用户名: 密码: 验证码:
川东丘陵区农田土/水—气界面汞交换特征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
环境汞污染问题一直是环境科学领域的热点问题。目前对环境汞污染来源、污染水平、迁移转化、危害等已有了较为全面的认识。但对污染源与汇之间定量关系的研究还较薄弱,特别是汞的自然源排放及其区域和全球预算亟待加强。而研究环境界面间汞交换特征对评估汞的自然排放具有重要作用。目前,人们已对森林、草原、荒漠、水域(海洋、湖泊、水库、河流、湿地)、矿区等环境界面的汞释放特征作了一些研究,这些研究结果无疑对正确估算汞的自然释放量具有重要的参考价值。但对于在陆地生态系统中占有重要地位的农田系统土/水-气界面间汞交换特征的研究还相对缺乏。据此,本研究应用动力通量箱(DFC)与Lumex RA915~+测汞仪联用技术,选择重庆市北碚区具有不同土壤类型的澄江镇(紫色土)和龙凤镇槽上(矿质黄泥)为川东丘陵区代表性研究地点,在每个研究点选择邻近具有代表性的水田和旱地作为监测点,每月一次,每次持续24-48小时,连续10个月同步监测了土/水-气界面的汞释放通量,同时考察各环境因子对汞释放的影响。并在此基础上,对重庆市农田(水田、旱地)汞的自然源释放进行初步量化。
     结果表明,旱地土-气界面汞交换和水田水-气界面汞交换都存在明显的时间变化特征。白天汞释放通量显著高于夜间,从早晨开始汞的释放通量逐渐增加,到正午达到汞释放量的峰值,而后,随光照强度的减弱汞释放量逐渐减小。夜间土-气界面汞交换偶有沉降,而水.气界面汞交换则以沉降为主。
     土-气界面汞交换通量明显大于水-气界面汞交换通量,土-气界面汞交换通量是水-气界面汞交换通量的2-4倍。农田土/水-气界面汞交换通量还存在明显的月际变化趋势,暖季农田相对裸露月份(如四月、十月)的汞释放通量大于有作物覆盖的月份,且汞释放通量随作物植株高度的增加而呈现减小的趋势。冷季(如三月、十一月)汞释放量较暖季小。
     无论旱地还是水田汞的释放量槽上(矿质黄泥)都要要大于澄江(紫色土)。这主要是由于两采样点土壤总汞含量和土壤性质的差异造成的。
     影响土-气界面汞交换的主要因素有光照强度、土温、大气汞浓度、大气压、气温等,光照强度与土-气界面汞交换通量成线性正相关关系(0.572≤r≤0.964,p=0.00),土温与土-气汞净释放通量的对数呈线性正相关关系(r=0.567,p=0.00),气温与土-气汞交换通量成正相关关系(r=0.552,p=0.00),大气汞浓度、大气压与汞交换通量成负相关关系(r=-0.065,p=0.13:r=0.168,p=0.00)。光照强度是影响土-气界面汞释放的最主要因子,其次是土温、气温、大气汞浓度、大气压。
     影响水-气界面汞交换的主要因素有光照强度、气温、水温、大气汞浓度、大气压等,光照强度与水-气界面汞交换通量成线性正相关关系(0.544≤r≤0.948,p=0.00),气-水界面的温度梯度影响水-气界面汞交换的重要因素(r=0.476,p=0.00),大气压与汞交换通量成负相关关系(r_(白天)=-0.382,p=0.02;r_(夜间)=-0.338,p=0.04),大气汞浓度与汞交换通量成负相关关系(r_(白天)=-0.371,p=0.05;r_(夜间)=-0.634,p=0.00),光照强度仍是影响水-气界面汞释放的主要因子,其次是大气汞浓度、水温、大气压、气温。
     基于实地测得的数据,结合重庆市的气候特点,对该区域水田、旱地汞释放量进行初步估算,重庆市从旱地释放到大气中的总汞量为621.85kg/a,从水田释放到大气中的总汞量为280.37kg/a。
Mercury contamination on environment has been a hot issue in environmental science field for a long time. People have realized the important aspects of mercury pollution such as its sources, transportation, transformation and harm. However, researches on quantitative relation between sources and sinks of mercury in environment have not been satisfactorily obtained, especially emission of mercury from nature sources is to be estimated regionally and globally, and extensive measurement of mercury exchange flux over air-surface is of great importance. Mercury exchange flux over different environmental interfaces (forest, prairie, desert, waters (ocean, lake, river, wetland), mining area), which has important reference value for correctly evaluating mercury emission undoubtedly. But the study about soil/water-air interface exchange characteristics of mercury emission and deposition in agriculture field, whinch occupies an important position among the Terrestrial Ecosystem, is relatively deficient.Thereafter a Dynamic Flux Chamber (DFC) technique was applied to monitor air/surface exchange flux of mercury Synchronous over dry field and paddy field, which belong to two kinds of main type of soil located in CHENGJIANG town (purple soil) and CAOSHANG town (mineral yellow soil) respectively in the Hill Areas of Eastern Sichuan.lt took ten months to finish the work ,which was mornitered once a month and lasted 24 or 48 hours each time. Influencing factors were measured and investigated its affect to mercury flux. The data of measurement in these plots were used to evaluate emission of mercury from natural source such as dry field and paddy field in Chongqing.
     Results showed that there is time- variation characteristics of mercury exchange of soil/water-air interface.In the day time, a sharp increase in flux starting in the morning and peak emission at midday, then decreased gradually with sunlight decreasing. Mercury emissions from air/soil surface in dry field is dominated by emission in nighttime. On the contrary, mercury emissions from air/water surface in paddy is dominated by deposition.
     The field observations showed that the Hg air/surface emission is stronger in warm season than in cold season.The emssion of mercury over air/soil interface is about 2-4 fold greater than that measured over air/water interface. Compared Hg emissions occurring from air/surface in the period of crop growth versus after harvest and we found that fluxes reduced while the crops grow higher. The height of the plant also presents effect on the result, mercury emission get lower in the field with higher plant.
     The mercury emission fluxes in CAOSHANG (mineral yellow soil) is much higher than CHENGJIANG (purple soil) in both dry field and paddy field. This is mainly because of the difference in both concetration of total mercury and nature of soil.
     Evironmental factors, including solar radition, soil tempreture, relative humidity, air tempreture,air Hg concentration and atmospheric pressure could influence, air/soil mercury exchange flux. There were significantly linear positive correlation between solar radition and mercury flux (0.572≤r≤0.964, p=0.00) , and linear positive correlation between soil tempreture and logarithm of mercury flux (r=0.567, p=0.00), and significantly positive correlation between air tempreture and mercury flux (r=0.552,p=0.00) . On the contrary, there were negative correlation between some factors and mercury flux, such as air Hg concentration and atmospheric pressure (r=-0.065,p=0.13; r=-0.168,p=0.00).Of those factors, the solar radition played an important role, next come soil tempreture, air tempreture, air Hg concentration and atmospheric pressure.
     Evironmental factors, including solar radition, air tempreture, relative humidity, water tempreture, air Hg concentration and atmospheric pressure could influence air/water mercury exchange flux. There were significantly linear positive correlation between solar radition and mercury flux (0.544≤r≤0.948, p=0.00) .Temperature gradient may be an important fator which influenced mercury exchange from air/water interface(r=0.476, p=0.00). On the contrary, there were negative correlation between some factors and mercury flux, such as air Hg concentration (r_(daytime)=-0.371, p=0.05; r_(nighttime)=-0.634, p=0.00) and atmospheric pressure (r_(daytime)=-0.382, p=0.02; r_(nighttime)=-0.338,p=0.04) . Of those factors, the solar radition played an important role, next come air Hg concentration, water tempreture, atmospheric pressure and air tempreture.
     Based on measurement data by dynamic flux chamber in different field plots, and associated climate characteristic of Chongqing, a preliminary estimation of regional mercury budget was carried out.The total emission of mercury to the atmophere from dry field is about 621.85kg/a, and about 280.37 kg/a from paddy field.
引文
[1]Amyot M.,Gill G.A.,Morel F.M..Production and loss of dissolved gaseous mercury in coastal seawater[J].Environmental Science and Technology,1997,31:3606-3611.
    [2]Anthony C.Methyl mercury contamination and emission to the atmosphere from soil amended with municipal sewage sludge[J].J Environ Qual.1997,26:1650-1654.
    [3]Bahlmann E.,Ebinghaus R.,Ruch W..The effect of soil moisture on the emission of mercury from soils.In:Seventh International Conference on Mercury as a Global Pollutant,June 27-July 2,2004,Ljubljana,Slovenia,RMZ-M&G51,pp.791-794.
    [4]Bash J.O.,Miller D.R.A note on elevated total gaseous mercury concentrations downwind from an agriculture field during tilling[J].The science of Total Environment (2007),doi:10.1016/j.scitotenv.2007.07.012.
    [5]Bash J.O.,Miller D.R.,et al.Northeast United States and Southeast Canada natural mercury emissions estimated with a surface emission model[J].Atmospheric Environment,2004,38:5683-5692.
    [6]Bjornberg K A,Vahter M,Graw(?) K P,et al.Methyl mercury exposure in Swedish women with high fish consumption[J].Science of the Total Environment,2005,341(1-3):45-52.
    [7]Blanchard P,Froude F A,Martin J B,et al.Four years of continuous total gaseous mercury(TGM) measurements at sites in Ontario,Canada[J].Atmospheric Environment,2002,36:3735-3743.
    [8]Carpi A,Lindberg S.Sunlight-mediated emission of elemental mercury from soil amended with municipal sewage sludge[J].Environmental Science and Technology,1997,31:2085-2091.
    [9]Carpi A.,Lindberg S.E.,Application of a Teflon~(?) dynamic flux chamber for quantifying soil mercury flux:tests and results over background soil[J].Atmospheric Environment,1998,32:873-882.
    [10]Cohen M,Artz R,Draxler R,et al.Modeling the atmospheric transport and deposition of mercury to the Great Lakes[J].Environmental Research,2004,95(3):247-265.
    [11]Coolbaugh M F,Gustin M S,Rytuba J J,et al.emissions of mercury to the atmosphere from natural sources in Nevada and California[J].Environmental Geology,2002,42:338-349.
    [12]Costa M,Liss P.Photoreduction and evolution of mercury from seawater[J].The Science of the Total Environment,2000,261:125-135.
    [13]Costa M,Liss P.Photoreduction of mercury in seawater and its possible implication for Hg air-sea fluxes[J].Marine Chemistry,1999,68:87-95.
    [14]Engle M A,Gustin M S,Zhang H.Quantifying natural source mercury emissions from the Ivanhoe Mining District,north-central Nevada,USA[J].Atmospheric Environment,2001,35:3987-3997.
    [15]Engle M A,Gustin M S.Scaling of atmospheric mercury emissions from three naturally enriched areas:Flowery Peak,Nevada;Peavine Peak,Nevada;and Long Valley Caldera,California[J].The Science of the Total Environment,2002,290:91-104.
    [16]Engle M A,Tate M T,Krabbenhoft D P,et al.Characterization and cycling of atmospheric mercury along the central US Gulf Coast[J].Applied Geochemistry,2008,23:419-437.
    [17]Engle M.A.,Gustin M.S.,Lindberg S.E..The influence of ozone on atmospheric emissions of gaseous elemental mercury and reactive gaseous mercury from substrates[J].Atmospheric Environment,2005,39:7506-7517.
    [18]Engle,M.A.,Gustin,M.S.,2006.Estimating mercury emissions from geothermal systems and volcanoes to the conterminous US Abstract vol.In:8th Internatational Conference Mercury as a Global Pollutant;Madison,WI,USA.
    [19]Engle,M.A.,Gustin,M.S.,Goff,F.,et al..Atmospheric mercury emissions from substrates and fumaroles associated with three hydrothermal systems in the western United States[J].J.Geophys.Res.2006a,111,D17304.
    [20]Engle,M.A.,Gustin,M.S.,Lindberg,S.E.,et al..The influence of ozone on atmospheric emissions of gaseous elemental mercury and reactive gaseous mercury from substrates[J].Atmos.Environ.,2005,39:7506-7517.
    [21]Engle,M.A.,Gustin,M.S.,Johnson,D.W.,et al..Mercury distribution in two Sierran forest and one desert sagebrush steppe ecosystems and the effects of fire[J],Sci.Total Environ.,2006b,367:222-233.
    [22]Ericksen J.A.,Gustin M.S.,Xin M.,et al..Air-soil exchange of mercury from background soils in the United States[J].The science of Total Environment.2006,366:851-863.
    [23]Expert Panel on Mercury Atmospheric Processes(1994) Mercury atmospheric processes:a synthesis report.EPRI Report No.TR-104214.Electric Power Research Institute.Palo Alto,California.
    [24]Feng X,Yan H,Wang S,et al.Seasonal variation of gaseous mercury exchange rate between air and water surface over Baihua reservoir,Guizhou,China[J].Atmospheric Environmetn,2004,38:4721-4732.
    [25]Feng,X.,Qui,G.,Hou,Y.,Tang,S.,2005.Total gaseous mercury emissions from soil in Guiyang,Guizhou,China.J.Geophys.Res 110,D14306.doi:10.1029/2004JD0056.
    [26]Ferrara R,Maserti B E,Anderson M,et al.Atmospheric mercury concentrations and fluxes in the Almaden district(Spain)[J].Atmospheric Environment,1998,32:3897-3904.
    [27]Ferrara R,Mazzolai B,Edner H,et al.Atmospheric mercury sources in the Mt.Amiata area,Italy[J].The Science of the Total Environment,1998,213:13-23.
    [28]Ferrara R.,Mazzolai B.,Lanzillotta E.,et al.,Volcanoes emission sources of atmospheric mercury in the Mediterranean basin[J].The Science of the Total Environment 2000,259:115-121.
    [29]Ferrara,R.,B.E.Maserti,M.Andersson,et al..Mercury degassing rate from mineralized areas in the Mediterranean Basin[J],Water Air Soil Pollut,1997,93:59-66.
    [30]Fitzgerald,W.F.,Mason,R.R,Vandal,G.M.Atmospheric cycling and air-water exchange of mercury over mid-continental lacustrine regions[J].Water Air and Soil Pollution,1991,56:745-767.
    [31]Fitzgerald,W.F.,Lamborg,C.H.,2005.Geochemistry of mercury in the environment.In:Holland,H.D.,Turekian,K.K.(Eds.),Treatise on Geochemistry.Elsevier,Amsterdam,pp.107-148.
    [32]Friedli,H.R.,Radke,L.R.,Lu,J.Y..Mercury in smoke from biomass fires[J].Geophys.Res.Lett.2001,28:3223-3226.
    [33]Gabriel M.C,Williamson D.G.,Zhang H.,et al..Diumal and seasonal trends in total gaseous mercury flux from there urban ground surfaces[J].Atmosphere Environment,2006,40:4269-4284.
    [34]Galloway,M.E.,Branfireun,B.A.,2004.Mercury dynamics of a temperate forest wetland.The Science of the Total Environment 325,239-254.
    [35]Gardfeldt K,Feng X,Sommar J,et al.Total gaseous mercury exchange between air and water at river and sea surfaces in Swedish coastal regions[J].Atmospheric Environment,2001,35:3027-3038.
    [36]Gillis A,Miller D R.Some local environmental effects on mercury emission and absorption at a soil surface[J].The science of Total Environment,2000,260:191-200.
    [37]Gillis A,Miller D R.Some potential errors in the measurement of mercury gas exchange at the soil surface using a dynamic flux chamber[J].The Science of the Total Environment,2000,260:181-189.
    [38]Grigal D.F.,Inputs and outputs of mercury from terrestrial watersheds:a review[J].Environ.Rev.2002,10:1-39.
    [39]Grigal D.F.,Kolka R.K.,Fleck J.A.,et al..Mercury budget of an upland-peatland watershed[J].Biogeochemistry,2000,50:95-109.
    [40]Gustin M S,Biester H,Kim C S.Investigation of the light-enhanced emission of mercury from naturally enriched substrates[J].Atmospheric Environment,2002,36:3241-3254.
    [41]Gustin M S,Coolbaugh M,Engle M,et al.Atmospheric mercury emissions from mine wastes and surrounding geologically enriched terrains[J].Environmental Geology,2003,43:339-351.
    [42]Gustin M S,Lindberg S E,Marsik F,et al.Nevada STORMS project:Measurement of mercury emissions from naturally enriched surfaces[J].Geophys.Res.,1999a,104:21831-21844.
    [43]Gustin M S,Rasmussen P,Edwards G,et al.Application of a laboratory gas exchange chamber for assessment of in situ mercury emissions[J],Geophys.Res.,1999b,104:21873-21879.
    [44]Gustin M S,Stamenkovic J.Effect of watering and soil moisture on mercury emission from soils[J].Biogeochemistry,2005,76:215-232.
    [45]Gustin M S,Taylor G E,Leonard T L,et al.Atmospheric Mercury Concentrations Associated with Geologically and Anthropogenically Enriched Sites in Central Western Nevada[J].Environ.Sci.Technol.,1996,30:2572-2579.
    [46]Gustin M S.Are mercury emissions from geologic sources significant? A status report[J].The Science of the Total Environment,2003,304:153-167.
    [47]Gustin MS,Ericksen JA,Schorran DE,et al.,Application of controlled mesocosms for understanding mercury air-soil-plant exchange[J].Environ.Sci.Technol.,2004,38:6044-6050.
    [48]Gustin,M.S.,Engle,M.,Ericksen,J.,et al..Mercury exchange between the atmosphere and low mercury containing substrates[J].Appl.Geochem.,2006,21:1913-1923.
    [49]Gustin,M.S.,Lindberg,S.E.,2005.Terrestrial mercury fluxes:is the net exchange up,down,or neither? In:Pirrone,N.,Mahaffey,K.R.(Eds.),Dynamics of Mercury Pollution on Regional and Global Scales:Atmospheric Processes and Human Exposures Around the World.Springer,New York,pp.241-259.
    50]Gustin,M.S.,Lindberg,S.E.,Austin,K.,et al..Assessing the contribution of natural sources to regional atmospheric mercury budgets[J].Sci.Total Environ.,2000,259:61-71.
    [51]Gustin,M.S.,Lindberg,S.E.,Weisberg,P.J.An update on the natural sources and sinks of atmospheric mercury[J].Applied Geochemistry,2008,23:482-493.
    [52]Gustin,M.S.,Stamenkovic,J..Mercury emissions from soils:effect of watering and soil water content[J].Biogeochemistry,2005,76:215-232.
    [53]Gustin,M.S.,Taylor Jr.,G.E.,Maxey,R.A..Effect of temperature,wind velocity and concentration on the flux of elemental mercury from mill tailings to the atmosphere[J].J. Geophys.Res.,1997,102:3891-3898.
    [54]Hall B.The gas phase oxidation of elemental mercury by ozone[J].Water,Air and Soil Pollution,1995,80:301-315.
    [55]Hoyer,M.E.,Keeler,G.J.Atmospheric sources,transport,and deposition of mercury in Michigan:Two years of event precipitation.Water,Air and Soil Pollution,1995,80:199-208.
    [56]Jiang G.B.,Shi J.B.,Feng X.B.Mereury Pollution in China[J].Environ.Sci.Technol.,2006,40:3672-3678.
    [57]Johnson D.W.,Benesch J.A.,Gustin M.S.,et al..Experimental evidence against diffusion control of Hg evasion from soils[J].The Science of the Total Environment,2003,304:175-184.
    [58]Keeler G,Glinsorn G,Pin-one N.Particulate mercury in the atmosphere:Its significance,transport,transformations and sources[J],Water,Air and Soil Pollution,1995,80(1-4):159-168.
    [59]Kemp R J.Measurement of gaseous mercury emissions from natural sources.A thesis presented to the faculty of graduate studies of the University of Guelph,2001.
    [60]Kim K H,Kim M Y,Kim J,et al.The concentrations and fluxes of total gaseous mercury in a western coastal area of Korea during late March 2001[J].Atmospheric Environment,2002,36:3413-3427.
    [61]Kim K H,Lindberg S E,Meyers T P.Micrometeorological measurements of mercury vapor fluxes over background forest soils in eastern Tennessee[J].Atmospheric Environment,1995,29(2):267-282.
    [62]Kim K H,Lindberg S E.Design and initial tests of a dynamic enclosure chamber for measurements of vapor phase mercury fluxes over soils[J].Water,Air and Soil Pollution,1995,80:1059-1068.
    [63]Kim K.H.,Lindberg S.E.,Hanson P.J.,Meyers T.P.Micrometeorological measurements of mercury fluxes over background forest soils in eastern Tennessee[J].Atmospheric Environment,1995,29:267-282.
    [64]Krabbenhoft,D.P.,Branfireun,B.A.,Heyes,A.,2005.Biogeochemical cycles affecting the speciation,fate and transport of mercury in the environment.In:Parsons,M.B.,Percival,J.B.(Eds.),Mercury:Sources,Measurements,Cycles,and Effects,vol.34.Mineralogical Association of Canada Short Course Series,pp.139-151.
    [65]Kuiken T,Gustin M.,Zhang H.,Lindberg S.,et al..Mercury emission from terrestrial background surfaces of the eastern USA:II.Air/surface exchange of mercury within two types of forests from South Carolina to New England.Applied Geochemistry,2008b,23:356-368.
    [66]Kuiken T.,Gustin M.,Zhang H.,Lindberg S.,et al..Mercury emission from terrestrial background surfaces of the eastern USA:I.air/surface exchange of mercury within a southeastern deciduous forest of Tennessee over one year[J].Applied Geochemistry,2008a,23:345-355.
    [67]Lamborg D H,Fitzgerald W F,O'Donell J,et al.A non-steady state compartmental model of global-scale mercury biogeochemistry with interhemispheric atmospheric gradients[J].Geochim.Cosmochim.Acta,2002,66:1105-1118.
    [68]Lee,X.,G.Benoit,X.Hu.Total gaseous mercury concentration and flux over a coastal saltmarsh vegetation in Connecticut,USA[J],Atmos.Environ.,2000,34:4205-4213.
    [69]Lindberg S E,Kim K H,Meryers T P,et al.Micrometeorological gradient approach for quantifying air/surface exchange of mercury vapor:test over contaminated soils[J].Environ.Sci.Technol.,1995,29:126-135.
    [70]Lindberg S E,Stratton W J.Atmospheric mercury speciation:concentrations and behavior of reactive gaseous mercury in ambient air[J].Environmental Science and Technology,1998,32:49-57.
    [71]Lindberg S E,Zhang H,Vette A F,et al.Dynamic flux chamber measurement of gaseous mercury emission fluxes over soils.Part 2:effect of flushing flow rate and verification of a two-resistance exchange interface simulation model[J].Atmospheric Environment,2002,36:847-859.
    [72]Lindberg S.E.,Hanson P.J.,Meyers T.P.,et al..Air/surface exchange of mercury vapor over forests-A need for a reassessment of continental biogenic emissions[J].Atmospheric Environment.1998,32:895-908.
    [73]Lindberg S.E.,Zhang H.,Gustin M.S.,et al.Increases in mercury emissions from desert soils in response to rainfall and irrigation[J].J.Geophy.Res.,1999,104:21873-21878.
    [74]Lindberg,S.E.,T.P.Meyers.Development of an automated micrometeorological method for measuring emission of mercury vapor from wetland vegetation[J],Wetlands Ecol.Manage.,2001,9:333-347.
    [75]Lindberg,S.E.,Jackson,D.R.,Huckabee,J.W.,et al..Atmospheric emission and plant uptake of mercury from agricultural soils near the Almaden mercury mine[J].J.Environ.Qual.,1979,8:572-578.
    [76]Lindberg,S.E.(1996) Forests and the global biogeochemical cycle of mercury.In Regional and Global Mercury Cycles:Sources,Fluxes and Mass Balances,ed.W.Baeyens.R.Ebinghaus,and O.Vasiliev,pp.359-380.Kluwer.Dordrecht,Netherlands.
    [77]Lindberg,S.E.,Stratton,W.J..Atmospheric mercury speciation:concentrations and behavior of reactive gaseous mercury in ambient air.Environ.Sci.Technol.,1998,32:49-57.
    [78]Lindberg.S.E.,Turner,R.R.,Meyers,T.P.,et al..Atmospheric concentrations and deposition of Hg to a deciduous forest at Walker Branch Watershed,Tennessee,USA[J].Water,Air and Soil Pollution.1991,56:577-594.
    [79]Lindberg,S.E.,Zhang,H..Air/water exchange of mercury in the Everglades II:measurring and modeling evasion of mercury from surface waters in the Everglades Nutrient removal project[J].The science of Total environment,2000,259:135-143.
    [80]Lindqvist O,Johansson K,Bringmark L,et al.Mercury in the Swedish Environment:Recent Research on Causes,Consequence and Corrective Methods[J].Water,Air and Soil Pollution,1991,55(1-2):23-32.
    [81]Lindqvist O.,Johanssson K.,Aastrup M.,et al..Mercury in the Swedish environ ment:recent research on causes,consequences and corrective methods[J].Water,Air Soil Pollut.,1991,55:1-261.
    [82]Lyman S.N.,Gustin M.S.,Prestbo E.M.,et al..Estimation of dry deposition of atmospheric mercury in Nevada by direct and indirect methods[J].Environ.Sci.Technol.,2007,41:1970-1976.
    [83]Lynam M,Keeler G.Source-receptor relationships for atmospheric mercury in urban Detroit,Michigan[J].Atmospheric Environment,2006,40:3144-3155.
    [84]Marks R.,Beldowska M.Air-sea exchange of mercury vapour over the Gulf of Gdansk and southern Baltic Sea[J].Journal of Marine Systems,2001,27:315-324.
    [85]Mason R P,Lawson N M,Sheu G-R.Mercury in the Atlantic Ocean:Factors controlling air-sea exchange of mercury and its distribution in the upper waters[J].Deep Sea Res.Ⅱ,2001,48:2829-2853.
    [86]Pirrone N,Keeler G L,Nriagu J O.Regional differences in Worldwide Emissions of Mercury to the Atmosphere[J].Atmospheric Environment,1996,30(17):2981-2987.
    [87]Pirrone N.,Keeler J.L.,et al.Regional differences in Worldwide Emissions of Mercury to the Atmosphere[J].Atmospheric Environment,1996,30(17):2981-2987.
    [88]Poissant L,Hoenninger G.Atmospheric mercury & ozone depletion events observed at the Hudson Bay in Northern Quebec along to BrO(DOAS) measurements[J].Materials and Geoenvironment,2004,51(3):1722-1725.
    [89]Poissant L.,Casimir A.,Water-Air and soil-air exchange rate of total gaseous mercury measured at background sites[J].Atmospheric Environment,1998,32:883-893.
    [90]Pyle,D.M.,Mather,T.A..The importance of volcanic emissions for the global atmospheric mercury cycle[J].Atmos.Environ.,2003,37:5115-5124.
    [91]Schluter K.,Review:evaporation of mercury from soils.An integration and synthesis of current knowledge[J].Environ.Geo!.,2000,39:249-271.
    [92]Scholtz M.T.,VanHeyst B.J.,Scliroeder W.H.,Modeling of mercury emissions from background soils[J].The Science of the Total Environment,2003,304:185-207.
    [93]Scliroeder W H,Munthe J,Lindqvist O.Cycling of mercury between water,air and soil compartments of the environment[J].Water,Air Soil Pollution,1989,48:33-347.
    [94]Scliroeder W H,Yarwood G,Niki H.Transformation processes involving mercury species in the atmosphere-results from a literature survey[J].Water,Air and Soil Pollution,1991,56:653-666.
    [95]Scliroeder W.H.,Munthe J.Atmospheric mercury:An overview[J].Atmospheric Environment,1998,32(5):809-822.
    [96]Schroeder,W.H.,Anlauf,K.G.,Barrie,L.A.,et al..Arctic springtime depletion of mercury[J].Nature,1998,394:331-332.
    [97]Scliroeder,W.H.,Beauchanip,S.,Edwards,G,et al..Gaseous mercury emissions from natural sources in Canadian landscapes[J].J.Geophys.Res.,2005,110:D18302.doi:10.1029/2004JD00569.
    [98]Seehaii K D,Fernandez I J,Kahl J S,et al..Litterfall mercury in two forested watersheds at Acadia National Park,Maine,USA[J].Water,Air and Soil Pollution,2006,170:249-265.
    [99]Stamenkovic,J.,Gustin,M.S.,Amo ne,J.,et al..Long-term measurement of gaseous mercury flux over tallgrass prairie[J].J.Geophys.Res.,2008,submitted for publication.
    [100]Sun S,Wang D,He M,Zhang C.Monitoring of atmospheric heavy metal deposition in Chongqing,China-based on moss bag technique[J].Environ Monit Assess,2009,148:1-9.
    [101]Tan,H.,He,J.L.,Liang,L.,et al..Atmospheric mercury deposition in Guizhou,China[J].The Science of the Total Environment,2000,259:223-230.
    [102]Turekian,K.,Wedepohl,K..Distribution of the elements in some major units of the earth's crust[J].Bull.Geol.Soc.Am.,1961,72:175-192.
    [103]Varekamp,J.C.,Buseck,P.R..The speciation of mercury in hydrothermal systems,with applications to ore deposition[J].Geochim.Cosmochim.Acta,1984,48:177-185.
    [104]Wang D,He L,Shi X,et al.Release flux of mercury from different environmental surfaces in Chongqing,China[J].Chemosphere,2006b,64:1845-1854.
    [105],et al.Estimation of mercury emission from different sources to atmosphere in Chongqing,China[J].Science of the Total Environment,2006a,366:722-728.
    [106]Wang D,Shi X,Wei S.Accumulation and transformation of atmospheric mercury in soil.The Science of the Total Environment,2003,304:209-214.
    [107]Wang S.,Feng X.,Qiu G.,et al..Characteristics of mercury exchange flux between soil and air in the heavily air-polluted area,eastern Guizhou,China[J].Atmos.Environ.,2007,41:5584-5594.
    [108]Wang,S.,Feng,X.,Qiu,G.,et al..Mercury emission to the atmosphere from Lanmuchang Hg-T1 mining area,Southwestern Guizhou,China[J].Atmos.Environ.,2005,39:7459-7473.
    [109]Wangberg I,Edner H,Ferrara R,et al.Atmospheric mercury near a chlor-alkali plant in Sweden[J].The Science of the Total Environment,2003,304:29-41.
    [110]Wangberg I,Muntlie J,Pirrone N,et al.Atmospheric mercury distribution in Northern Europe and in the Mediterranean region[J],Atmospheric Environment,2001,35:3019-3025.
    [11]Wedepohl K..The composition of continental crust[J],Geochim.Cosmochim.Acta,1995,59:1217-1232.
    [112]Wilson S J,Steenhuisen F,Pacyna J M,et al.Mapping the spatial distribution of global anthropogenic mercury atmospheric emission inventories[J].Atmospheric Environment,2006,40:4621-4632.
    [113]Wong C W,Duzgoren-Aydin N S,Aydin A,et al.Sources and trends of environmental mercury emissions in Asia[J].Science of the Total Environment,2006,368:649-662.
    [114]Xiao Z,Munthe J,Schroeder W H,et al.Vertical fluxes of volatile mercury over forest soil and lake surfaces in Sweden[J].Tellus,1991,43 B:267-279.
    [115]Xin M.,Gustin M S,Gaseous elemental mercury exchange with low mercury containing soils:Investigation of controlling factors[J].Applied Geochemistry.2007,22:1451-1466.
    [116]Xu X.,Yang X.,Miller D.R.,et al.Formulation of bi-directional atmosphere-surface exchanges of elemental mercury[J].Atmospheric Environment,1999,33:4345-4355.
    [117]Yao A.,Qing C,Mu S.,Reardon E.J.,Effects of humus on the environmental activity of mineral-bound Hg:influence on Hg volatility[J].Appl.Geochem.,2006,21:446-454.
    [118]Zagury G.J.,Neeulita C.M.,C.BastienL.Desehenes.Mercury fraction,bioavailability,and ecotoxicity in highly contamination soils from chlor-alkal Plants[J].Environ.Toxicol.Chem,2006,25:1138-1147.
    [119]Zhang H,Lindberg S E,Bamett M O,et al.Dynamic flux chamber measurement of gaseous mercury emission fluxes over soils.Part 1:simulation of gaseous mercury emissions from soils using a two-resistance exchange interface model[J].Atmospheric Environment,2002,36:835-846.
    [120]Zhang H,Lindberg S E.Sunlight and iron(III)-induced photochemical production of dissolved gaseous mercury in fresh water[J].Environ.Sci.Technol.,2001,35:928-935.
    [121]Zhang H.,Lindberg S.E.,Processes influencing the emission of mercury from soils:a
    conceptual model [J] Geophy.Res., 1999, 104:21889-21896.
    [122] Zhang H., Lindberg S.E., Marsik F.J., et al.. Mercury air/surface exchange kinetics of background soils for the Tahquamenon river watershed in the Michigan upper Peninsula [J]. Water, Air Soil Pollution. 2001, 126:151-169.
    [123] 操佩娟.水.早轮作条件下紫色土汞的释放特征[D].西南农业大学硕士学位论文,重庆:西南农业大学,2006
    [124] 戴树桂.环境化学[M].:北京:高等教育出版社,2004
    [125] 方凤满,王起超.大气-水-土壤界面汞交换研究方法现状与展望[J].农业环境保护2002,21(4):381-383
    [126] 方凤满,王起超.土壤汞污染研究进展[J].土壤与环境2000,9(4):326-329
    [127] 冯新斌,Jonas S,Katarina G,等.夏季自然水体与大气界面间气态总汞的交换通量[J].中国科学D,2002,32(7):609-615
    [128] 何峰.重庆市农田土壤-粮食作物重金属关联特征与污染评价[D].重庆:西南农业大学,2004:34
    [129] 侯亚敏,冯新斌,王少锋等.贵阳市及其郊区土壤/大气界面间汞交换通量的初步研究[J].土壤学报,2005,42(1):52-48
    [130] 胡声荣.川东丘陵区农业生态系统分析,西南农学院学报,1985,2:9-15
    [131] 李平,冯新斌,仇广乐.贵州省务川汞矿区汞污染的初步研究[J].环境化学,2008,27(1):96-99
    [132] 李清,何潇,谢世友.川东平行岭谷区自然景观垂直分异规律及综合分区-以重庆北碚区为例,资源开发与市场,2005,21(3):210-212
    [133] 林陶,张成,石孝均等.不同类型紫色土土/气界面汞释放通量及其影响因素.环境科学学报,2008,28(10):1955.1960
    [134] 刘德绍,青长乐,杨水平.近地面大气汞的垂直分布[J].西南农业大学学报,2001,23(1):39-41
    [135] 孙向彤,何锦林,谭红.贵州红枫湖水面挥发性汞释放通量的测定,湖泊科学,2001,13(1):89-92
    [136] 王定勇,石孝洪,杨学春.大气汞在土壤中转化及其与土壤汞富集的相关性.重庆环境科学,1998,20:22-25
    [137] 王定勇,牟树森,酸沉降地区大气汞对土壤-植物系统汞富集影响的调查研究.生态学报,1999,19(1):140-144.
    [138] 王起超,方凤满,李志博.长春市汞界面交换通量的研究[J].中国环境科学,2005,25(4):475-479
    [139] 王少锋,冯新斌,仇广乐等.贵州红枫湖地区冷暖两季土壤/大气界面间汞交换通量的
    50 对比[J].环境科学,2004a,25(1):123.127
    [140] 王少锋,冯新斌,仇广乐等.夏季红枫湖地区农田土壤-大气界面汞交换通量的初步研究[J].矿物岩石地球化学通报,2004b,23(1):19-23
    [141] 王少锋,冯新斌,仇广乐等.大气汞的自然来源研究进展[J].地球与环境,2006a,34(2):1-11
    [142] 王少锋.汞矿化带土壤/大气界面汞交换通量研究[D],中国科学院研究生院博士学位论文,北京,2006b
    [143] 夏增禄,穆从如,李森照等.我国若干土壤类型剖面中汞的自然含量及其分异的初步分析[J].科学通报,1984,10:619-622
    [144] 张成,何磊,王定勇等.重庆几种地表类型土/气界面汞交换通量[J].环境科学学报,2005,25(8):1085-1090
    [145] 张学询,王连平,束胜焕.天津污灌区土壤、作物重金属污染状况的研究[J].中国环境科学,1988,8:20-26
    [146] 重庆市统计局编.重庆统计年鉴.北京:中国统计出版社,2006

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700