用户名: 密码: 验证码:
离子土壤固化剂加固武汉红色粘土的试验效果及其机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国国民经济的高速发展,在南方地区广泛分布的第四系红色粘土,被大量地用作工程建筑材料和地基使用。由于红色粘土具有不良的物理性质与胀缩性,常常会引发许多工程危害,如道路开裂、地基不均匀沉降、边坡失稳和基坑变形破坏等。人们在长期的土壤固化工程当中,逐步认识到采用水泥、石灰、粉煤灰等传统的土壤固化材料存在着明显不足,满足不了工程建设发展和社会发展的需要。
     为了改善红色粘土的不良物理性质,提高土体的强度、减小土体的变形,采用一种从澳大利亚进口的新型电化学加固材料——离子土壤固化剂(英文名称Ionic Soil Stabilizer,简称ISS,国内俗称“路基实”),对武汉市红色粘土进行了加固。ISS是一种表面活性剂类土壤固化剂,最先是由美国化学教授雷诺(Reynolds)研制成功的,其中含有活性成份磺化油,在常温下为黑褐色液体,易溶于水,它主要是通过物理化学原理,与土体发生一系列的物理化学反应,达到提高土体力学强度和增强水稳定性的作用。ISS具有成本低、施工方便、耐久、保护生态环境和对土壤有广泛的适用性等优点,对于我国建立一个环保型、节约型社会和促进农村经济的建设具有重要的现实意义。
     由于ISS引入我国较晚,同时缺乏理论研究的支持,ISS在我国的工程应用大多是一些小型工程,较大型的工程还不敢采用这种新技术。针对这个问题,本论文结合国家自然科学基金项目(No.40972185)“离子土壤固化剂对红粘土结合水的影响”和国家自然科学基金项目(No.40672188)“离子土壤固化剂加固滑坡滑带土的机理研究”,从不同的方面开展了大量的室内试验,对ISS加固红色粘土的固化机理和加固效果进行了深入研究。
     本文主要开展了以下研究工作:
     (1)利用等离子体发射光谱仪和离子色谱仪对离子土壤固化剂中所含有的离子成份进行了试验研究,研究结果表明:ISS是一种离子浓度较高的溶液,易溶于水,在水中能离解出带正电荷的阳离子[X]n+和带负电荷的阴离子[Y]n-,阳离子主要以K+、Na+、Ca2+、Mg2+为主,其中Na+离子浓度最高;阴离子主要以Cl-、NO3-和SO42-为主,其中S042-离子浓度最高;ISS对人体、牲畜和大自然均无损害,有利于保护生态环境。
     (2)运用最大气泡压力法对ISS溶液的表面张力进行了试验研究,研究结果表明:ISS溶于水后能明显降低水的表面张力,并且随着浓度的增加,表面张力呈下降趋势。由于ISS溶于水后能明显降低水的表面张力,这样ISS水溶液就很容易在土颗粒表面铺展开,有利于离子交换反应的迅速进行,为ISS固化土体创造了条件,这一作用使ISS极易进入扩散层,改善粘土颗粒表面的电荷性质。
     (3)对不同配比的ISS固化土进行了无侧限抗压强度和界限含水量试验研究,研究结果表明:ISS加固红色粘土的最优配比可以通过塑性指数或者无侧限抗压强度的变化来进行确定。由于采用塑性指数指标快速、经济、适用,建议以最低塑性指数来确定ISS加固土的最优配比。在强度变化规律上,ISS固化土强度随着龄期的增长而增加,其中0-28天龄期内强度增长速度较快,到达28天以后,强度增长速度减慢。
     (4)在ISS最优配比和最佳含水量下,对不同密度的ISS固化土进行了剪切试验研究,研究结果表明:ISS加入红色粘土后,能明显提高土的粘聚力,但对内摩擦角的影响较小;此外,在最佳含水量和一定的压实度范围内,密度对ISS固化土抗剪强度参数的影响具有一定的规律性,其抗剪强度参数与压实度(密度)呈良好的线性关系,具体表现为粘聚力随密度的增加而增加,内摩擦角随密度的增大而减小。
     (5)对ISS加固红色粘土进行了试验效果研究,研究结果表明:红色粘土经ISS加固后,明显改进了其工程性质,包括增加强度、干密度、凝聚力、持水能力和减小压缩变形,同时改善了土的塑性、膨胀性、收缩性和吸水性能。
     (6)利用自制的渗流试验装置,对同一个土柱先后进行了纯水、ISS水溶液、再纯水三个阶段的一维垂向渗流试验,研究结果表明:①在稳定流条件下,纯水在红色粘土中的渗流规律不符合达西线性渗流规律,属于非线性渗流规律,存在着起始水力梯度Ⅰ0,当在较低的水力梯度范围内,渗流速度比较低时,符合达西渗流定律;当水力梯度升高后,偏离达西定律线性规律,土体的渗透系数不再是定值。②无论是在稳定流或非稳定流入渗条件下,ISS水溶液在红色粘土中的一维垂向渗流规律都不符合线性达西定律,同时存在起始水力梯度。③在稳定流条件下,经ISS渗透作用后的红色粘土,纯水在土中的渗流规律不符合达西线性渗流定律,存在明显的起始水力梯度,但纯水在土体中的渗流速度比原样平均下降了43%,其渗透性明显变小。
     (7)通过逐级施加动荷载,考虑不同的围压,对ISS固化土进行了室内动三轴试验研究,研究结果表明:红色粘土经ISS处理后,土的动力特性有了很大程度的改善,其最大动剪切模量比原样平均增长了27.72%,并且围压对ISS固化土的动剪切模量和阻尼比都有着很大的影响,在相同的应变条件下,随着围压的增大,动剪切模量增加而阻尼比减小。除此之外,ISS固化土的动剪模量比与动剪应变的相关曲线和红色粘土原样的有关曲线形状基本一致,只是在相同应变时数值大小不同,并且它们的动剪切模量都随动剪应变幅值的增大而降低。
     (8)采用冷冻真空升华干燥法制备样品,借助扫描电镜对ISS加固红色粘土前后的微观结构进行了试验研究,研究结果表明:在红色粘土原样中,其微观结构类型主要是以团聚体或粒团的堆叠结构为主,并伴随有架空结构,结构单元体主要以点-面、边—面形式接触为主,孔隙较发育;经ISS加固后的红色粘土,其微观结构主要是以团聚体结构为主,但团聚体明显增大,孔隙减少,结构变得更加紧密,结构单元体主要以面—面和边—面形式接触为主。同时从SEM照片中还可以看到,红色粘土经ISS加固后,结构单元体上表面胶结物胶结特征更明显,粘土矿物片状颗粒以面—面的形式接触非常紧密。
     (9)应用分形理论,借助ARCGIS软件来矢量化3000倍的SEM照片,同时采用孔径测试仪对土中的孔隙进行测试,定量分析了土中孔隙的变化特征。红色粘土样经ISS加固后,单位区域内的孔隙分布数量明显减小,土颗粒数量增多,孔隙/颗粒的比值由固化前的1.390减小到1.031,说明了红色粘土经ISS处理后,孔隙减少,土体变得更密实。经过ISS处理后的红色粘土,在相同的压力条件下,并不是每一个对应的孔体积都比红色粘土原样小,其减小的孔隙体积主要是小于3.006101nm孔径的体积。
     (10)通过一系列的X射线衍射试验研究,得出了武汉红色粘土主要含有高岭石、伊利石和蛭石三种粘土矿物,非粘土矿物主要是石英、长石和赤铁矿;同时通过对比ISS加固红色粘土前后的X衍射图谱和衍射特征值,红色粘土经ISS处理后,土中并没有新的矿物生成,只是粘土矿物的晶面间距稍微减小。
     (11)借助Zeta电位仪对粘粒的电动电位进行了测试,研究结果表明:红色粘土在加入ISS后,其ζ电位都有不同程度的降低,反映了结合水膜变薄,但不同配比下降低的幅度不同,在最优配比下的ζ电位降至最低,由红色粘土原样的-31.02 mV降至-17.62mV,降低幅度达到43.2%,并且ζ电位与ISS配比的变化规律和塑性指数基本是一致的;同时毛电位试验表明,ISS虽然能够减小红色粘土的ζ电位,但ζ电位值仍然存在,说明了粘土颗粒表面仍然存在双电层结构,只不过是扩散层的厚度变小了。
     (12)通过对不同时段的渗流浸出液离子成分测试,研究了ISS加固土体过程中各离子浓度随时间的变化规律,得出了红色粘土中可溶盐主要含有K+、Na+、Ca2+、Mg2+等四种阳离子,阴离子主要含有Cl-、NO3-和SO42-,并在试验的前期有溶出现象。通过Na+/Ca2+,Na+/Mg2+值的变化情况,得出了ISS水溶液中的Na+离子与粘土颗粒表面吸附的Ca2+、Mg2+离子进行了阳离子交换反应,其浓度与反应的程度有直接关系。
     (13)ISS通过物理化学原理,减小了结合水膜厚度,其主要作用有二个方面:①依靠ISS“亲水头”与粘土颗粒表面上金属阳离子所形成的化学链作用,ISS分子占据了红色粘粒颗粒表面上的部分阳离子空位,赶走了吸附在红色粘土颗粒表面上亲水性阳离子,同时ISS被吸附在粘土矿物的表面;②ISS“疏水尾”围绕着红色粘土颗粒表面形成了一个油性层,“疏水尾”对红色粘土颗粒表面上的水有一定的排挤作用,并阻止水份进入这个体系。正是在以上的共同作用下,ISS减小了红色粘土颗粒表面的结合水膜厚度。结合水的厚薄对粘性土的物理力学性质影响很大,由于ISS使双电层的厚度变小,结合水膜变薄,这样就降低了土粒之间的相互排斥能而使吸引力增加,颗粒之间得以相互靠近,从而使土体变得更密实,土的强度也相应提高。这也是ISS加固红色粘土的反应机理。
     (14)能谱测试表明,红色粘土经ISS处理后,土粒表面上的C元素发生了明显变化,从无到有,证实了ISS分子与土颗粒相结合的作用,这一作用也是ISS与土体发生物理化学反应、改进土的工程特性的重要原因之一。
     (15)综合所有的试验结果与分析,得出了ISS加固红色粘土的固化机理主要受下面五个因素的综合作用:①ISS溶于水后能显著降低水的表面张力,有利于土粒的吸附和离子交换反应的迅速进行,为ISS固化土体创造了条件,这一作用使ISS极易进入扩散层,改善红色粘土颗粒表面的电荷性质。②ISS的“亲水头”能与粘土颗粒表面的金属阳离子形成化学链作用,使ISS分子与粘土颗粒相结合。③依靠ISS“亲水头”与粘土颗粒表面上阳离子所形成的化学链作用,ISS分子占据了红色粘粒颗粒表面上的部分阳离子空位,赶走了吸附在红色粘土颗粒表面上亲水性阳离子,同时ISS的“疏水尾”对红色粘土颗粒表面上的水有一定的排挤作用,并阻止水份进入这个体系,以至于无需多大的机械力就可将其排出。在以上的共同作用下,ISS使粘粒双电层的厚度减小,结合水膜变薄,从而降低了土粒之间的斥力而使吸引力增加,使颗粒之间相互靠近,土体变得更密实,土的强度提高。④粘土—水界面存在着“膜效应”,当粘土矿物晶层间的阳离子浓度与水中的阳离子浓度有差异时,二者之间就会形成一种所谓的“膜效应”,即离子浓度高的一边会吸水,低的一边会失水,而ISS是一种离子浓度很高的溶液,当它与粘土矿物的晶层接触时,会影响到粘土矿物层间水的脱失,从而使粘土矿物的晶面间距减小,晶层靠近。⑤ISS溶液中的阳离子是一种有机阳离子,它除了具有带正电荷的无机阳离子的功能外,还能通过碳、氢等与晶层底面氧产生氢键等,因而对带负电荷的粘土矿物晶层具有更强大的吸引力,使晶层间距变得比较稳定而不易受孔隙液性质变化的影响,即红色粘土中胀缩性晶体此时不发生明显的体积胀缩变化,这一作用减弱了红色粘土的胀缩能力。在上述五个因素的综合作用下,经过ISS与红色粘土以及它们自身之间的物理、物理化学和化学的作用下达到固化红色粘土的目的。
     本文研究的创新性体现在:(1)利用自制的渗流试验装置,对同一个土柱先后进行了纯水、ISS水溶液、再纯水三个阶段的一维垂向渗流试验,通过分析渗流速度与水头梯度的关系,研究了ISS水溶液在红色粘土中的渗流规律。(2)通过逐级施加动荷载,考虑不同的围压效应,对ISS固化土进行了室内动三轴试验,研究了ISS固化土的动力特性。(3)通过对同一土柱不同时段的渗流浸出液离子成分测试,分析了ISS加固土体过程中各离子浓度随时间的变化规律,并对ISS的固化反应机理进行了深入研究。
With the rapid development of China's national economy, Quaternary red clay, which is widely distributed in the southern region, has been used extensively as construction materials and foundation engineering to use. Due to the physical nature of poor expansion and contraction, the red clay often lead to many engineering hazards, such as roads cracking, uneven ground settlement, slope instability and deformation of foundation pit destruction. During the long-term work on soil stabilization, we gradually recognize that there is a remarkable lack of curing with the use of cement, lime, fly ash and other traditional materials, which can not meet the construction and social development needs.
     In order to improve the red clay's undesirable physical properties, improve its strength and reduce deformation, use a new type of electrochemical reinforcement imported from Australia—Ionic Soil Stabilizer (English name of the Ionic Soil Stabilizer, referred as ISS, domestic commonly known as "solid roadbed"), to make reinforcement on the red clay in Wuhan. ISS is a surface active agent type soil stabilizer, which was firstly developed into success by Professor Reynolds of chemistry of the United States. ISS contains active ingredient suffocated oil—dark brown liquid under room temperature and soluble in water. Mainly through the physical chemical principles, it makes a series of physical and chemical reactions, improving the soil physical strength and enhancing water stability of the school role. With the advantage of low cost, easy construction, durable, protective to the ecological environment and a wide range of applicability, ISS has important practical significance for our country to establish an environmentally friendly, conservation-minded society and promote the building of the rural economy.
     Since ISS was introduced into China quite late, due to the lack of theoretical research support, ISS engineering in China is mostly applied in small-scale projects; large-scale project dare not use this new technology. For this issue, this paper combines the National Natural Science Fund (No.40972185) "Ionic Soil Stabilizer's Effects on Red Clay Bound Water" and the National Natural Science Foundation (No.40672188) "Ionic Soil Stabilizer Reinforced Landslide Zone Mechanism of Soil " making a large number laboratory testing from different aspects, carrying out deep research on the ISS reinforcing mechanism and reinforcing effect on the red clay.
     In this paper, research work is carried out as follows:
     (1) Using plasma emission spectrometry and ion chromatography, the ion composition contained in ionic soil stabilizer was studied. The results showed that:ISS is soluble in water with a high ion concentration. In water, it can be dissociated into a positively charged cation [X]n+and the negatively charged anion [Y]n-,cation mainly refers K+, Na+, Ca2+, Mg2+among which Na+ions have the highest concentration; anion mainly refers Cl-, NO3- and SO42-, and SO42-ions have the highest concentration; ISS do no harm on our human body, animals and nature, which help protect the ecological environment.
     (2)With the use of the maximum bubble pressure method, surface tension on the ISS solution was studied. The results showed that:after being dissolved in water, ISS can significantly reduce the surface tension, and with the increasing of its concentration, the surface tension shows a downward trend. As the ISS can be dissolved in water to significantly lower the surface tension of water, so it is easy ISS solution spreads on the soil particle surface, helps the rapid ion exchange reaction carry out and create the conditions for ISS solidified soil. So that ISS easily move into the diffusion layer to improve the clay particle surface charge properties.
     (3) Experimental research has been carried out on ISS solidified soil with different combinations for unconfined compressive strength and limits of water content. Study results show that:the optimal ratio of ISS reinforced red clay can be fixed down by plasticity index, or unconfined compressive strength changes. Due to the advantages of rapid plasticity index application---fficient, economic and applicable, a minimum plasticity index was recommended to determine the optimal ratio of ISS soil reinforcement. On the variation in intensity, ISS intensity of solidified soil increases with age. During 0-28 days of age, the growth rates of intensity are faster, on the arrival of 28th day and so on, the speed slows down.
     (4) Under the optimal water content ratio of ISS, shear tests were carried out for different density of ISS solidified soil, and the study results showed that:by adding the red clay to ISS, the cohesion of soil could be improved significantly, but not too much impact on internal friction angle; Moreover, in optimal water content and within a certain degree of compaction, the density of ISS solidified soil affect shear strength parameters at a certain way, which is shear strength parameters and degree of compaction (density) have a good linear relation. The concrete expression of cohesion increases with the density going up, while internal friction angle decreases with increasing density.
     (5) Testing about ISS reinforcement effect of the red clay was performed and results showed: engineering properties of red clay were improved after adding ISS, in terms of enhanced following parameters, which including strength, dry density, cohesion, water holding capacity and reduce the compression deformation, At the same time improve the soil plasticity, swelling, shrinkage and absorbency.
     (6) Home-made seegage test device was selected for one-dimensional vertical seepage test of water, ISS solution, and water, three-phase experiment based on the same soil columns. Following results were achieved:①in stable flow condition, the law of pure water seepage in the red clay, non-linear flow laws, does not comply with the law of Darcy's linear flow. The initial hydraulic gradient I0, when the hydraulic gradient in the lower range, the flow velocity is relatively low, it follows Darcy's law; but as the hydraulic gradient increases, I0 will deviate from the linear property of Darcy's law; the permeability coefficient of soil is no longer fixed.②No matter in the steady flow or unsteady flow, one-dimensional vertical seepage laws of ISS water solution in the red clay are not compatible with the linear Darcy's law, while there existing the initial hydraulic gradient.③In the steady flow condition, the red clay which under penetrating through ISS, seepage of pure water in soil does not meet the law of Darcy's linear flow law, which has an obvious initial hydraulic gradient, but water seepage speed in the soil body dropped an average of 43% when comparing with original sample, its permeability goes smaller obviously.
     (7) The dynamic triaxial tests of ISS modified soil were conducted under the Rating load, given that the confining pressure is varying. The results show that the red clay were greatly improved under the dynamic condition, the maximum dynamic shear modulus ratio acquired an incensement of 27.72% on average. It was concluded that the confining pressure influenced the dynamic shear modulus and damping ratio to a certain extent. Given the same strain conditions, with the incensement of confining pressure increases, the dynamic shear modulus increased and the damping ratio decreased. Moreover, when plotting the dynamic shear modulus versus the dynamic shear strain, the similar curve can be formed for both the natural soil and the modified one, the dynamic shear modulus monotonously decreased with the incensement of the dynamic shear strain. However, the value of dynamic shear modulus differed in the same shear strain between the natural soil and the soil modified by ISS.
     (8) The sample was prepared by the way of Freeze drying-vacuum sublimation, the scanning electron microscopy was applied to study the micro-structure of red clay reinforced by the ISS. The results showed that:for the natural clay, the main types of micro-structure is stacked structure accompanied by void structures based on the aggregate, structural elements are contacted in the form of point-face and line-plane, the void also well developed. After treated by the ISS, the main types of micro-structure changed to be the aggregate structure, however, aggregate apparently turned to be bigger and correspondingly void volume decrease with a denser structure. The structural elements were contacted mainly in the form of line-plane and plane-plane. It could be seen from the SEM photograph that the cements were greatly obvious on the surface of modified soil particles unit, and flaky of clay minerals in the form of particles to surface contacted with one side was very closely.
     (9)On the base of fractal theory, the 3000-times SEM photographs were vectored by ARCGIS, thereafter Aperture Tester was employed to determine and quantitatively analyze the change of soil porosity. After ISS reinforced, the numbers of pore distribution in unit region of red clay significantly decreased, and particles increased, the size ratio of pore to particle reduced from 1.390 to 1.031, which indicated that the porosity decreased and density increase. Under identical pressure conditions, the reduction of pore volumes were principally caused by those pore volumes whose sizes were lower than 3.006101 nm.
     (10) X-ray diffraction analysis showed that the main clay minerals of non-reinforced Wuhan red clay are kaolinite, illite and vermiculite, and the non-clay minerals are quartz, feldspar and hematite. It should be noted that no new mineral was found after ISS reinforced, but the slight reduction of the crystal plane spacing of clay minerals.
     (11) Using Zeta potential instrument, electric potential of the clay has been tested. The results showed:red clay joining the ISS, itsξ-potential decrease in varying degrees, reflecting the combination water film turned to thin, but different ratios had different magnitude of decrease. In the optimal ratio, theξ-potential reduced to minimum, from -31.02 mV to -17.62mV, the rate of reduction reached 43.2% and the variation ofξpotential and the ratio of ISS was basically the same to the plasticity index; the same time,ξ-potential tests showed, even though ISS can reduced theξpotential of the red clay, the value ofξpotential still existed, it showed that the surface of clay particles still had double-layer structure, only just the thickness of diffusion layer turned smaller.
     (12) through analyzing the components of leaching solution flow in different periods,it studied the variation laws of each ion concentration over time in the process of soil reinforcement with ISS. It found that the soluble salts of red clay mainly contained four kinds of cations:K+, Na+, Ca2+, Mg2+and three kinds of anions:Cl,NO3-,SO42+, and at the early stage of test, there had the phenomenon of dissolution. Through the value changes of Na+/Ca2+, Na+/ Mg2+, it can be drawn that the of the Na+ions in ISS solution had cation exchange reaction with the Ca2+, Mg2+ions of clay particle surface, its concentration directly related to the response degree.
     (13) ISS reduced the thickness of adsorbed water by the function of physics and chemistry. There are two main aspects:①rely on ISS "hydrophilic head" and the clay particles on the surface of metal cations by the formation of the role of the chemical chain, ISS elements occupy the red clay particles on the surface of part of the cation vacancy, get rid of the red clay particles adsorbed on the surface of the hydrophilic cation, ISS also be attracted to the clay mineral surface;②ISS "the hydrophobic tail" around the red clay surface, forming a greasy layer, "hydrophobic tail" on the red clay particles on the surface of certain marginalized the role of water and prevent water entering this system. It is more common role, ISS reduces the red clay surface, the combination of water film thickness.Due to ISS making the thickness of double electric layer to small and combined water film to thin, so reducing the mutual exclusion between the soil particles and increasing the attractiveness, particles to be close to each other, so that the soil becoming more dense, the intensity of soil also increasing. This is the ISS reaction mechanism in reinforcing the red clay.
     (14) Spectrum tests showed that after the red clay was treated by ISS, soil particles on the surface of the C elements had changed markedly, from scratch, confirmed the ISS elements combined with the role of soil particles, the role of the ISS is also the place with the soil Physical chemical reaction, improve the engineering properties of soil of the important reasons.
     (15)Integration of all the test results and analysis, it obtained the mechanism ISS reinforcing the red clay mainly affected by a combination of the following five factors:①When ISS is soluble in water, it significantly reduced the surface tension of water. It is conducive to adsorption of soil particles and ion exchange reaction, creating the conditions for ISS solidified soil. This role makes ISS easily fit into the diffusion layer, improving the surface charge properties of red clay particle.②ISS's "water head" with the surface of clay particles form a chemical chain of the role of metal ions to ISS elements combine with clay particles.③rely on ISS "hydrophilic head" and the clay particles formed by surface chemical chain cation role, ISS elements occupy the red clay particles on the surface of part of the cation vacancy, get rid of the red clay particles adsorbed on the surface of the hydrophilic cation, while ISS's "hydrophobic tail" on the red clay particles on the surface of certain marginalized the role of water and prevent water entering the system, so without much mechanical force can be discharged. Common role of the above, ISS so that the thickness of electric double layer of clay decreases, combined with thin water film, which reduces the repulsion between Soil Particles Ershi increase attractiveness, so that particles close to each other, changing soil more dense, soil strength increased.④It remains a "film effect" between clay-water interface, when the cation concentration in crystal layer of the clay mineral between and the cation concentration in the water is different, between of two will form a so-called "membrane effect", that is, a high concentration side will be absorbent, low-side will be water loss. The ISS is a high concentration solution, when it contacts with the crystal layer of clay minerals, it will affect the water loss in interlayer of clay minerals, so that clay Mineral crystal layer is closer.⑤the cation of ISS solution is an organic cation, which has functions as a positively charged inorganic cation, in additional, also through the carbon and hydrogen, it produces hydrogen key between oxygen with of underside crystal layer and so on. So it has a more powerful attraction to the mineral crystal layer with negatively charge, it makes crystal layer space more stable and not vulnerable to the impact of the characteristic change of pore fluid. The expansion and contraction crystal in red clay does not have clear changes expansion and contraction in the volume at this time, which diminished the red clay swell-shrink capacity. In the combined effect of above five factors, it achieve the purpose of enforcement the red clay after the actions between ISS with the red clay, as well as between their own physical, physical chemistry and chemical actions.
     The innovative of the studies in this paper reflected in:(1) Using home-made flow test device, it made pure water, ISS solution, and then pure water three-phase, one-dimensional vertical seepage test on the same soil column. By analyzing the relation between flow rate with the head gradient, it researched the seepage law of ISS solution and pure water in the red clay. (2) considering the different effect of confining pressure, imposing the dynamic load by levels, it carried out the dynamic triaxial tests on the ISS solidified soil, studied the dynamic properties of ISS solidified soil. (3) Through ionic composition test of seepage leaching solution with time of the same soil column in different periods, it analyzed the variation law of concentration of the ions with the time and the influence of the electric double layer structure during the progress of ISS reinforcement soil, and researched the reaction mechanism of ISS.
引文
[1]王清,陈剑平,马丽英.中国红土的研究与地基承载力的评价[J].探矿工程,1995,4:15-17.
    [2]王毓华.中国红土及红粘土分布特征[A].中国工程地质新进展论文集[C].成都:成都科技大学出版社,1989,199-204.
    [3]高国瑞.中国红土的微观结构和工程性质[J].岩土工程学报,1985,7(5):10-21.
    [4]张丽娟,汪益敏,陈页开等.电离子土壤固化剂加固土的压实性能[J].华南理工大学学报(自然科学版),2004,32(3):83-87.
    [5]沈新元,邓社军,曹华等.ISS材料在防汛道路中的应用研究[J].人民长江,2003,34(12): 16-18.
    [6]汪益敏,张丽娟,苏卫国等.ISS加固土的试验研究[J].公路,2001,(7):39-43.
    [7]于强,傅妮.ISS离子土壤稳固剂研究与分析[J].四川建筑,2001,21(3):73-74.
    [8]陈碧林.ISS离子土壤稳固剂在S320省道路基土方施工中的试用[J].湖南交通科技,2005,31(4):29-30.
    [9]王尚,张玉斌,卓建平.ISS离子稳固剂稳定土反应机理及其应用探讨[J].公路,2005,7:192-194
    [10]张丽娟,汪益敏,苏卫国等.加固土的CBR试验研究[J].华南理工大学学报(自然科学版),2002,30(7):78-82.
    [11]汪益敏,贾娟,张丽娟等.ISS加固土的微观结构及强度特征[J].华南理工大学学报(自然科学版),2002,30(9):96-99.
    [12]黄文强.ISS离子土壤稳固剂在堤顶路面的应用[J].中国农村水利水电,2005,(10):77-78.
    [13]张惠芬,冯璜,郭九皋等.粘土矿物钝化改性和钝化机理初步研究[J].高校地质学报,2000,6(2):287-291.
    [14]张荣堂.电离子土壤固化剂TFISS在道路工程中的应用[J].中国市政工程,1997,(1):13-15.
    [15]彭波,李文瑛,戴经梁.液体固化剂加固土的研究[J].西安公路交通大学学报,2001,21(1),15-18.
    [16]张丽娟,汪益敏,陈页开等.ISS土壤固化剂在渠道防渗中的试验研究[J].中国农村水利水电,2004,(6):18-21.
    [17]刘清秉,项伟,张伟锋等.离子土壤固化剂改性膨胀土的试验研究[J].岩土力学,2009,30(8):2286-2290.
    [18]崔德山.离子土壤固化剂对武汉红色粘土结合水作用机理研究[D].中国地质大学,2009
    [19]董邑宁,徐日庆,龚晓南.固化剂ZDYT-1加固土试验研究[J].岩土工程学报,2001,23 (4):472-475.
    [20]董邑宁,张青娥,徐日庆等.ZDYT-2固化软土试验研究[J].土木工程学报,2002,35(3):82-86.
    [21]Petry, T.M.Braja, D. Evaluation of chemical modifiers and stabilizers for chemically active soils-clays[J]. Geomaterials 2001, Transportation Research Record,2001, (1757):43-49.
    [22]Katz, L.Rauch, A.Liljestrand, H. et al. Mechanisms of soil stabilization with liquid ionic stabilizer[J]. Geomaterials 2001, Transportation Research Record,2001, (1757):50-57.
    [23]项伟,崔德山,刘莉.离子土固化剂加固滑坡滑带土的试验研究[J].地球科学,2007,32(3):397-402
    [24]徐海清.离子土固化剂加固滑带土研究[D].中国地质大学,2008
    [25]王丽芳,康艳珍.物理化学实验[M].北京:化学工业出版社,2007.
    [26]王世荣,李祥高,刘东志等.表面活性剂化学[M].北京:化学工业出版社,2005(1):12-13
    [27]孙维林,王铁军,刘庆旺.粘土理化性能[M].北京:地质出版社,1992.
    [28]王洋,汤连生.水土作用模式对残积红粘土力学性质的影响分析[J].中山大学学报,2007,46(1),128-132.
    [29]郑琰明,周尚哲,康建成等.南方网纹红土及其形成环境的初步探讨[J].嘉应师范学院学报(自然科学版),2005,23(3):79-83.
    [30]李长安,顾延生.江西修水第四系网纹红土的地层学研究[J].地层学杂志,1997,21(3):226-232.
    [31]章明奎.杭州市之江组网纹红土的矿物学特性[J].浙江大学学报(农业与生命科学版),2000,26(1):22-24.
    [32]熊尚发,丁仲礼,刘东生.南方红土网纹:古森林植物根系的土壤学证据[J].科学通报,2000,45(12):1317-1321.
    [33]赵其国,杨浩.中国南方红土与第四纪环境变迁的初步探讨[J].第四纪研究,1995,2:107-116.
    [34]席承藩.论华南红色风化壳[J].第四纪研究,1991,11(1):1-8.
    [35]徐馨.长江中下游网纹层问题的讨论.见:中国地质学会第四纪冰川与第四纪地质专业委员会主编.第四纪冰川与第四纪地质论文集[C].北京:地质出版社,1984.104-112
    [36]彭补拙,赵培华,李春华,等.庐山地区古土壤与构造运动关系的初步研究.见:中国地理学会冰川冻土分会,中国科学院兰州冰川冻土研究所编.中国第四纪冰川冰缘讨论会文集[C].北京:科学出版社,1985:158-160.
    [37]朱景郊.网纹红土的成因及其研究意义[J].地理研究,1988,17(4):12-20.
    [38]陆景冈.新构造运动影响下的网纹红土[M].地质土壤.北京:农业出版社,1991.
    [39]Isphording, W.C. Mineralogical and physical properties of Gulf coast limestone soils[J]. Transactions-Gulf coast Association of Geological Societies,1978,18:201-214.
    [40]Danin, A.Gerson, E.M.Marton, K. Patterns of limestone and dolomite weathering by lichens and blue-green algae and their palaeoclimatic significance[J]. Palaeogeog. Palaeoclimatol.Palaeoecol,1982,37:221-233.
    [41]Verges, V. Solution and associated features of limastone fragments in a calcareous soil(lithic calcixeroll)from southern France[J]. Geoderma,1985,36:109-122.
    [42]Muhs, D.R.Crittenden, R.C.Rosholt, J.N. Genesis of marine terrace soils,Barbados,west Indies:evidence from mineralogy and geochemistry[J]. Earth Surface Processes and Landforms,1987,12:605-618.
    [43]Muhs, D.R.Bush, C.A. Stewart, K. Geochemical evidence of Saharan dush parent material for soils developed on Quarernary limestone of Caribbean and western Atlantic islands[J]. Quaternary Research,1990,33:157-177.
    [44]Borg, L.E.Banner, J.L. Neodymium and Strontium isotopic constraints on soil sources in Barbados,West Indies[J].Geochimicaet Cosmochimica Acta,1996,60:4193-4260.
    [45]乔彦松,郭正堂,郝青振.等.皖南风尘堆积-土壤序列的磁性地层学研究及其古环境意义[J].科学通讯.2003,48(13):1465-1469.
    [46]邵家骥.苏南及沿江地区柏山组、下蜀组的时代及成因[J].江苏地质,1999,23(1):10-16
    [47]朱显谟.中国南方的红土与红土风化壳[J].第四纪研究,1993,13(1):75-84.
    [48]王芳,周尚哲,康建成.中国网纹红土研究进展[J].烟台师范学院学报(自然科学版),2006,22(1):63-68.
    [49]朱立军,李哲.碳酸盐岩红土中氧化铁矿物的穆斯堡尔谱学研究[J].贵州工学院学报,1996,25(5):34-38.
    [50]孔令伟,罗鸿禧.游离氧化铁形态转化对红粘土工程性质的影响[J].岩土力学,1993,14(4):25-39.
    [51]罗鸿禧.游离氧化铁对红色粘土工程性质的影响[J].岩土力学,1987,8(2):29-36.
    [52]余培厚,郭沛,郑玉元等.红粘土的微结构与力学特征.第二届全国红土工程地质研讨会论文集[C].贵阳:贵州科技出版社,1991.
    [53]周训华,廖义玲.红粘土颗粒之间结构连结的胶体化学特征[J].贵州工业大学学报(自然科学版),2004,33(1):26-29.
    [54]王继庄.游离氧化铁对红粘土工程特性的影响[J],岩土工程学报,1983,5(1):147-156.
    [55]唐大雄,王清,张庆云等.红土的工程地质研究和评价.长春地质学院建院40周年科学研究论文集(水文、工程、环境地质)[C],1992:161-169.
    [56]中国水利水电出版社.(SL237-1999)土工试验规程[S].北京:中国水利水电出版社,1999.
    [57]彭波,原健安,戴经梁.固化剂加固土的研究[J].西安公路交通大学学报,1998,18(3),229-234.
    [58]中华人民共和国交通部.(JTJ057-94)公路工程无机结合料稳定材料的试验规程[S].北京:人民交通出版社,1994.
    [59]中华人民共和国交通部.(JTJ051-93)公路土工试验规程[S].北京:人民交通出版社,1993.
    [60]方云,林彤,谭松林.土力学[M].武汉:中国地质大学出版社,2003.
    [61]吴平宵.粘土矿物材料与环境修复[M].北京:化学工业出版社,2004.
    [62]高国瑞.近代土质学[M].南京:东南大学出版社,1990,(1):261-262.
    [63]谭罗荣、孔令伟。特殊岩土工程土质学[M].北京:科学出版社,2006(1):145-150.
    [64]惠会清,雷胜友.膨胀土膨胀机理及其改良(抑制)方法的研究综述[J].公路交通科技,2005,22(9):90-102.
    [65]R.E格里姆.粘土矿物学[M].许冀泉译.北京:地质出版社,1960.
    [66]李广信。高等土力学。北京:清华大学出版社,2005.
    [67]中华人民共和国建设部.建筑地基基础设计规范(DBJ7-89)[S].北京:中国建筑工业出版社,1989.
    [68]吴俊杰,王成华,李广信.非饱和土基质吸力对边坡稳定的影响[J].岩土力学,2004,25(5):732-736.
    [69]李志清,李涛,胡瑞林.非饱和土水特征曲线特性[J].中国公路学报,2007,20(3):23-27.
    [70]Fredlund D G.非饱和土土力学[M].陈仲颐,等译.北京:中国建筑工业出版社,1997.
    [71]Fredlund D G, Xing A. Equations for the soil -watercharacteristic curve[J]. Canadian Geotechnical Journal,1994,31:521-532.
    [72]Fredlund M D, Wilson G W, Fredlund D G. Prediction of the soil-water characteristic curve from the grain-size distribution curve[A]. Proceeding of the 3rd Symposium on UnsaturatedSoil[C]. Brazil,1997:13-23.
    [73]Clapp R B, Hornberger G M. Empirical equations for some soil hydraulic properties[J]. Water Resources Research,1978,14(4):601-604.
    [74]Charles W.W.Ng and YW.Pang. Experimental investigations of the soil water characteristics of a vocanic soil[J]. Canadian Geotechnical Journal,2000,(37).
    [75]Zheng Han-chen, K.g. Fredlund, and Julian K.M.Gan. Overall volume change, water volume change.and yield associated with unsaturated compacted loess[J]. Canadian Geotechnical Journal,1999,(36).
    [76]Miller, C.J, Yesiller, N.,Yaldo K, Impact of Soil Type and Compaction Conditions on Soil Characteristic[J]. Journal of Geotechnical and Geoenvironmental Engineering,2002,(128).
    [77]汪东林,栾茂田,杨庆.重塑非饱和粘土的土-水特征曲线及其影响因素研究[J].岩土力学,2009,30(3):751-756
    [78]栾茂田,李顺群,杨庆.非饱和土的理论土-水特征曲线[J].岩土工程学报,2005,27(6):611-615
    [79]陈崇希,林敏.地下水动力学[M].武汉:中国地质大学出版社,1999.
    [80]汪民.饱水粘性土中粘粒与水相互作的初步探讨[J].水文地质工程地质,1987,13(3):1-5.
    [81]B.M.奥西波夫.粘土类土和岩石的强度与变形性能的本质[M].北京:地质出版社,1985.
    [82]汤连生.水-土化学作用的力学效应及机理分析[J].中山大学学报(自然科学版),2000,39(4):104-109
    [83]洪毓康.土质学与土力学[M].北京:人民交通出版社,1993.
    [84]周浙红.水泥土、动力学特性试验研究及水泥土桩复合地基有限元分析[D].国防科学技术大学,2006,11.
    [85]李松林.动三轴试验的原理与方法[M].北京:地震出版社,1990.
    [86]张超,杨春和,白世伟.尾矿料的动力特性试验研究[J].岩土力学,2006,27(1):35-40
    [87]吴义祥,张宗祜,凌泽民.土体微观结构的研究现况评述[J].地质论评,1992,38(3):250-259.
    [88]施斌.粘性土微观结构研究回顾与展望[J].工程地质学报,1996,4(1):39-44.
    [89]沈珠江.土体结构性的数学模型-21世纪土力学的核心问题[J].岩土工程学报,1996,18(1):95-97.
    [90]谢定义.21世纪土力学的思考[J].岩土工程学报,1997,19(4):111-114.
    [91]谭罗荣,张梅英,邵梧敏等.灾害性膨胀土的微观结构特征及其工程性质[J].岩土工程学报,1994,16(2):48-57.
    [92]胡瑞林,李向全,官国琳.粘性土微结构定量模型及其工程地质特性研究[M].北京:地质出版社,1995.
    [93]Tan Jong—Kie.The Fundamental Properlies of Ceays, Loess and Rocks and Their Applacation to Engineering Problems[J]. Sclentia,1959,8(10):43-58.
    [94]谭罗荣.土的微观结构概况与发展[J].岩土力学,1983,4(1):73-86.
    [95]Mandelbrot BB. The Fractal Geometry of Nature[M]. New York:W H Freeman,1982:361-366.
    [96]Bamsley M F.Fractal functions and interpolations[M]. Constructive Approximation,1986.
    [97]王清,王剑平.土孔隙的分形几何研究[J].岩土工程学报,2000,22(004):496-498.
    [98]谢和平.岩土介质的分形孔隙和分形粒子[J].力学进展,1993,23(002):145-164.
    [99]刘松玉,方磊.论我国特殊土粒度分布的分形结构[J].岩土工程学报,1993,15(001):23-30.
    [100]徐永福,刘斯宏.粒状土体的结构模型[J].岩土力学2001:22(004):366-372.
    [101]Tovey N K.A digital computer technique for orientationanalysis of micrographs of soil fabric [J] .J.of Microscopy,1990,120:303-305.
    [102]谭罗荣.岩土材料孔径分布测试结果的修正[J].岩土力学,2002,23(3):263-267.
    [103]罗鸿禧,康哲良.膨胀土的胀缩与孔径分布[C].全国首届膨胀土科学研讨会论文集.成都:西南交通大学出版社,1990.
    [104]孔令伟,罗鸿禧,谭罗荣.红粘土孔隙分布的分形特征[C].第七届全国土力学与基础工程学术会议论文集.北京:中国建筑工业出版社,1994,276-279.
    [105]赵杏媛,张有瑜.粘土矿物与粘土矿物分析[M].北京:海洋出版社,1990.
    [106]张乃娴,李幼琴,赵慧敏等.粘土矿物研究方法[M].北京:科学出版社,1990.
    [107]季达依哥罗茨基A.д.X射线结构分析[M].龚尧圭等译.北京:科学出版社,1958.
    [108]米赫耶夫B.H.矿物伦琴射线鉴定手册[M].北京:中国工业出版社,1965.
    [109]Chuan, D.R.W., C.R. Quantitative X-ray powder diffraction analysis of clay minerals in Australian coals using Rietveld methods[J]. Applied Clay Science,2002,21:227-240.
    [110]Moore, D.M.Reynolds, R.C. X-ray Diffraction and the Identification and Analysis of Cay Minerals[M]. London:Oxford University Press,1997.
    [111]James, I.D. The Preparation of Oriented Glay Mineral Specimens for X-ray Diffraction Analysis by a Filter-Membrane Peel Technique[J]. American Mineralogist,1973,58: 553-554.
    [112]王平全.粘土表面结合水定量分析及水合机制研究[D].西南石油学院,2001
    [113]肖艾兰.普通化学与水化学[M].北京:水利电力出版社,1993
    [114]霍恩著,厦门大学海洋系海洋化学教研室译.海洋化学(水的结构与水圈的化学)[M].北京:科学出版社,1976.
    [115]须藤俊男.粘土矿物学[M].马寿鹤,刘万,贾克实译.北京:地质出版社,1960.
    [116]Sparnaay.The Electrical Double Layer[M]. New York:Porgamon Press,1972.
    [117]Paul C,Hiemenz著.胶体与表面化学原理[M].周祖康,马季铭译,.北京:北京大学出版社,1986.
    [118]郑忠编.胶体化学导论[M].北京:高等教育出版社,1989.
    [119]沈钟,赵振国,王果庭等编著.胶体与表面化学[M].北京:化学工业出版社,2004.
    [120]于天仁等.土壤电化学性质及其研究方法[M].北京:科学出版社,1976.
    [121]但春,贺承祖.关于扩散双电层中影响电位分布因素的讨论[J].化学研究与应用,1998,10(3):323-326.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700