用户名: 密码: 验证码:
多普勒光学相干层析成像方法与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光学相干层析成像(Optical Coherence Tomography, OCT)技术是一种极具潜力的新型光学成像手段,不仅可以应用于活体组织的结构成像,还在功能成像领域得到广泛应用,通过系统改进和各种算法处理可以获得活体组织的多重特性,如血流速度、双折射率、光谱特性等等。本文的研究工作主要围绕功能OCT成像中的多普勒流速成像展开,拓展了谱域OCT系统的高分辨功能成像能力,为绝对速度在体测量与血流动力学研究提供了较好的手段。具体包括:
     1、拓展了谱域OCT成像系统的多普勒测速功能,并从理论和实验结果上比较了时域和谱域系统中多普勒OCT成像的算法。
     2、发展了基于谱域多普勒OCT技术的绝对速度测量方法,通过多普勒频移和多普勒展宽的结合可以定位出光束与血管之间的夹角,并由此确定血流绝对速度的大小。给出了谱域多普勒OCT系统中计算多普勒频移和多普勒展宽的理论分析,并对毛细玻璃管内聚苯乙烯小球水溶液的流速进行了测量,实验结果和设定值能很好吻合。最后基于该方法实施了对生物组织中血管流速的在体测量
     3、提出并实施了一种基于光程编码分束器的谱域多普勒OCT矢量速度测量方法,首次将基于光程编码聚焦光斑的渡越时间分析引入方位角的测量,从而确定三维矢量速度。该方法结构简单,数据处理算法简洁,牺牲的成像深度较少。在不同方位角设置下对毛细管内聚苯乙烯溶液实施的实验表明,利用该方法能较精确的获得矢量速度的方位角,并最终获得了毛细管内的三维矢量流场分布。实验结果验证了该方法的可行性,为在体矢量速度测量开辟了新途径。
     4、实施了多普勒OCT在脑微循环研究中的应用,以颅脑开窗的大鼠为实验模型,以光刺激、电刺激和药物刺激为手段,基于自行研制的时域和谱域多普勒OCT系统对大鼠脑部感觉皮层动脉的血流速度变化进行了实时检测。脑血流速度在刺激组和对照组之间的显著变化表明,在脑微循环研究尤其是微米级血管的血流速度观察方面,多普勒OCT技术具有重要的应用前景。
     5、将变迹术与OCT相干门有机结合,发展了OCT中基于光瞳滤波器的轴向超分辨光学成像理论与方法,并进行了实验研究。将制作的三区相位型和振幅型两种光瞳滤波器应用于OCT系统的样品臂中,分别测量不同条件下对应的轴向响应曲线,结果与理论分析基本吻合,并实现了轴向分辨率10%以上的提高。
Optical Coherence Tomography (OCT) is a potential optical imaging technology, which uses coherence gating for high-resolution tomographic imaging of in vivo tissue structure, and have been extended for functional imaging. Based on system supplementation and algorithm processing, OCT can provide physiological information of tissue in addition to morphological structure, such as blood flow, birefringence and absorption spectra. In this dissertation, the work is focused on Doppler OCT imaging, including Doppler algorithm study, vector velocity measurement and animal application. The main contents are as follows:
     1. The established spectral domain OCT system has been functional extended for Doppler imaging. Different Doppler OCT algorithms for time domain and spectral domain OCT have been studied and compared theoretically and experimentally.
     2. A method to measure the absolute velocity is developed in the spectral-domain Doppler OCT system, where Doppler angle is determined by combined information on the measured Doppler shift and Doppler bandwidth, and then the flow velocity is determined from Doppler angle and Doppler shift. Theoretical analysis relevant to Doppler measurement and absolute velocity determination is given. Measurement on flow velocity of aqueous solution of polystyrene beads in a capillary tube is done, in good agreement with the expected values. Finally, the developed method is applied to the in vivo measurement of rat's cerebral arteries.
     3. A transit-time based method to ascertain the azimuth angle of a velocity vector by spectral-domain Doppler OCT is proposed, so that three-dimensional velocity vector can be quantified. A custom-designed slit plate with predetermined slit orientation is placed into the sample beam to create three delay-encoded sub-beams of different beam shape for sample probing. Based on the transit-time analysis for Doppler bandwidth, the azimuth angle within 90°range is evaluated by exploitation of the complex signals corresponding to three path length delays.3-D velocity vector is quantified through further estimating of Doppler angle and flow velocity by combined Doppler shift and Doppler bandwidth measurements. The feasibility of the method is demonstrated by good agreement between the determined azimuth angles and the preset ones, and further confirmed by velocity vector measurement of flowing solution inside a capillary tube.
     4. Application in cerebral microcirculation has been studied. Rats with cranial window are used as a model, and changes in blood flow velocity of cerebral arterioles in sensory cortex are measured in real time with the established Doppler OCT system, under light stimulation, electrical stimulation and drug administration. The results show significant differences in blood flow velocity between experimental groups and control groups, demonstrating the feasibility of Doppler OCT technique in cerebral microcirculation study.
     5. Optical superresolution is adopted for axial resolution enhancement. Three-zone phase and amplitude pupil filters are designed and implemented in the sample arm of the established time domain OCT system. Axial response curves measured under different conditions are in good agreement with the theoretical analyses. Comparison results shows that with the implemented pupil filter, the axial resolution is improved by more than 10%, demonstrating the feasibility of axial superresolution in OCT by use of appropriate pupil filters.
引文
1. D. Huang, E. Swanson, C. Lin, et al., Optical coherence tomography. Science,1991,254: 1178-1181.
    2. J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, et al., Optical biopsy and imaging using optical coherence tomography. Nat. Med.,1995,1:970-972.
    3. W. R, Hedrick, D. L. Hykes, D. E. Starchman, Ultrasound Physics and Instrumentation,4th edn. Elsevier, Mosby, St. Louis,2005.
    4. Barry Masters, Three-dimensional confocal microscopy of the human optic nerve in vivo. Opt. Express,1998,3:356-359.
    5. J. S. Schuman, C. A. Puliafito, J. G. Fujimoto, Optical Coherence Tomography of Ocular Diseases,2nd edn. Slack Inc., Thorofare, NJ,2004.
    6. A. M. Kowalevicz, T. Ko, I. Hartl, et al., Ultrahigh resolution optical coherence tomography using a superluminescent light source. Opt. Express,2002,10(7):349-353.
    7. S. Kray, F. Spoler, M. Forst, et al., Dual femtosecond laser multiheterodyne optical coherence tomography. Opt. Lett.,2008,33:2092-2094.
    8. U. S. Sathyam, B. W. Colston, L. B. Da Silva, et al., Evaluation of optical coherence quantitation of analytes in turbid media by use of two wavelengths. Appl. Opt.,1999,38(10): 2097-2104.
    9. A. D. Aguirre, P. Hsiung, T. Ko, et al., High-resolution optical coherence microscopy for high-speed, in vivo cellular imaging. Opt. Lett.,2003,28(21):2064-2066.
    10. A. D. Aguirre, J. Sawinski, S.-W. Huang, et al., High speed optical coherence microscopy with autofocus adjustment and a miniaturized endoscopic imaging probe. Opt. Express,2010, 18(5):4222-4239.
    11. L. Vabre, A. Dubois, and A. C. Boccara, Thermal-light full-field optical coherence tomography. Opt. Lett.,2002,27(7):530-532.
    12. W. Y. Oh, B. E. Bouma, N. Iftimia, et al., Spectrally-modulated full-field optical coherence microscopy for ultrahigh-resolution endoscopic imaging. Opt. Express,2006,14(19): 8675-8684.
    13. R. Leitgeb, W. Drexler, A. Unterhuber, et al., Ultrahigh resolution Fourier domain optical coherence tomography. Opt. Express,2004,12(10):2156-2165.
    14. Y. Chen, A. D. Aguirre, P. L. Hsiung, et al., optical coherence tomography of Barrett's esophagus:preliminary descriptive clinical study correlating images with histology. Endoscopy,2007,39:599-605.
    15. T. Ko, D. Adler, J. Fujimoto, et al., Ultrahigh resolution optical coherence tomography imaging with a broadband superluminescent diode light source. Opt. Express,2004,12(10): 2112-2119.
    16. B. Bouma, G. J. Tearney, S. A. Boppart, et al, High-resolution optical coherence tomographic imaging using a mode-locked Ti:Al2O3 laser source. Opt. Lett.,1995,20(13): 1486-1488.
    17. F. X. Kartner, N. Matuschek, T. Schibli, et al., Design and fabrication of double-chirped mirrors. Opt. Lett.,1997,22(11):831-833.
    18. R. Ell, U. Morgner, F. X. Kartner, et al., Generation of 5-fs pulses and octave-spanning spectra directly from a Ti:sapphire laser. Opt. Lett.,2001,26(6):373-375.
    19. W. Drexler, U. Morgner, F. X. Kartner, et al., In vivo ultrahigh-resolution optical coherence tomography. Opt. Lett.,1999,24(17):1221-1223.
    20. W. Drexler, U. Morgner, R. K. Ghanta, et al., Ultrahigh-resolution ophthalmic optical coherence tomography. Nat Med.,2001,7:502-507.
    21. T. H. Ko, J. G. Fujimoto, J. S. Duker, et al., Comparison of ultrahigh-and standard-resolution optical coherence tomography for imaging macular hole pathology and repair. Ophthalmology,2004,111:2033-2043.
    22. A. F. Fercher, C. K. Hitzenberger, G. Kamp, et al., Measurement of intraocular distances by backscattering spectral interferometry. Opt. Commun.,1995,117:43-48.
    23. R. Leitgeb, C. Hitzenberger, and A. Fercher, Performance of fourier domain vs. time domain optical coherence tomography. Opt. Express,2003,11(8):889-894.
    24. J. F. de Boer, B. Cense, B. H. Park, et al., Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography. Opt. Lett.,2003,28(21): 2067-2069.
    25. M. Choma, M. Sarunic, C. Yang, et al., Sensitivity advantage of swept source and Fourier domain optical coherence tomography. Opt. Express,2003,11(18):2183-2189.
    26. M. Wojtkowski, R. Leitgeb, A. Kowalczyk, et al., In vivo human retinal imaging by Fourier domain optical coherence tomography. J. Biomed. Opt.,2002,7:7457-7463.
    27. N. Nassif, B. Cense, B. Park, et al., In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve. Opt. Express,2004,12:367-376.
    28. B. Cense, N. Nassif, T. Chen, et al., Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography. Opt. Express,2004,12(11):2435-2447.
    29. M. Wojtkowski, V. Srinivasan, T. Ko, et al., Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation. Opt. Express,2004,12(11):2404-2422.
    30. S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, Optical coherence tomography using a frequency-tunable optical source. Opt. Lett.,1997,22(5):340-342.
    31. B. Golubovic, B. E. Bouma, G. J. Tearney, et al., Optical frequency-domain reflectometry using rapid wavelength tuning of a Cr4+:forsterite laser. Opt. Lett.,1997,22(22):1704-1706.
    32. S. Yun, G. Tearney, J. de Boer, et al., High-speed optical frequency-domain imaging. Opt. Express,2003,11(22):2953-2963.
    33. W. Y. Oh, S. H. Yun, G. J. Tearney, et al.,115 kHz tuning repetition rate ultrahigh-speed wavelength-swept semiconductor laser. Opt. Lett.,2005,30(23):3159-3161.
    34. R. Huber, D. C. Adler, and J. G. Fujimoto, Buffered Fourier domain mode locking: unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s. Opt. Lett.,2006,31(20):2975-2977.
    35. S. H. Yun, G. J. Tearney, B. J. Vakoc, et al., Comprehensive volumetric optical microscopy. Nat. Med.,2006,12:1429-1433.
    36. B. J. Vakoc, M. Shishko, S. H. Yun, et al., Comprehensive esophageal microscopy by using optical frequency-domain imaging. Gastrointest. Enclose.,2007,65:898-905.
    37. D. C. Adler, Y. Chen, R. Huber, et al., Three-dimensional endomicroscopy using optical coherence tomography. Nat. Photonics,2007,1:709-716.
    38. J. M. Schmitt. Optical Coherence Tomography (OCT):A Review. IEEE J. Sel. Topics Quant. Electron.,1999,5(4):1205-1215.
    39. M. R. Hee, D. Huang, J. G. Fujimoto, Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging. J. Opt. Soc. Am. B,1992,9(6):903-908.
    40. Y. Zhao, Z. Chen, C. Saxer, et al., Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity. Opt. Lett.,2000,25:114-116.
    41. C. Xu, J. Ye, D. L. Marks, et al., Near-infrared dyes as contrast-enhancing agents for spectroscopic optical coherence tomography. Opt. Lett.,2004,29:1647-1649.
    42. R. K. Wang, S. L. Jacques, Z. Ma, et al., Three dimensional optical angiography. Opt. Express,2007,15:4083-4097.
    43. C. E. Saxer, J. F. de Boer, B. H. Park, et al., High-speed fiber-based polarization-sensitive optical coherence tomography of in vivo human skin. Opt. Lett.,2000,25:1355-1357.
    44. R. Michaely, A. H. Bachmann, M. L. Villiger, et al., Vectorial reconstruction of retinal blood flow in three dimensions measured with high resolution resonant Doppler Fourier domain optical coherence tomography. J. Biomed. Opt.,2007,12:041213.
    45. Z. Chen, Y. Zhao, and S. Srinivas, Doppler Optical Coherence Tomography. IEEE J. Sel. Topics Quant. Electron.,1999,5:1134-1142.
    46. B. H. Park, C. Saxer, S. M. Srinivas, et al., In vivo burn depth determination by high-speed fiber-based polarization sensitive optical coherence tomography. J. Biomed. Opt.,2001,6(4): 474-479.
    47. B. Cense, T. C. Chen, B. H. Park, et al., In vivo depth-resolved birefringence measurements of the human retinal nerve fiber layer by polarization-sensitive optical coherence tomography. Opt. Lett.,2002,27(18):1610-1612.
    48. D. Fried, J. Xie, S. Shafi, et al., Imaging caries lesions and lesion progression with polarization sensitive optical coherence tomography. J. Biomed. Opt.,2002,7(4):618-627.
    49. J. J. Pasquesi, S. C. Schlachter, M. D. Boppart, et al., In vivo detection of exercised-induced ultrastructural changes in genetically-altered murine skeletal muscle using polarization-sensitive optical coherence tomography. Opt. Express,2006,14(4):1547-1556.
    50. T. M. Lee, A. L. Oldenburg, S. Sitafalwalla, et al., Engineered microsphere contrast agents for optical coherence tomography. Opt. Lett.,2003,28(17):1546-1548.
    51. A. L. Oldenburg, J. R. Gunther, and S. A. Boppart, Imaging magnetically labeled cells with magnetomotive optical coherence tomography. Opt. Lett,2005,30(7):747-749.
    52. A. L. Oldenburg, M. N. Hansen, D. A. Zweifel, et al., Plasmon-resonant gold nanorods as low backscattering albedo contrast agents for optical coherence tomography. Opt. Express, 2006,14(15):6724-6738.
    53. K. D. Rao, M. A. Choma, S. Yazdanfar, et al., Molecular contrast in optical coherence tomography by use of a pump probe technique. Opt. Lett.,2003,28(5):340-342.
    54. Y. Jiang,1. V. Tomov, Y. M. Wang, et al., High-resolution second-harmonic optical coherence tomography of collagen in rat-tail tendon. Appl. Phys. Lett.,2005,86(13):133901.
    55. C. L. Evans, E. O. Potma, and X. S. Xie, Coherent anti-Stokes Raman scattering spectral interferometry:determination of the real and imaginary components of nonlinear susceptibility X(3) for vibrational microscopy. Opt. Lett.,2004,29(24):2923-2925.
    1. Z. Chen, Y. Zhao, and S. Srinivas, Doppler Optical Coherence Tomography. IEEE J. Sel. Topics Quant. Electron.,1999,5:1134-1142.
    2. U. Morgner, W. Drexler, F. X. Kartner, et al, Spectroscopic optical coherence tomography. Opt. Lett.,2000,25(2):111-113.
    3. J. Schmitt, S. Xiang, and K. Yung, Differential absorption imaging with optical coherence tomography. J. Opt. Soc. Am. A,1998,15:2288-2296.
    4. M. Hee, D. Huang, E. Swanson, et al, Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging. J. Opt. Soc. Am. B,1992,9(6):903-908.
    5. J. F. de Boer, S. Srinivas, A. Malekafzali, et al., Imaging thermally damaged tissue by polarization sensitive optical coherence tomography. Opt. Express,1998,3(6):212-218.
    6. S. Jiao and L. V. Wang, Two-dimensional depth-resolved Mueller matrix of biological tissue measured with double-beam polarization-sensitive optical coherence tomography. Opt. Lett., 2002,27(2):101-103.
    7. Y. Jiang, I. Tomov, Y. Wang, et al., Second-harmonic optical coherence tomography. Opt. Lett.,2004,29(10):1090-1092.
    8. Z. Chen, T. Milner, X. Wang, et al., Optical Doppler tomography:imaging in vivo blood flow dynamics following pharmacological intervention and photodynamic therapy. Photochem. Photobiol.,1998,67(1):56-60.
    9. C. E. Saxer, J. F. de Boer, B. H. Park, et al., High-speed fiber based polarization-sensitive optical coherence tomography of in vivo human skin. Opt. Lett.,2000,25(18):1355-1357.
    10. J. Nelson, K. Kelly, Y. Zhao, et al., Imaging blood flow in human port-wine stain in situ and in real time using optical Doppler tomography. Arch. Dermatol.,2001,137(6):741.
    11. J. F. de Boer, S.M. Srinivas, B.H. Park, Polarization effects in optical coherence tomography of various biological tissues. IEEEJ. Sel. Topics Quant. Electron.,1999,5(4):1200-1204.
    12. T. Storen, A. Royset, L. O. Svaasand, et al., Functional imaging of dye concentration in tissue phantoms by spectroscopic optical coherence tomography. J. Biomed. Opt.,2005,10: 024037.
    13. E. Yamada, M. Matsumura, S. Kyo, et al., Usefulness of a prototype intravascular ultrasound imaging in evaluation of aortic dissection and comparison with angiographic study, transesophageal echocardiography, computed tomography, and magnetic resonance imaging. 1995, Am. J. Cardiol.,75:161-165.
    14. V. Gusmeroli and M. Martinelli, Distributed laser Doppler velocimeter. Opt. Lett.,1991, 16(17):1358-1360.
    15. Z. Chen, T. E. Milner, S. Srinivas, et al, Noninvasive imaging of in vivo blood flow velocity using optical Doppler tomography. Opt. Lett.,1997,22(14):1119-1121.
    16. J. A. Izatt, M. D. Kulkarni, S. Yazdanfar, et al, In vivo bidirectional color Doppler flow imaging of picoliter blood volumes using optical coherence tomography. Opt. Lett.,1997, 22(18):1439-1441.
    17. M. D. Kulkarni, T. G. Leeuwen, S. Yazdanfar, et al, Velocity-estimation accuracy and frame-rate limitations in color Doppler optical coherence tomography. Opt. Lett.,1998, 23(13):1057-1059.
    18. Y. Zhao, Z. Chen, C. Saxer, et al, Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity. Opt. Lett.,2000,25(2):114-116.
    19. Y. Zhao, K. M. Brecke, H. Ren, et al, Three-dimensional reconstruction of in vivo blood vessels in human skin using phase-resolved optical Doppler tomography. IEEE J. Sel Topics Quant. Electron.,2001,7:931-935.
    20. Z. Ding, Y. Zhao, H. Ren, et al, Real-time phase-resolved optical coherence tomography and optical Doppler tomography. Opt. Express,2002,10(5):236-245.
    21. V. Westphal, S. Yazdanfar, A. M. Rollins, et al, Real-time, high velocity-resolution color Doppler optical coherence tomography. Opt. Lett.,2002,27(1):34-36.
    22. V. X. Yang, M. L. Gordon, A. Mok, et al, Improved phase-resolved optical Doppler tomography using the Kasai velocity estimator and histogram segmentation. Opt. Commun., 2002,208:209-214.
    23. R. Leitgeb, C. Hitzenberger, and A. Fercher, Performance of fourier domain vs. time domain optical coherence tomography. Opt. Express,2003,11(8):889-894.
    24. J. F. de Boer, B. Cense, B. H. Park, et al, Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography. Opt. Lett.,2003,28(21): 2067-2069.
    25. M. Choma, M. Sarunic, C. Yang, et al, Sensitivity advantage of swept source and Fourier domain optical coherence tomography. Opt. Express,2003,11(18):2183-2189.
    26. R. Leitgeb, L. Schmetterer, W. Drexler, et al, Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography. Opt. Express,2003,11(23):3116-3121.
    27. B. White, M. Pierce, N. Nassif, et al., In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical coherence tomography. Opt. Express,2003, 11(25):3490-3497.
    28. L. Wang, Y. Wang, M. Bachaman, Frequency domain phase-resolved optical Doppler and Doppler variance tomography. Opt. Commun.,2004,242:345-350.
    29. J. Zhang and Z. Chen, In vivo blood flow imaging by a swept laser source based Fourier domain optical Doppler tomography. Opt. Express,2005,13(19):7449-7457.
    30. H. Ren, K. M. Brecke, Z. Ding, et al., Imaging and quantifying transverse flow velocity with the Doppler bandwidth in a phase-resolved functional optical coherence tomography. Opt. Lett.,2002,27(6):409-411.
    31. V. X. D. Yang, M. Gordon, S.-j. Tang, et al., High speed, wide velocity dynamic range Doppler optical coherence tomography (Part III):in vivo endoscopic imaging of blood flow in the rat and human gastrointestinal tracts. Opt. Express,2003,11(19):2416-2424.
    32. Y. Zhao, Z. Chen, C. Saxer, et al, Doppler standard deviation imaging for clinical monitoring of in vivo human skin blood flow. Opt. Lett.,2000,25(18):1358-1360.
    33. J. Meng, Z. Ding, ptical Doppler tomography with short-time Fourier transform and Hilbert transform. Proc. SPIE,2008,6826:682602 (Invited Paper).
    1. M. Wojtkowski, T. Bajraszewski, P. Targowski, et al., Real-time in vivo imaging by high-speed spectral optical coherence tomography. Opt. Lett.,2003,28:1745-1747.
    2. B. Cense, N. A. Nassif, T. C. Chen, et al., Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography. Opt. Express,2004,12:2435-2447.
    3. M. Wojtkowski, High-speed optical coherence tomography:basics and applications. Appl. Opt.,2010,49:D30-D61.
    4. B. White, M. Pierce, N. Nassif, et al., In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical coherence tomography. Opt. Express,2003, 11(25):3490-3497.
    5. B. A. Bower, M. Zhao, R. J. Zawadzki, et al., Real-time spectral domain Doppler optical coherence tomography and investigation of human retinal vessel autoregulation. J. Biomed. Opt.,2007,12(4):041214.
    6. A. M. Davis, F. G. Rothenberg, N. Shepherd, et al., In vivo spectral domain optical coherence tomography volumetric imaging and spectral Doppler velocimetry of early stage embryonic chicken heart development. J. Opt. Soc. Am. A,2008,25(12):3134-3143.
    7. Z. Chen, Y. Zhao, and S. Srinivas, Doppler Optical Coherence Tomography. IEEE J. Sel. Topics Quant. Electron.,1999,5:1134-1142.
    8. D. P. Dave, T. E. Milner, Doppler-angle measurement in highly scattering media. Opt. Lett., 2000,25(20):1523-1525.
    9. C. J. Pedersen, D. Huang, M. A. Shure, et al., Measurement of absolute flow velocity vector using dual-angle, delay-encoded Doppler optical coherence tomography. Opt. Lett.,2007, 32(5):506-508.
    10. H. Ren, K. M. Brecke, Z. Ding, et al., Imaging and quantifying transverse flow velocity with the Doppler bandwidth in a phase-resolved functional optical coherence tomography. Opt. Lett.,2000,27(6):409-411.
    11. D. Piao, Q. Zhu, Quantifying Doppler angle and mapping flow velocity by a combination of Doppler-shift and Doppler-bandwidth measurements in optical Doppler tomography. Appl Opt.,42(25):5158-5166.
    12. A. Royset, T. Storen, F. Stabo-Eeg, et al., Quantitative measurements of flow velocity and direction using Transversal Doppler Optical Coherence Tomography. Proc. SPIE,2006,6079: 607925.
    13. Y. Ahn, W. Jung, Z. Chen, Quantification of a three-dimensional velocity vector using spectral-domain Doppler optical coherence tomography. Opt. Lett.,2007,32:1587-1589.
    14. R. Michaely, A. H. Bachmann, M. L. Villiger, et al., Vectorial reconstruction of retinal blood flow in three dimensions measured with high resolution resonant Doppler Fourier domain optical coherence tomography. J. Biomed. Opt.,2007,12:041213.
    15. Y. Wang, B. A. Bower, J. A. Izatt, et al., In vivo total retinal blood flow measurement by Fourier domain Doppler optical coherence tomography. J. Biomed. Opt.,2007,12:041215.
    16. S. Makita, T. Fabritius, Y. Yasuno, Quantitative retinal-blood flow measurement with three-dimensional vessel geometry determination using ultrahigh-resolution Doppler optical coherence angiography. Opt. Lett.,2008,33:836-838.
    17. S. Makita, Y. Hong, M. Yamanari, et al., Optical coherence angiography. Opt. Express,2006, 14(17):7821-7840.
    18. R. Wang, S. Jacques, Z. Ma, et al., Three dimensional optical angiography. Opt. Express, 2007,15(7):4083-4097.
    19. L. An and R. Wang, In vivo volumetric imaging of vascular perfusion within human retina and choroids with optical micro-angiography. Opt. Express,2008,16(15):11438-11452.
    20. R. Wang and L. An, Doppler optical micro-angiography for volumetric imaging of vascular perfusion in vivo. Opt. Express,2009,17(11):8926-8940.
    21. Y. Tao, K. Kennedy, and J. Izatt, Velocity-resolved 3D retinal microvessel imaging using single-pass flow imaging spectral domain optical coherence tomography. Opt. Express,2009, 17(5):4177-4188.
    22.孟婕,丁志华,杨勇等,基于谱域光学多普勒层析技术的绝对速度测量研究.中国激光,2009,36(10):2561-2565.
    23. V. L. Newhouse, E. S. Furgason, G. F. Johnson, et al., The dependence of ultrasound Doppler bandwidth on beam geometry. IEEE Trans. Sonics Ultrason.,1980, SU-27(2):50-59.
    24. P. Tortoli, G.Guidi, V. L. Newhouse, Invariance of the Doppler bandwidth with rang cell size above a critical beam-to-flow angle. IEEE Trans. UFFC,1993,40(4):381-386.
    25. K. Wang, Z. Ding, T. Wu, et al., Development of a non-uniform discrete Fourier transform based high speed spectral domain optical coherence tomography system. Opt. Express,2009, 17(14):12121-12131.
    26. J. Meng, Z. Ding, J. Li, et al., Transit-time analysis based on delay-encoded beam shape for velocity vector quantification by spectral-domain Doppler optical coherence tomography. Opt. Express,2010,18(2):1261-1270.
    1. Z. Chen, Y. Zhao, and S. Srinivas, Doppler Optical Coherence Tomography. IEEE J. Sel. Topics Quant. Electron.,1999,5:1134-1142.
    2. Y. Zhao, Z. Chen, C. Saxer, et al., Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity. Opt. Lett.,2000,25(2):114-116.
    3. J. Nelson, K. Kelly, Y. Zhao, et al., Imaging blood flow in human port-wine stain in situ and in real time using optical Doppler tomography. Arch. Dermatol.,2001,137(6):741.
    4. Y. Zhao, Z. Chen, C. Saxer, et al., Doppler standard deviation imaging for clinical monitoring of in vivo human skin blood flow. Opt. Lett.,2000,25(18):1358-1360.
    5. R. Leitgeb, L. Schmetterer, W. Drexler, et al., Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography. Opt. Express,2003,11(23):3116-3121.
    6. B. White, M. Pierce, N. Nassif, et al., In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical coherence tomography. Opt. Express,2003, 11(25):3490-3497.
    7. S. Yazdanfar, A. M. Rollins, and J. A. Izatt, Imaging and velocimetry of the human retinal circulation with color Doppler optical coherence tomography. Opt. Lett.,2000,25(19): 1448-1450.
    8. V. X. D. Yang, M. Gordon, S.-j. Tang, et al, High speed, wide velocity dynamic range Doppler optical coherence tomography (Part III):in vivo endoscopic imaging of blood flow in the rat and human gastrointestinal tracts. Opt. Express,2003,11(19):2416-2424.
    9. Z. Chen, T. Milner, X. Wang, et al., Optical Doppler tomography:imaging in vivo blood flow dynamics following pharmacological intervention and photodynamic therapy. Photochem. Photobiol.,1998,67(1):56-60.
    10. M. Aalders, M. Triesscheijn, M. Ruevekamp, et al., Doppler optical coherence tomography to monitor the effect of photodynamic therapy on tissue morphology and perfusion. J. Biomed. Opt.,2006,11:044011.
    11. A. Major, S. Kimel, S. Mee, et al., Microvascular photodynamic effects determined in vivo using optical Doppler tomography. IEEE J. Sel Topics Quant. Electron.,1999,5:1168-1175.
    12. R. D. Frostig, E. E. Lieke, D.Y. Ts'o, et al., Cortical functional architecture and local coupling between neuronal activity and the microcirculation revealed by in vivo high-resolution optical imaging of intrinsic signals. Proc. Natl. Acad. Sci. USA,1990,87: 6082-6086.
    13. Y. Zhao, K. M. Brecke, H. Ren, et al., Three-dimensional reconstruction of in vivo blood vessels in human skin using phase-resolved optical Doppler tomography. IEEE J. Sel. Topics Quant. Electron.,2001,7:931-935.
    14. Y.-C. Ahn, W. Jung, J. Zhang, et al., Investigation of laminar dispersion with optical coherence tomography and optical Doppler tomography. Opt. Express,2005,13(20): 8164-8171.
    15. Y.-C. Ahn, W. Jung, Z. Chen, Optical sectioning for microfluidics:secondary flow and mixing in a meandering microchannel. Lab Chip,2008,8:125-133.
    16. D. A. Pelligrino, Editorial. J. Appl. Physiol.,2006,100:3-4.
    17. M. E. Raichle, Behind the scenes of functional brain imaging:a historical and physiological perspective. Proc. Natl. Acad. Sci. USA,1998,95(3):765-772.
    18. A. Shmuel, E. Yacoub, J. Pfeuffer, et al., Sustained negative BOLD, blood flow and oxygen consumption response and its coupling to the positive response in the human brain. Neuron, 2002,36(6):1195-1210.
    19. H. Girouard, C. Iadecola, Neurovascular coupling in the normal brain and in hypertension, stroke, and Alzheimer disease. J. Appl. Physiol.,2006,100:328-335.
    20. C. Iadecola, Neurovascular regulation in the normal brain and in Alzheimer's disease. Nat. Rev. Neurosci.,2004,5(5):347-360.
    21. A. Ceballos-Baumann, Functional imaging in Parkinson's disease:activation studies with PET, fMRI and SPECT. J. Neurol.,2003,250(sl):15-23.
    22. G. Radegran, Ultrasound Doppler estimates of femoral artery blood flow during dynamic knee extensor exercise in humans. J. Appl. Physiol.,1997,83(4):1383.
    23.俞晓峰,丁志华,陈宇恒等,光纤型光学相干层析成像系统的研制.光学学报,2006,26(11):1717-1720.
    24. J. Meng, Z. Ding, Y. Yang, et al., Study on cerebral microcirculation by optical Doppler tomography. Sci. China Ser. G-Phys. Mech. Astron.,2008,51(12):1883-1891.
    25. Y. Yang, J. Meng, Z. ding, Investigation blood flow velocity change of cerebral surface arterioles at spatial resolution of micrometer scale by ODT technique. J. Neurochem.,2009, 19:295.
    26. K. Wang, Z. Ding, T. Wu, et al., Development of a non-uniform discrete Fourier transform based high speed spectral domain optical coherence tomography system. Opt. Express,2009, 17(14):12121-12131.
    1. U. Morgner, F. X. Kartner, S. H. Cho, et al., Sub-two-cycle pulses from a Kerr-lens mode-locked Tisapphire laser. Opt. Lett.,1999,24(6):411-413.
    2. D. Sutter, G. Steinmeyer, L. Gallmann, et al., Semiconductor saturable-absorber mirror-assisted Kerr-lens mode-locked Ti:sapphire laser producing pulses in the two-cycle regime. Opt. Lett.,1999,24:631-633.
    3. A. M. Kowalevicz, T. Ko, I. Hartl, et al., Ultrahigh resolution optical coherence tomography using a superluminescent light source. Opt. Express,2002,10(7):349-353.
    4. S. Kray, F. Spoler, M. Forst, et al., Dual femtosecond laser multiheterodyne optical coherence tomography. Opt. Lett.,2008,33:2092-2094.
    5. I. Hartl, XD. Li, C. Chudoba, et al., Ultrahigh-resolution optical coherence tomography using continuum generation in an air silica microstructure optical fiber. Opt. Lett.,2001,26(9): 608-610.
    6. T. A. Birks, W. J. Wadsworth, P. S. J. Russell, Supercontinuum generation in tapered fibers. Opt. Lett.,2000,25(19):1415-1417.
    7. S. Sun, JH. Guo, JS. Gao, et al., Enhancement of optical coherence tomography axial resolution by spectral shaping. Chin. Phys. Lett.,2002,19(10):1456-1458.
    8. U. S. Sathyam, B. W. Colston, L. B. Da Silva, et al., Evaluation of optical coherence quantitation of analytes in turbid media by use of two wavelengths. Appl. Opt.,1999,38(10): 2097-2104.
    9. J. M. Schmitt, S. H. Xiang, and K. M. Yung, Differential absorption imaging with optical coherence tomography. J. Opt. Soc. Am. A,1998,15:2288-2296.
    10. M. D. Kulkarni, C. W. Thomas, and J. A. Izatt, Image enhancement in optical coherence tomography using deconvolution. Electron. Lett.,1997,33:1365-1367.
    11. Y. Liu, Y. Liang, G. Mu, et al., Deconvolution methods for image deblurring in optical coherence tomography. J. Opt. Soc. Am. A,2009,26:72-77.
    12. S. Paes, S. Y. Ryu, J. Na, et al., Advantages of adaptive speckle filtering prior to alication of iterative deconvolution methods for optical coherent tomography imaging. Opt. Quantum Electron.,2005,37:1225-1238.
    13.孟婕,周琳,丁志华,光学相干层析成像轴向超分辨研究.光子学报,2008,37(3):533-536.
    14.周琳,丁志华,俞晓峰,利用变迹术和相干门相结合实现光学相干层析成像术轴向超分辨.光学学报,2005,25(9):1181-1185.
    15.刘力,邓小强,王桂英等,改善共焦系统轴向分辨率的位相型光瞳滤波器.物理学报,2001,50(1):48-51.
    16. M. Born, E. Wolf, Principle of Optics. Oxford:Pergamon Press,1975
    17. C. J. R. Sheppard, J. Campos, J. C. Escalera, et al., Two-zone pupil filters. Opt. Commun., 2008,281(5):913-922.
    18. C. J. R. Sheppard, J. Campos, J. C. Escalera, et al., Three-zone pupil filters. Opt. Commun., 2008,281(14):3623-3630.
    19. C. J. R. Sheppard, Z. S. Hegedus, Axial behavior of pupil-plane filters. J. Opt. Soc. Am. A., 1988,5(5):643-647.
    20. H. Wang, F. Gan, Phase-shifting apodizers for increasing focal depth. Appl. Opt.,2002, 41(25):5263-5266.
    21.邓小强,王桂英,徐至展,三维超分辨光瞳滤波器.中国激光,2001,A28(5):459-462.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700