:Springer,2006: 1-11.
    [117]Birchfield S.T., Rangarajan S. Spatial histograms for region-based tracking. ETRI Journal,2007,29(5):697-699.
    [118]O'Conaire C., O'Connor N.E. Smeaton A.F., et al. Organising a Daily Visual Diary Using Multi-Feature Clustering. In:Proceedings of SPIE Electronic Imaging Multimedia Content Access Algorithm and System, San Jose, CA, USA:Optical Society of America,2007.
    [119]Ulges A., Lampert C.H., Keysers D. Spatiogram-Based Shot Distances for Video Retrieval. In:Proceedings of TRECVID Workshop, Gaithersburg, MD, USA,2006.
    [120]Gong L.Y., Wang T.J., Liu F., et al. A lie group based spatiogram similarity measure. In:Proceedings of IEEE International Conference on Multimedia and Expo, New York,USA:IEEE,2009:582-585.
    [121]Mckenna S., Raja Y., Gong S. Object tracking using adaptive color mixture models, Image and Vision Computing,1999,17 (3-4):225-231.
    [122]Lee D. Effective Gaussian mixture learning for video background subtraction, IEEE Transactions on Pattern Analysis and Machine Intelligence,2005,27(5):827-832.
    [123]Stauffer C., Grimson W. Learning patterns of activity using real-time tracking, IEEE Transactions on Pattern Analysis and Machine Intelligence,2000,22(8):747-757.
    [124]Jepson A. D., Fleet D. J., El-Maraghi T. Robust online appearance model for visual tracking. In:Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Kauai, HI, USA:IEEE,2001:415-422.
    [125]Zhou S., Chellappa R., Moghaddam B. Visual tracking and recognition using appearance-adaptive models in particle filters, IEEE Transactions on Image Processing,2004,13(11):1491-1506.
    [126]Elgammal A., Duraiswami R., Davis L. S. Efficient kernel density estimation using the fast Gauss transform with applications to color modeling and tracking. IEEE transactions on Pattern Analysis and Machine Intelligence,2003,25(11):1499-1504.
    [127]Elgammal A., Duraiswami R., Davis L. S. Probabilistic tracking in joint feature-spatial spaces. In:Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Madison, WI, USA,:IEEE,2003:781-788.
    [128]Yang C.J., Duraiswami R. Davis L. S. Similarity measure for nonparametric kernel density based object tracking. In:Proceedings of Eighteenth Annual Conference on Neural Information Processing Systems, Victoria, Canada,2005:1561-1568,.
    [129]Zhang H.H., Huang W.M., Huang Z.Y., et al. Affine object tracking with kernel-based spatial-color representation. In:Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, San Diego, USA,2005:293-300.
    [130]Han B., Comaniciu D., Zhu Y, et al. Sequential kernel density approximation and its application to real-time visual tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence,2008,30(7):1186-1197.
    [131]Hu J.S., Juan C.W., Wang J.J. A spatial-color mean-shift object tracking algorithm with scale and orientation estimation. Pattern Recognition Letters,2008,29(16): 2165-2173.
    [132]Geman S., Bienenstock E., Doursat R. Neural networks and the bias/variance dilemma. Neural Computation,1992,4(1):1-58.
    [133]Redner R.A., Walker H.F. Mixturedensities maximum likelihood and the EM algorithm. SIAM Review,1984,26(2):195-239.
    [134]Smyth P. Model selection for probabilistic clustering using cross-validated likelihood. Statistics and Computing.2000,10 (1):63-72.
    [135]Xiong G., Feng C., Ji L. Dynamical Gaussian mixture model for tracking elliptical living objects. Pattern recognition letters,2006,27 (7):838-842.
    [136]Windham M., Cutler A. Information ratios for validating mixture analyses. Journal of the American Statistical Association,1992,87 (420):1188-1192.
    [137]Schwarz G. Estimating the dimension of a model. The annals of statistics,1978,6 (2):461-464.
    [138]Campbell J., Fraley C., Murtagh F., et al. Linear flaw detection in woven textiles using model-based clustering. Pattern Recognition Letters,1997,18(14):1539-1548.
    [139]McLachlan G., Peel D. Finite mixture models. John Wiley and Sons, New York, 2000.
    [140]Oliver J., Baxter R., Wallace C. Unsupervised learning using MML. In:Proceedings of the 13th International Conference on Machine Learning, Bari, Italy,1996: 364-372.
    [141]Biernacki C., Celeux G., Govaert G. Assessing a mixture model for clustering with the integrated completed likelihood. IEEE Transactions on Pattern Analysis and Machine Intelligence,2000,22 (7):719-725.
    [142]Xu L. Bayesian Ying-Yang system, best harmony learning, and five action circling. Journal of Frontiers of Electrical and Electronic Engineering,2010,5(3):281-328.
    [143]Xu L. On essential topics of BYY harmony learning:Current status, challenging issues, and gene analysis applications. Journal of Frontiers of Electrical and Electronic Engineering,2012,7(1):147-196.
    [144]朱胜利.Mean Shift及相关算法在视频跟踪中的研究[博士学位论文].浙江:浙江大学,2006:15-16.
    [145]Nilanjan R., Baidya N. S. Deformable object tracking:a kernel density estimation approach via level set function evolution. In:Proceeding of the 2nd International Conference on Pattern Recognition and Machine Intelligence, Kolkata, India: Springer-Verlag,2007:624-631.
    [146]Leung T., Malik J. Representing and recognizing the visual appearance of materials using three-dimensional textons. International Journal of Computer Vision,2001, 43(1):29-44.
    [147]Swain M., Ballard D. Color indexing. International Journal of Computer Vision, 1991,7(1):11-32.
    [148]Matusita K. Decision rules based on distance for problems of fit two samples and estimation. Annals of Mathematical Statistics,1955,26:631-641.
    [149]Kullback S. Information Theory and Statistics. Dover Publications Inc., Mineola, New York,1968.
    [150]Rubner Y., Tomasi C., Guibas L. J. A metric for distributions with applications to image databases. In:Proceedings of IEEE International Conference on Computer Vision, Bombay, India:IEEE,1998:59-66.
    [151]Levina E., Bickel P. The earth mover's distance is the Mallows distance:Some insights from statistics. In:Proceedings of International Conference on Computer Vision, Vancouver, Canada:IEEE,2001:251-256.
    [152]Thacker N.A., Aherne F. J., Rockett P. I. The Bhattacharyya metric as an absolute similarity measure for frequency coded data. Kybernetika,1998,34(4):363-368.
    [153]Derpanis K.G. "The Bhattacharyya Measure," , March 20,2008.
    [154]Rigazio L., Tsakam B., Junqua J.C. An optimal Bhattacharyya centroid algorithm for Gaussian clustering with applications in automatic speech recognition. In: Proceedings of ICASSP. Istanbul:IEEE,2000:1599-1602.
    [155]Hershey J. R., Olsen P. A. Approximating the Kullback Leibler divergence between Gaussian mixture models. In:Proceedings of ICASSP. Honolulu:IEEE,2007: 317-320.
    [156]Do M N. Fast approximation of Kullback-Leibler distance for dependence trees and hidden Markov models. Signal Processing Letters,2003,10(4):115-118.
    [157]Goldberger J., Gordon S., Greenspan H. An efficient image similarity measure based on approximations of KL-divergence between two Gaussian mixtures. In: Proceedings of International Conference on Computer Vision, Nice, France:IEEE, 2003:487-493.
    [158]Goldberger J., Aronowitz H. A distance measure between GMMs based on the unscented transform and its application to speaker recognition. In:Proceedings of Interspeech, Lisbon, Portugal,2005:1985-1989.
    [159]You C.H., Lee K.A., Li H. GMM-SVM kernel with a Bhattacharyya-based distance for speaker recognition. IEEE Trans. Audio, Speech and Language Processing,2010, 18(6):1300-1312.
    [160]Lucas B., Kanade T. An iterative image registration technique with an application to stereo vision. In:Proceedings of International Joint Conference on Artificial Intelligence, Vancouver, BC, Canada,1981:674-679.
    [161]Tomasi C., Shi J. Good features to track. In:Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA:IEEE,1994: 593-600.
    [162]Simon D. Optimal state estimation:Kalman, H infinity and nonlinear approaches. Wiley-Interscience,2006.
    [163]Karavasilis V., Nikou C., Likas A. Visual tracking using the earth mover's distance between Gaussian mixtures and Kalman filtering. Image and Vision Computing, 2011,29(5):295-305.
    [164]Yang H., Welch G Model-based 3D object tracking using an extended-extended Kalman filter and graphics rendered measurements. In:Proceedings of Computer Vision for Interactive and Intelligent Environment,2005:85-96.
    [165]Reif K., Gunther S., Yaz E., et al. Stochastic stability of the discrete-time extended Kalman filter. IEEE Transactions on Automatic Control,1999,44(4):714-728.
    [166]Mills S., Pridmore T., Hills M. Tracking in a Hough space with the extended Kalman filter. In:Proceedings of the British Machine Vision Conference, London, UK,2004:173-182.
    [167]Xiong K., Zhang H.Y., Chan C.W. Performance evaluation of UKF-based nonlinear filtering. Automatica,2006,42(2):261-270.
    [168]Cai R.T., Wu Q.X, Wang P., et al. Simplification of unscented Kalman filter for orbit object tracking. In:Proceedings of the 2010 Second International Conference on Information Technology and Computer Science, Washington, USA:IEEE,2010: 463-467.
    [169]Dambreville S., Rathi Y., Tannenbaum A. Tracking deformable objects with unscented Kalman filtering and geometric active contours. In:Proceedings of IEEE American Control Conference, Minneapolis, Minnesota, USA:IEEE,2006:1-6.
    [170]Vela P. A., Ndiour I, J. Estimation theory and tracking of deformable objects. In: Proceedings of the IEEE Multi-conference on Systems and Control, Yokohama, Japan,2010:1222-1233.
    [171]Arulampalam S., Maskell S., Gordon N., et al. A tutorial on particle filters for on-line non-linear/non-Gaussian Bayesian tracking. IEEE Transactions on Signal Processing,2002,50 (2):174-188.
    [172]Figueriredo M.A.T., Jain A.K. Unsupervised learning of finite mixture models. IEEE Transactions on Pattern Analysis and Machine Intelligence,2000,24 (3):381-396.
    [173]CAVIAR Test Case Scenarios.available: http://groups.inf.ed.ac.uk/vision/CAVIAR/CAVIARDATAl/, May 1,2012.
    [174]Dunne P., Matuszewski B. Choice of similarity measure, likelihood function and parameters for histogram based particle filter tracking in CCTV grey scale video. Image and Vision Computing,2011,29(2-3):178-189.
    [175]Schmid C. Beyond bags of features:spatial pyramid matching for recognizing natural scene categories. In:Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, New York, USA:IEEE,2006:2169-2178.
    [176]Hofman T., Lampert C.H., Blaschko M.B. Beyond sliding windows:Object localization by efficient sub window search. In:Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Alaska, USA:IEEE,2008:1-8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700