用户名: 密码: 验证码:
溶解性有机质对土/气界面汞释放的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
环境汞污染问题自20世纪50年代日本发生水俣病(Minamata Disease)事件以来,一直是环境科学领域的研究热点问题之一。最近十几年来,人们发现汞可以通过大气环流发生长距离传输污染,因而大气汞的库存量及其输入与输出通量受到特别关注。据估计,全球每年输入到大气中汞的总量约为6000-7500 t,其中自然释汞约占1/3。在自然释汞源中,土壤是最主要的汞源之一。散发到大气中的汞经过一定时间和距离的传输后,超过90%的部分最终会回落到陆地生态系统,并通过陆生食物链威胁人类健康。施用有机物料是农业生产中广泛应用的农艺措施,有研究发现,有机物料进入土壤后会产生大量溶解性有机质(DOM),DOM化学性质非常活跃,对重金属Hg吸附解吸、迁移转化及生物毒性有显著的影响。因此,本试验以重庆市典型土壤--紫色潮土、黄壤和紫色土为调查研究对象,采用模拟试验研究DOM在各种条件下对土/气界面汞释放量的影响,同时对模拟前的紫色土中的汞形态进行分析,研究DOM在各种条件下对紫色土中汞形态变化的影响,最后考察在DOM影响下紫色土中汞各形态变化与土/气界面汞释放量之间是否有相关性。研究结果如下:
     在模拟试验中对土/气界面汞释放量的监测结果中可以得知:在三种土壤中加入DOM后,会降低土/气界面的汞释放量;不同的DOM对汞释放量的影响程度不同,其中以堆肥DOM对汞释放量的抑制作用最强;DOM对土/气界面汞释放量的影响与其添加量即最后土壤中的DOM浓度有关,随着土壤DOM浓度的增加,其对土/气界面汞释放量的抑制作用也越强;
     在本试验中的两种外源汞浓度下,添加三种DOM都基本上对三种土壤的土/气界面汞释放量有不同程度的抑制作用,并且这种抑制作用会随外源汞浓度的增大而变得更加明显;
     DOM对土/气界面汞释放量的影响和其与土壤汞的作用时间,即陈化时间有关,随着陈化时间的增长,无论是否添加DOM,土/气界面的汞释放量都呈下降趋势。未添加DOM的土样,其土/气界面汞释放量下降程度要比添加了DOM的更大;
     由于土壤的理化性质各异,如pH、机械组成等的不同,使得三种土壤在同种条件下土/气界面汞释放量的大小不同,其顺序基本为紫色潮土>紫色土>黄壤。
     在模拟试验中对模拟前紫色土中汞形态的分析结果中可以得知:添加DOM后会使紫色土中各形态含量发生变化。与未添加DOM的土样比较,腐殖土DOM使水溶态酸溶态含量下降,碱溶态、有机态和残留态含量上升;堆肥DOM会使水溶态、酸溶态和有机态含量下降,而使碱溶态和残留态含量上升;稻草DOM会使水溶态、酸溶态含量下降,而使碱溶态、有机态和残留态含量上升;
     随着三种DOM添加量的增加,水溶态和酸溶态汞含量都有下降的趋势,其中以稻草DOM最为明显,并且残留态汞含量随稻草DOM添加量的增加有明显的上升趋势;
     未添加DOM和添加堆肥DOM的土样受陈化时间长短的影响不大,添加腐殖土DOM和稻草DOM使紫色土中酸溶态汞含量随时间推移明显下降,而残留态汞明显上升;在添加了稻草DOM的紫色土中,酸溶态的下降趋势很明显,从1d到3d,下降了0.0276mg/kg,从3d到5d下降了0.0097mg/kg,总共变化0.0373mg/kg。
     和未添加外源汞的土样相比,添加外源汞使得汞形态分布发生变化;外源汞浓度不同,汞形态分布也有所差异,并且汞浓度越大,DOM的添加使得汞形态含量分布对照未添加DOM时的变化也越大。
     对整个试验过程中紫色土土/气界面汞释放量和相对应的土壤汞形态含量进行相关性分析,发现紫色土土/气界面的汞释放量与水溶态汞和碱溶态汞含量的变化有相关关系,其中水溶态是正相关关系,相关系数为0.479~(**),碱溶态为负相关关系,相关系数为-0.524~(**),两者都达到了极显著水平。
Since the Minamata disease happened in Japan in the 1950s', environmental mercury pollution has been one of the hot issues study in the field of the environmental science. In the recent 10 years, it was discovered that long-distance transmission of mercury could lead to contamination through the circulation of the atmosphere and the stock of the mercury in the atmosphere and the flux of its input and output were paid special attention. It is estimated that the total amount of mercury that entered the atmosphere every year in the world is about 6000-75001, of which the natural released mercury is about 1/3. Soil is the main source of the natural released mercury. After the mercury is transmited for a certain period of time and distance in the atmosphere, over 90 percent of it would eventually come down to terrestrial ecosystems, and threat human health through terrestrial food chain. Application of organic fertilizer is a widely adopted agronomic method in the agricultural activity. It is found that there would be a large amount of dissolved organic matter (DOM) when the organic fertlizer enter into the soil. The chemical properties of DOM is very active, and it has great impact on the adsorption and desorption, migration and conversion even biological toxicity on the heavy metal Hg. Accordingly, this trial choose Chongqing's typical soil-purple tide soil, yellow soil and purple soil as the object of investigation, test the impact that DOM has on the exchange of mercury in the soil/air interface under a variety of conditions by the simulation test, analyse the forms of mercury in purple soil before the simulation, research the impact that DOM has on the change of mercury's forms in the purple soil under a variety of condition, and finally inspect whether there is relationship between the changes of mercury's form in the purple soil and the release amount of mercury from the soil/air interface under the effect of DOM. The results are as follows:
     From the monitoring results of the mercury amount from the soil/air interface, it is found that: adding DOM to the three kinds of soils would reduce the mercury release amount from the soil/air interface; different DOMs have different impact on the mercury release amount from the soil/air interface, and the compost DOM have the strongest inhibit effect on the amount of mercury release. The DOM's impact on the mercury release amount from the soil/air interface is related to the adding amount(that is the last concentration adding to the soil). With the increasing concentration of the DOM in the soil, the inhibit effect on the mercury release amount from the soil/air interface would be stronger.
     Under the two kinds of the exotic mercury's concentration, the three sorts of DOM mainly have different degrees of restraining effect to the mercury release amount from the soil/air interface of the three kinds of soil, and this restraining effect becomes more obvious as the concentration of the exotic mercury becomes stronger.
     DOM's impact on the mercury release amount from the soil/air interface is related to the reaction time(that is the aged time) between DOM and soil mercury. As the aged time's growing, whether the DOM is added or not, the trend of the mercury release amount from the soil/air interface drops. The dropping degrees of the mercury release amount from the soil/air interface of soil samples with no DOM is greater than the one with DOM.
     As the physical and chemical properties of different soils are different, such as their differrent pH, mechanical components ,that make the mercury release amount from the soil/air interface of three kind of soils is diffenrent under the same condition. Basically ,the sequence is purple tide soil> purple soil> yellow soil.
     From the result of analysing the forms of mercury in purple soil before the simulation we know that: the content of the chemicals in the purple soil would change after adding DOM. Compared with the soil samples in which DOM is not added, DOM from humic soil would make the content of water-soluble and acid-soluble form decline, but make the content of alkali-soluble form、organic matter form and residual form increase; DOM from compost would make the content of water-soluble form、acid-soluble form and organic matter form decline, but make the content of alkali-soluble form and residual form increase; DOM from straw would make the content of water-soluble form and acid-soluble form decline, but make the content of alkali-soluble form、organic matter form and residual form increase;
     As the increasing of the adding amount of the three kinds of DOM, there is a declining tendency of the content of water-soluble form and acid-soluble form, the tendency of straw is particularly obvious, and there's an obvious rising tendency in the content of residual form when the straw DOM's adding amount is increased.
     The soil samples with no DOM and compost DOM added are rarely effected by the aged time. The contents of mercury of acid-soluble form in purple soils with straw DOM and compost DOM added drop obviously as the time grows, while the residual form rises; the contents of acid-soluble form mercury in purple soils with straw DOM added drops obviously, the amount of declining is 0.0276mg/kg from 1d to 3d, 0.0097mg/kg from 3d to 5d, the amount varied 0.0373 mg/kg in total.
     Compared with the soil sample with no exotic mercury added into, the one that add the exotic mercury made the allocation of the mercury's form change; Differrent concentration of the exotic mercury makes varied allocation of the mercury's form, and with DOM added into the soil, contradistinguishing with that with no DOM added into, the more concentrated the mercury, the greater change the allocation of the content of the mercury' form would have.
     The relation between the mercury release amount from the soil/air interface and the corresponding content of soil mercury form is analyzed. It's found that there's relationship between mercury release amount from the soil/air interface and content of water-soluble form mercury and alkali-soluble form mercury. There's a significant positive corresponding with content of water-soluble form mercury, the correlation coefficient is 0.479**, and a significant negative corresponding with alkali-soluble form mercury, the correlation coefficient is -0.524**.
引文
[1]Allschlager D,Kock H H,Schroeder W H,et al.Mechanism and significance of mercury volatilization from contaminated floodplains of the German river Elbe[J].Atmospheric Environment,2000,34:3745-3755.
    [2]Anderson A.Mercury in Soils[A].In:The Biogeochemistry of Mercury in the Environment [M].Amsterdam:Elsevier.1979:79-112.
    [3]Antoniadis V,Alloway B J.The role of dissolved organic carbon in the mobility of Cd,Ni and Zn in sewage sludge-amended soils[J].Environmental Pollution,2002,117:515-521.
    [4]Bahlmaun E R,Ebinghaus Ruek W.Influence of solar radiation on mercury emission fluxes from soils[J].RMZ Materials and Geoenvironment,2004,51:787-790.
    [5]Bergan T L,Gallardo L,Rodhe H.Mercury in the global troposphere:A three-dimensional model study[J].Atmospheric Environment,1999,33:1575-1585.
    [6]Bishop K H,et al.Catchment Influence on the Output of mercury and methyl-mercury from soils to surface waters[A].Abstract collection of Iner.Confer on mercury as a Global Pollutant[C].August4-8,Congress Center Hamberg,German,1996:348.
    [7]Boyle M,Fuller H W.Efect of municipal solid waste leachate composition on zinc imigration through soil[J].Environ.Qual,1987,16:357-360.
    [8]Brosset C.The behaviour of mercury in the physical environment[J].Beater,Air and Soil Pollution,1987,34:145-166.
    [9]Burnham A-W,Calder G V,Fritz J S,Junk G A,Svec H J,Vick R.Trace of organic in water-their isolation and identification[J].American Works Association Journal,1973,65:722-725.
    [10]Carpi A,Lindberg S E.Application of a Teflon~(TM)dynamic flux chamber for quantifying soil mercury flux:tests and results over background soil[J].Atmospheric Environment,1998,32(5):873-882.
    [11]Carpi A,Lindberg S E.Sunlight-mediated emission of elemental mercury from soil amended with municipal sewage sludge[J].Environ Sci Technol,1997,31:2085-2091.
    [12]Carpi A.Methyl mercury contamination and emission tothe atmosphere from soil amended with municipal sewage sludge[J].J Environ Qual,1997,26(6):1650-1654.
    [13]Castilho R,Chardon W J,Oenema O,Vriesema,et al.Organ ic phosphorosinsolutions and leachates from soils treated with animal slurries[J].Journal of Environmental,1997,26:372-378.
    [14]Chen T-B,Huang Z-C,Chen H.Effect of DOMs extracted from five solid organic wastes on cadmium adsorption in soils.Acta Sci Circ,2002,22(2):150-155.
    [15]Chen T-B,Chen Z-J.Cadmium adsorption in soil influenced by dissolved oganic matter drived from rice straw and sediment.Chin J Appl Ecol,2002,13(2):183-186.
    [16]Chuan M C,Shu G Y,Liu J C.Solubility of heavy metals in a contaminated soil:effects of redox potential and pH[J].Water,Air and Soil Pollution,1996,90(3/4):543-556.
    [17]Cohen M,Artz R,Draxler R,et al.Modeling the atmospheric transport and deposition of mcrcury to the Great Lakcs[J].Environmental Research,2004,95(3):247-265.
    [18]Coolbaugh M F,Gustin M S,Rytuba J J,et al.Annual emissions of mercury to the atmosphere from natural sources in Nevada and California[J].Environmental Geology,2002,42:338-349.
    [19]Coqucry M,Cossa D,Martin U M.The distribution of dissolved and particulate Mercury in three Siberian Estuaries and adjacent Arctic Coastal Waters[J].Water,Air and Soil Pollution,1995,80:653-664.
    [20]Dunnivant F M,Jardine P M.Transport of naturally occurring Dissolved Organic Carbon in laboratory columm containing aquifer material[J].Environ.Sci & Technol.,1992,56:437-441.
    [21]Engle M A,Gustin M S,Zhang H.Quantifying natural source mercury emissions from the Ivanhoe Erwin J M T,Sjoerd E A,Frans A M,et al.1997.Copper mobility in a copper-contaminated sandy soil as affected by pH and solid and dissolved organic matter.Environ Sci Tech,31:1109-1115.
    [22]Ferrara R,Maserti B E,Anderson M,et al.Atmospheric mercury concentrations and fluxes in the Almaden district(Spain).Atmospheric Environment,1998,32:3897-3904.
    [23]Ferrara R,Mazzolai B,Edner H,et al.Atmospheric mercury sources in the Mt.Amiata area,Italy[J].The Science of the Total Environment,1998,213:13-23.
    [24]Fitzgerald W F,Mason R P,Vandal G M.Atmospheric cycling and air-water exchange of mercury over mid-continental lacustrine regions[J].Water,Air and Soil Pollution,1991,55:745-767.
    [25]Gbor P K,Wen D Y,Meng F,et al.Improved model for mercury emission,transport and deposition[J].Atmospheric Environment,2006,40:973-983.
    [26]Geologicallv and Anthropogenically Enriched Sites in Central Western Nevada [J].Environ.Sci.Technol.,1996,30:2572-2579.
    [27]Gillis A,Miller D R.Some local environmental effects on mercury emission and absorption at a soil surface[J].Science of the Total Environment,2000,260:191-200.
    [28]Gillis A,Miller D R.Some potential errors in the measurement of mercury gas exchange at the soil surface using a dynamic flux chamber[J].Science of the Total Environment,2000,260:181-189
    [29]Guisquiani P L,Coneezzi L,Businelli M,Macchioni A.Fate of pig sludge liquid fraction in calcareous soil:agricultural and environmental implications[J].Journal of Environmental Quality,1998,27:364-371.
    [30]Gustin M S,Biester H,Kim C S.Investigation of the light-enhanced emission of mercury from naturallv enriched substrates[J].Atmospheric Environment,2002,36:3241-3254.
    [31]Gustin M S,Coolbaugh M,Engle M,el al.Atmospheric mercury emissions from mine wastes and surrounding geologically enriched terrains[J].Environmental Geology,2003,43:339-351.
    [32]Gustin M S,Lindberg S E,Marsik F,et al.Nevada STORMS project:Measurement of mercury emissions from naturallv enriched surfaces[J].J.Geophys.Res.,1999,104:21831-21844.
    [33]Gustin M S,Rasmussen P,Edwards G,et al.Application of a laboratory gas exchange chamber for assessment of in situ mercury emissions[J].J.Geophys.Res.,1999,104:21873-21879.
    [34]Gustin M S,Taylor G E,Leonard T L,et al.Atmospheric Mercury Concentrations Associated with Gustin M S.Are mercury emissions from geologic sources significant?A status report[J].The Science of the Total Environment,2003,304:153-167.
    [35]Hall B.The gas phase oxidation of elemental mercury by ozone[J].Water,Air and Soil Pollution,1995,80:301-315.
    [36]Heyer M,Burke J,Keler G.Atmospheric sources,transport and deposition of mercury in Michigan:two years of event precipitation[J].Water,Air and Soil Pollution,1995,80:199-208.
    [37]Hogg T J,Stewart J W,Bettany J R.Influence of chemical form of mercury on its adsorption and ability to leach through soils[J].Journal of Environmental Quality,1978,7:440.
    [38]Jacob S.W,Kathryn L.N,George R.A,Joseph N.R.Dissolution of cirmabar(HgS)in the presence of natural organic matter[J].Geochimica et Cosmochimica Acta,2005,69(6):1575-1588.
    [39]Jardine P M,Weber N L,McCarthy J F.1989.Mechanism of dissolved organic carbon adsorption on soil[J].Soil Sci Soc A m J,53:1378-1385.
    [40]Jiang J,Wang G,Fang L.Complexation between soil water-soluble organic matter and heavymetal.Soil Environ Sci,2001,10(1):67-71.
    [41]Kaiser K,Zech W.Nitrate,sulfate,and biphosphate retention in acid forest soils affected by natural dissolved organic carbon[J].JEnvi ron Qual,1996,25:1325-1331.
    [42]Kaiser K,Zech W.Natural organic matter sorption on different mineral surfaces studies by DRIFT spectroscopy[J].Sciences of Soils,1997,2:71-74.
    [43]Keeler G,Glinsorn G,Pirrone N.Particulate mercury in the atmosphere:its significance,transport,transformation and sources[J].Water,Air and Soil Pollution,1995,80:159-168.
    [44]Kim K H,Lindberg S E,Meyers T P.Micrometeorological measurements of mercury vapor flux over background forest soils in Eastern Tennessee[J].Atmospheric Environment,1995,29:267-282.
    [45]Kinniburgh D G,Jackson M L,Syers J K.Adsorption of Alkaline earth,transition and heavy metals cations by hydrous oxide gels of Iron and Aluminum[J].Soil Science,1976,40: 796-799.
    [46]Klaus K,Martin K,Zech W,et al.2001.Sorption of dissolved organic carbon in soils:Effect sample storage,soil-to-solutionratio,and temperature.Geoderma,99:317-328.
    [47]Klaus K.1998.Fractionation of dissolved organic matter affected by polyvalent metal cations.Org Geochem,12(28):849-854.
    [48]Kuiter A T,Mudler W.Water2soluble organic matter in forest soils.Plant Soil,1993,152(2):215-224.
    [49]Lindberg S E,Kim K H,Meryers T P,et al.Mierorneteorological gradient approach for quantifying air/surface exchange of emercury vapor:test over contaminated soils [J].Environ.Sci.Technol.,1995,29:126-135.
    [50]Lindberg S E,Kim K H,Meyers T P et al.Mierometerorological gradient approach for quantifying air/surface exchangeof mercury vapor:tests over contaminationed soils[J].Environ Sci Technol.,1995,29:126-135.
    [51]Lindberg S E,Zhang H,Gustin M S,et al.Increases in mercury em issions from desert soils in response to rainfall and irrigation[J].J.Geophys.Res.,1999,104:21879-21888.
    [52]Lindberg S E,Zhang H,Vette A F,el al.Dynamic flux chamber measurement of gaseous mercury emission fluxes over soils.Part 2:effect of flushing flow rate and verification of a two-resistance exchange interface simulation model[J].Atmospheric Environment,2002,36:847-859.
    [53]Lindqvist O,Johansson K,Aastrup M,et al.Mercury in the Swedish environment:recent research on causes consequences and corrective methods[J].Water,Air and Soil Polluttion,1991,55:23-32.
    [54]Lindqvist O,Rodhe H.Atmospheric mercury-a review[J].Tellus,1985,37:136-159.
    [55]Linqvist O,Johansson K,Aastrup M,et al.Mercury in the Swedish environment[J].Water Air Soil Pollut,1991,55:1-261.
    [56]Lodenius M.Sorption of mercury in soil[M].In:Encyclopedia of Environmental Control Technology 4:Hazardous Waste Containment and Treatment,Cheremisinoff,P.,Ed.Houston:Gulf publishers,1990:339.
    [57]Lu J Y,Schroeder W H.Comparison of conventional filtration and a denuder-based methodology for sampling of particulate-phase mercury in ambient air[J].Talanta,1999,49:15-24.
    [58]Mason R P,Fitzgerald W F,Morel M M.The biogeochemical cycling of elemental mercury:anthropogenic influences[J].Geochmica et Cosmochimica Acta,1994,58:3191-3198.
    [59]Mason R P,Sheu G R.Role of the ocean m the global mercury cycle[J].Global Biogeochemical cycles,2002,16:1093-1106.
    [60]Mining District,north-central Nevada,USA[J].Atmospheric Environment,2001,35: 3987-3997.
    [61]Munthe J,Mcelroy W J.Some aqueous reactions of potential importance in the atmospheric chemistry of mercury[J].Atmospheric Environment,1992,26:553-557.
    [62]Munthe J,W ngberg I,Pirrone N,et al.Intercomparison of methods for sampling and analysis of atmospheric mercury species[J].Atmospheric Environment,2001,35:3007-3017.
    [63]Munthe J,Xiao Z F,Lindqvist O.The aqueous reduction of divalent mercury by sulfite [J].Water,Air and Soil Pollution,1991,56:621-630.
    [64]Munthe J.Aqueous oxidation of elemental Hg by O_3[J].Atmospheric Environment,1992,26:1461-1468.
    [65]Munthe J.The atmospheric chemistry of mercury:kinetic studies of redox reactions[M].In:Mercury Pollution:Integration and Synthesis.Boca Raton,Lewis Publishers,1994,273-280.
    [66]Nriagu J O,Pacyna J M.Quantitative assessment of worldwide contamination of air,water and soil by trace metals[J].Nature,1988,333:134-139.
    [67]Nriagu J O.A global assessment of natural sources of atmospheric trace metals[J].Nature,1989,338:47-49.
    [68]Pirrone N,Keeler G J,Nriagu J O.Regional differences in worldwide emissions of mercury to the atmosphere[J].Atmospheric Environment,1996,30(17):2981-2987.
    [69]Poissant L,Casimir A.Water-air and soil-air exchange rate of total gaseous mercury measured at background sites[J].Atmospheric Environment,1998,32:883-893.
    [70]Prestbo EM,Bloom NS.Mercury speciation adsorption(MESA)method for combustion flue gas:methodology,artifacts,intereomparison and atmospheric implications[J].Water,Air and Soil Pollution,1995,80(1-4):145-158.
    [71]Qing C L,Mou S S,Guo TY,et al.Chemical forms of mercury in soils and their influencing factors[J].Pedosphere,1998,8(2):175-180.
    [72]Ravichandran M.Interactions between mercury and dissolved organic matter-a review [J].Chemosphere,2004,.55(3):319-331.
    [73]Rogers R D,Mcfarlane J C.Impact factors of mercury volatile from soils[J].Journal of Environmental Quality,1979,8:255-260.
    [74]Rosa D A,Sepulveda T V,Solórzano G.,et al.Survey of atmospheric total gaseous mercury in Mexico[J].Atmospheric Environment,2004,38(29):4839-4846.
    [75]Rosa D A,Velasco A,Rosas A,et al.Total gaseous mercury and volatile organic compounds measurements at five municipal solid waste disposal sites surrounding the Mexico City Metropolitan Area[J].Atmospheric Environment,2006,40(12):2079-2088.
    [76]Remkens P F,Dolfing J.1998.Effect of Ca on the solubility and molecular size distribution of DOC and Cu binding in solution sample.Environ Sci Technol,32:363-369.
    [77]Schluter K.Review:evaporation of mercury from soils.An integration and synthesis of current knowledge[J].Environmental Geology,2000,39(3-4):249-271.
    [78]Scholtz M T,Van Heyst B J,Schroeder W H.Modelling of mercury emissions from background soils[J].The Science of the Total Environment,2003,304(1-3):185-207.
    [79]Schroeder W H,Munthe J,Lindqvist O.Cycling of mercury between water,air and soil compartments of the environment[J].Water Air Soil Pollut,1989,48:337-347.
    [80]Schroeder W H,Muntbe J.Atmospheric mercury-An overview[J].Atmospheric Environment,1998,32(5):809-822.
    [81]Schroeder W H,Yarwood G,Niki H.Transformation processes involving Hg species in atmosphere-results from a literature survey[J].Water,Air and Soil Pollution,1991,56:653-666.
    [82]Schuster E,et al.The behavior of mercury in the special emphasis on cornplexation and adsorption process-A review of the literaure[J].Water Air and Soil Poll,1991,56:228-230.
    [83]Slemr F,Schuster G,Seller W.Distribution speciation and budget of atmospheric mercury[J].Journal of Atmospheric Chemistry,1985,3:407-434.
    [84]Smith C J,Hopmans P,Cook F J.Accumulation of Cr,Pb,Cu,Ni,Zn and Cd in soil following irrigation with treated urban effluent in Australia[J].Environmental Pollution,1996,94(3):317-323.
    [85]Stratton W J,Lindberg S E.Use of a refluxlng mist chamber for measurement of gas phase mercury(Ⅱ)species in the atmosphere[J].Water,Air and Soil Pollution,1995,80(1-4):1269-1278.
    [86]Tipping E.Modelling the properties and behavior of dissolved organic matter in soil.Mitteilgn Dtsch Bodenk Gesell,1998,87:237-252
    [87]Wallschlarger D,Turner R R,London J,et al.Factors affecting the measurement of mercury emissions from soils with flux chambers[J].J.Geophys.Res.,1999,104:21859-21871.
    [88]Wang D Y,Liu D S,Yao A J,et al.Effects of atmospheric mercury pollution on terrestrial ecosystem in Chongqing,China[J].Journal of Environmental Sciences,2000,12:31-38.
    [89]Wang D Y,Qing C L,Guo T Y,et al.Effect of humic acid on transport and transportation of mercury in soil-plant system[J].Water,air and soil pollution,1997,95:35-43.
    [90]Wang D Y,Shi X J,Wei S Q.Accumulation and transformation of atmospheric mercury in soil[J].The Science of the Total Environment,2003,304:209-214.
    [91]Wang G,Gu X-G,Gao S-F,et al.1999.Adsorption of copper and cadmiumon soils as affected by water-soluble products of three organic materials[J].Acta Pedol Sin,36(2):179-187.
    [92]Wigfield D C,Perkins S L.Oxidation of elemental mercury by hydroper oxides in aqueous solutions[J].Canadian Journal of Chemistry,1985,63:275-278.
    [93]William S.Volatilization of Mercury from Lake Surfaces[J].The Science of the Total Environment,1992,125:47-66.
    [94]Xiao Q L,Rudolf J.Interaction between Hg(Ⅱ)and Natrual Dissolved Organic Matter:A Fluorescence Spectroscopybasedstudy[J].Wat.Res.,2001,35(7):1793-1803.
    [95]Xiao Z F,Munthe J,Stromberg D,et al.Photochemical behavior of inorganic Hg compounds in aqueous solution[M].In:Watras C.J.,Huckabee,J.W.(Eds.),Mercury as a Global Pollutant Integration and Synthesis.Lewis Publishers,1994:581-592.
    [96]Xiao Z,Munthe J,Lindqvist O.Sampling and determination of gaseous and particulate mercury in the atmosphere using gold-coated denuders[J].Water,Air and Soil Pollution,1991,56(1):141-151.
    [97]Xiao Z,Munthe J,Sehroeder W H,et al.Vertical fluxes of volatile mercury over forest soil and lake surfaces in Sweden[J].Tellus,1991,43B:267-279.
    [98]Xiao Z,Soram ar J,Wei S,et al.Sampling and determination of gas phase divalent mercury in the air using a KC1 coated denuder[J].Fresenius J.Anal.Chem,1997,358(3):386-391.
    [99]Yin Y J.Adsorption of Mercury(Ⅱ)by Soil:Effects of pH,Chloride,and Organic Matter [J].Journal of Environmental Quality,1996,25(6):837-844.
    [100]Zhang H,Lindberg S E,Barnett M O,et al.Dynamic flux chamber measurement of gaseous mercury emission fluxes over soils.Part 1:simulation of gaseous mercury emissions from soils using a two-resistance exchange interface model[J].Atmospheric Environment,2002,36:835-846
    [101]Zhang H,Lindberg S E.Processes influencing the emission of mercury from soils:A conceptual model[J].J.Geophys.Res.,1999,104:21889-21896
    [102]Zhou H N,Thompson P L.Copper-binding ability of dissolved organic matter derived from anaerobically digested biosolids[J].J Environ Qual,1999,28(3):939-944
    [103]陈怀满.关于土壤环境容量研究的商榷[J].土壤学报,1998,29(2):219-225.
    [104]戴前进,冯新斌,唐桂萍.土壤汞的地球化学行为及其污染的防治对策[J].地质地球化学,2002,30(4):75-79.
    [105]丁疆华,温琰茂,舒强.土壤汞吸附和甲基化探讨[J].农业环境与发展,2001,67(1):34-36.
    [106]丁振华,王文华,汤庆合,等.上海老港垃圾填埋场中汞的释放规律研究[J],地球与环境.2005,33(1):6-10.
    [107]董德明,朱利中.环境化学实验[M].北京:高等教育出版社,2002.
    [108]范亦农,涂从.重庆土壤汞污染的初步调查[J].重庆环境保护,1985,7(3):48-52.
    [109]方凤满,王起超,尹金虎.城市地表汞含量及释放通量影响因素分析[J].生态环境,2003,12(3):260-262.
    [110]冯新斌,陈业才,朱卫国,等.土壤挥发性汞释放通量的研究[J].环境科学,1996,17(2):20-25.
    [111]冯新斌.贵州部分地区土壤汞释放通量及其影响因素的研究[J].地质地球化学,1995, 6:123-125.
    [112]郭朝晖,黄昌勇,廖柏寒.模拟酸雨对红壤中铝和水溶性有机质溶出及重金属活性的影响[J].土壤学报,2003,40(3):380-385
    [113]国家环境保护局.环境背景值和环境容量研究[M].北京:科学出版社,1993.3-6.
    [114]黄泽春,陈同斌,雷梅.陆地生态系统中水溶性有机质的环境效应[J].生态学报,2002,22(2):259-269.
    [115]姜培坤,徐秋芳,等.雷竹土壤水溶性有机碳及其与重金属的关系[J].浙江林学院学报,2003,20(1):8-11.
    [116]蒋煜峰,展惠英,张德懿,吴应琴,陈慧.皂角苷络合洗脱污灌土壤中重金属的研究[J].环境科学学报,2006,26(8):1315-1319.
    [117]赖维平,陶秀成.重庆市燃煤排汞调查[J].重庆环境科学,1989,11(4):87-90.
    [118]李华斌,王文华,彭安.甲基汞的大气-水-土壤界面交换通量[J].环境科学,2000,21(1):81-83.
    [119]李士杏,李波,王定勇.腐殖酸对土壤汞向植株迁移的影响[J].西南农业大学学报,2002,24(4):378-380.
    [120]李书鼎,李雪莲.土壤植物系统重金属长期行为的研究[J].环境科学学报,2000,20(1):76-80.
    [121]李廷强,杨肖娥.土壤中水溶性有机质及其对重金属化学与生物行为的影响[J].应用生态学报,2004,15:1803-1807.
    [122]李兴菊.土壤重金属赋存形态的季节变化及其对DOM变化的响应[D].重庆:西南大学,2007.
    [123]李艳霞.污泥堆肥机理及堆肥过程研究[D].北京:中国科学院生态环境研究中心[博士论文].1998,133.
    [124]李仲根,冯新斌,王少锋,等.封闭垃圾填埋场通过地表向大气释放汞的测定[J].生态环境,2005,14(3):313-315.
    [125]凌婉婷,徐建民,高彦征,等.溶解性有机质对土壤中有机污染物环境行为的影响[J].应用生态学报,2004,15(2):326-330.
    [126]刘广深,曾毅强,朴河春.陆地生态系统中汞的迁移与富集研究的重要意义[J].四川环境,1996,15(4):8-10.
    [127]马耀华,刘树应.环境土壤学.西安:陕西科学技术出版社,1998,198-201.
    [128]皮广洁,唐书源.农业环境监测原理与应用[M].成都:成都科技大学出版社,1998.
    [129]唐永鉴,刘育民.环境学导论[M].北京:高等教育出版社,1987.
    [130]王定勇,李孝华,吴成.重庆大气汞初步调查[J].重庆环境科学,1996,18(4):59-61.
    [131]王定勇,石孝洪,杨学春.大气汞在土壤中转化及其与土壤汞富集的相关性[J].重庆环境科学,1998,20(5):22-25.
    [132]王定勇.汞在酸沉降地区陆地生态系统中的分布与行为[D].西南农业大学博士学位 论文,重庆:西南农业大学,2001.
    [133]王艮梅,周立祥.陆地生态系统中水溶性有机物动态及其环境学意义[J].应用生态学报,2003,14(11):2019-2025.
    [134]王果,谷勋刚,高树芳,等.三种有机肥水溶性分解产物对铜、镉吸附的影响[J].土壤学报,1999,36(2):179-188.
    [135]王少锋,冯新斌,仇广乐,等.贵州红枫湖地区冷暖两季土壤/大气界面间汞交换通量的对比[J].环境科学,2004,25(1):123-127.
    [136]王少锋,冯新斌,仇广乐,等.贵州滥木厂汞矿区土壤与大气间气态汞交换通量及影响因素研究[J].地球化学,2004,33(4):405-413.
    [137]王少锋,冯新斌,仇广乐,等.夏季红枫湖地区农田土壤-大气界面汞交换通量的初步研究[J].矿物岩石地球化学通报,2004,23(1):19-23.
    [138]王新,周启星.土壤Hg污染及修复技术研究[J].生态学杂志,2002,21(3):43-46.
    [139]王新.大连市土壤重汞背景值影响因素分析[J].环境科学,1992,13(3):86-88.
    [140]萧蕴英,李青,张瑞娟,等.污灌对农作物含汞量的影响[J].甘肃环境研究与监测,1997,10(4):18-20.
    [141]许嘉琳,杨居荣.陆地生态系统中的重金属[M].北京:中国环境科学出版社.1995.
    [142]许中坚,刘广深,刘维屏.土壤中溶解性有机质的环境特性与行为[J].环境化学,2003,22(5):427-432.
    [143]杨燕娜,温小乐.土壤汞污染及其治理措施的研究综述[J].能源与环境,2006,35(3):9-11.
    [144]张成,何磊,王定勇,等.重庆几种地表类型土/气界面汞交换通量[J],环境科学学报,2005,25(8):1085-1090.
    [145]张成.紫色土土/气界面汞交换特征及其影响因素研究[D].重庆:西南大学,2006.
    [146]张甲坤,曹军,陶澍.土壤水溶性有机物的紫外光谱特征及地域分异[J].土壤学报,2003,40:118-122.
    [147]张金洋.三峡水库消落区土壤汞释放特征的模拟研究[D].重庆:西南农业大学,2005.
    [148]张书海,沈跃文.污灌区重金属污染对土壤的危害[J].环境监测管理与技术,2000,12(2):22-24.
    [149]张学询,王连平,宋胜焕.天津污灌区土壤、作物重金属污染状况的研究[J].中国环境科学,1988,8(2):20-26.
    [150]赵南京,刘文清,刘建国,张玉均,李宏斌,丁志群,李卫华,周孟然,杨立书.不同水体中溶解性有机物的荧光光谱特性研究[J].光谱学与光谱分析,2005,25:1077-1079.
    [151]郑伟,冯新斌,朱泳煊,等.两次金汞齐-冷原子荧光光谱法测定大气中的痕量气态总汞[J].地球与环境,2005,33(1):84-88.
    [152]周立祥.中国城市污泥士地利用策略及其污泥重金属环境化学行为的机理研究[R].北京:中国科学院地理研究所博士后报告,1998,64.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700