用户名: 密码: 验证码:
沉陷地复垦基质效应与重金属元素的植物修复研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
沉陷地是我国主要的退化土地之一,目前采用的复垦方式多为充填覆土,表层覆土的缺乏是制约当前土地复垦工作的主要问题。另外,大量固体废弃物的产生出来也导致了很多环境问题。因此,提出了利用固体废弃物构造土地复垦基质的思想,并把粉煤灰分别按一定比例与酒糟、糠醛渣、污泥等混合成复垦基质进行了试验研究。前期研究结果显示基质中重金属含量较高,特别是镉(Cd)的含量超过了国家土壤环境质量二级标准,必须采取措施降低基质中的重金属镉(Cd)的含量,又设计了降低重金属镉(Cd)含量的植物修复试验。采用盆栽试验的方法,先后对六种不同基质进行了研究,提出了评价植物对基质中重金属元素吸收能力的指标体系,探讨了“超富集植物”的概念。本研究对节土造田、增加耕地面积、改善沉陷地周边环境、实现固体废弃物的资源化利用、促进资源-环境-社会经济的协调发展都具有积极的现实意义,同时也为重金属元素的植物修复研究和“超富集植物”的筛选和培育提供了新的思路和理论依据。论文的主要成果和结论如下:
     1)通过对基质理化性质和植物生长情况的试验,获得糠醛渣、污泥、酒糟三种有机固体废弃物分别与粉煤灰混合构造土地复垦基质的适宜比例为5-20%。
     2)经过六年的植物种植试验,基质理化性质得到了明显改善。基质疏松,孔隙率大,通气性好,田间持水量呈逐年增加趋势,容重均低于土壤对照;各基质pH值基本维持在中性范围;有机质和速效氮、磷、钾含量配置初期远高于对照,虽然由于植物吸收和淋洗有所降低,但是仍维持在较高水平;基质配置初期盐分含量较高,经过一段时间的淋洗后,均降至2 g·kg-1以下;各基质重金属元素含量均高于土壤对照,且随着种植年限的增长而降低,除镉(Cd)外,均低于土壤环境质量二级标准值,因此要使基质能安全地用于农业生产,应采取措施降低镉(Cd)的含量。
     3)建立了基质质量综合评价模型,并对三种基质质量进行了评价,结果与基质中植物生长情况相吻合,说明模型与实际相符合。
     4)各植物在基质1、2、3中的出苗率普遍高于对照,而且随着种植年限的延长,出苗率有提高的趋势。在基质中种植的植物,初期长势普遍低于土壤对照,随着基质不断熟化,植物均超过土壤对照。从叶绿素含量来看,除了初期有一定不良影响外,总体上与土壤相当。有多种植物的重金属含量超过了相应的国家标准,因此在基质上种植植物时,尽量选择非食用性植物品种,即使种植了蔬菜和牧草等植物,也不应将收获后的产品供人类食用或用于畜牧生产,以免危害人体健康。
     5)建立和研究了复垦基质先锋植物的适宜性评价模型,结果表明,不同基质中适宜的先锋植物分别如下:基质1为苜蓿,基质2为桧柏、棉花和高羊茅,基质3为桧柏、早熟禾、高羊茅、棉花和苜蓿。
     6)探讨了评价重金属元素植物修复能力的指标体系和“超富集植物”的概念。以对植物重金属元素的植物修复实际效果为出发点,提出了评价重金属元素的植物修复能力的指标,如吸收模量、修复年限、相对修复年限和相对修复指数等,建立了以相对修复年限为核心的评价体系,并拟定了评价标准。以相对修复年限为评价指标定义相对修复年限为0-10年的植物为“超富集植物”,10-50年的植物为“富集植物”。
     7)在由不同废弃物按一定的比例混合配制的六种土地复垦基质上,系统地研究了几种植物对重金属镉(Cd)的吸收和富集情况,结果表明,相对修复年限既适用于不同植物对同一种重金属元素的吸收能力的评价,又适用于同一植物对不同重金属元素的吸收能力的评价,是衡量重金属元素植物修复效果的理想指标。
     8)从不同植物对同一基质重金属镉(Cd)的吸收和富集能力看,不论是经过多年种植的基质,还是第一次种植的基质,小白菜和油菜都是相对理想的植物;而黑麦草、高羊茅和苜蓿的吸收效果并不理想。从同一种植物对不同基质中重金属镉(Cd)的吸收和富集能力看,对基质1、基质2和基质3来讲,小白菜、油菜和甘蓝更适用于在由粉煤灰与酒糟混合配制的基质3、而黑麦草和高羊茅则较适用于由粉煤灰与糠醛渣混合配制的基质1;对基质I、基质II和基质III来讲,由于构成基质的糠醛渣、污泥和酒糟的理化性质和化学成分的差异,植物的适宜程度并未出现一致的规律性。
     9)根据“超富集植物”的相对修复年限评价标准的0-10年和“富集植物”的10-50年,小白菜、油菜和甘蓝对基质1、基质2和基质3是比较理想的“富集植物”,对基质I、基质II和基质III,只有小白菜完全表现出这种特征,所以,植物对重金属的“超富集”和“富集”特征是相对的,应当指明在什么条件下才有意义。
     10)如果考虑到植物吸收和重金属淋溶两方面的作用,在种植适宜植物的情况下,基质中重金属镉(Cd)的含量会在10-15年间降至国家土壤环境质量二级标准以下,根系作用层可以满足一般农业生产的需要。
Subsiding wasteland is one of the main degradation lands in China and the main reclaiming method is filled and covered with soils. The lack of covered soil is becoming the main problem in land reclamation. On the other hand, great amount of solid wastes are produced and it lead to some environment problems. So the idea that solid wastes were mixed and used as land reclaiming substrates was put forward. Some substrates that separately mixed with fly ash, furfural residue, sewage sludge and lees were studied. The prophase results showed that the content of heavy metals in the substrates were higher than that of the soils, especially the content of Cd exceeded the standard of Soil Environment Quality StandardsⅡin China. Some measures must be adopted to reduce the content of Cd in the substrates, so the experiments whose purpose was to reduce the content of Cd were made. In the experiments six substrates were successively studied with the potted method and some indexes to evaluate the capability of plants absorbing heavy metal Cd from the substrates were put forward. At the same time the comprehension about hyper-accumulator of heavy metal was advanced.
     The study had great operation significance in economizing soils, increasing the land area, improving the environment quality around the subsiding lands, utilizing solid wastes as resources. The results can provide new ideas and theoretic evidences to the phytoremediation of heavy metals and the selection of hyperaccumulator. The main results and conclusions were as follows:
     1) Based on the study of physicochemical properties in the substrates and the effects on the growth of plants, the suitable proportions were 5~20%.
     2) The substrates had higher porosity, better air permeability and less bulk density than soils. The pH maintained around the range suitable to the growth of plants. The salt content was very high in the early period and after washing by rainwater and irrigational water for a year around, the salt content decrease under 2 g·kg-1. The organic matter and available nutrient content was more than that of soils in the early period and decreased because of the plants absorption and washing of water, but still kept a high-level which could satisfy with the need of plant growth. All the contents of heavy metals in the substrates were higher than soils and only the content of Cd higher than the Soil Environment Quality StandardsⅡ, so some measures must be adopted to reduce the content of heavy metal Cd in order to ensure the substrates to be used in agriculture safely.
     3)The substrate quality evaluation model was established and the substrates integrated quality was evaluated. The results showed that the substrate quality indexes were accord with the growth of plants.
     4) Preferable biological effects of planting on substrates had been gotten. The emergence rate of each plant in substrate 1, substrate 2 and substrate 3 was all higher than that of soil comparison plant, and with the increase of planting time, the emergence rate went up. Because of worse physicochemical properties, the plant height was lower than that of soils in germination period, but with the maturing of substrates, the plants growth condition improved gradually. The substrates had not large effect on the chlorophyll content as a whole except ryegrass and fescue were affected a little. For some kinds of vegetables and pasturages, the contents of some heavy metals surpass the relevant quality standards, so when some crops were planted on the substrates, the uneatable species should be selected preferably and if some kinds of vegetables and pasturages must be adopted, the output could not be provided to mankind and also not be used in farming, in order to avoid harming peoples’health.
     5) The expediency evaluation model of pioneer plant on substrates was established and some plants were studied. The results show that the expediency evaluation of pioneer plants were respectively that clover was expedient to substrate 1, juniper, cotton and fescue were expedient to substrate 2 and juniper, annual bluegrass, fescue, cotton and clover were expedient to substrate 3.
     6) Some indexes to evaluate the capability of the phytoremediation on heavy metals and the comprehension about hyperaccumulator were put forward. Started from the practice effects of the phytoremediation on heavy metals, a few new indexes such as absorption modulus, remediation age, relative remediation age and relative remediation indexes et al were advanced. In order to weigh the capability of plants absorbing heavy metals from the substrates, the evaluation system whose core was relative remediation age and the evaluation standard were established. Based on the evaluation system, the plants whose relative remediation age was between 0~10 years were named as“Hyperaccumulator”and those between 10 ~ 50 years were named as“Accumulator”.
     7) In the experiments six kinds of substrates were mixed with different solid wastes and the absorption and enrichment of plants on heavy metal Cd was studied. The results showed that relative remediation age was an ideal index to evaluate the capability of the phytoremediation on heavy metals, because it took into account more factors which affected the absorption evaluation effects than others, such as the heavy metal content and the biomass of the over-ground part of plants, the heavy metal content and the whole gross in substrates, harvesting frequency of plants and the environment standard of heavy metal. This made relative remediation age be suitable to the sorption capability evaluation of not only different plants on one heavy metal but also one plant on different heavy metals.
     8) It can be drawn from the relative remediation age of heavy metal Cd that the absorption capability of different plants was not same. Pakchoi and rape were the ideal plants to all substrates and ryegrass, fescue and clover were not ideal. In addition, for substrate 1, substrate 2 and substrate 3 that utilized for some years, pakchoi, rape and cabbage were suitable to substrate 3 mixed with fly ash and lees and ryegrass and fescue were suitable to substrate 1 mixed with fly ash and furfural residue. For substrate I, substrate II and substrate III that utilized in the first year, because of the differences of their physicochemical properties and chemical constituents, the suitability of the plants didn’t appear accordant regularity.
     9)According to the relative remediation age evaluation criterions of hyperaccumulators ( 0~10 years) and accumulators( 10~50 years), pakchoi, rape and cabbage were ideal accumulators of heavy metal Cd for substrate 1, substrate 2 and substrate 3, but for substrate I, substrate II and substrate III, only pakchoi had this character completely. So the character of“hyperaccumulator”or“accumulator”was relative.
     10)If considering the dual functions of plant absorption and heavy metal eluviations, under the condition of growing some suitable plants, the heavy metal Cd content of substrates would drop down to the Soil Environment Quality Standards II in 10~15 years and the heavy metal Cd content of root layers could satisfy the needs of the common agricultural production.
引文
白玉璋,田纪春,王清连.植物生理学[M].中国农业科技出版社. 1996.
    白中科,李晋川,王文英.中国山西平朔安太堡大型露天煤矿退化土地生态重建研究[J]. 中国土地科学. 2000, 14(4): 1~4
    布登付,尚照范.酒糟的营养价值及饲喂奶牛的效果,河南农业科学. 1999, (7): 30
    蔡俊,邱雁临.发酵啤酒糟含酶蛋白饲料取代豆粕饲喂生长育肥猪的研究.粮食与饲料工业, 2005, (10): 32~33
    常青山,马祥庆.重金属超富集植物筛选研究进展.农业环境科学学报. 2005, 24 (增刊) : 330~335
    常学秀,段昌群.根分泌作用与植物对重金属毒害的抗性[J].应用生态学报. 2000, 11(2): 315~320
    陈怀满.土壤植物系统中的重金属污染[M].北京:科学出版社. 1996, 71~105.
    陈龙乾,邓喀中,徐黎华等.矿区复垦土壤质量评价方法[J].中国矿业大学学报. 1999, 28(5): 449~452.
    陈涛,吴燕玉,孔庆新.农业镉污染与防治[J] .生态学杂志. 1985,(2): 24 ~ 30.
    陈同斌,韦朝阳,黄泽春.砷超富集植物蜈蚣草及其对砷的富集特征[J].科学通报. 2002, 47(3):207~210
    陈晓静,陶红,沈会权等.浅谈盆栽土培试验方法.大麦与谷类科学[J]. 2007, (2): 23~24
    褚贵新,任岗.重金属污染土壤的植物修复技术的研究进展[J].石河子大学学报(自然科学版). 2001, 5(4): 342~346
    代宏文,陈荣华,王政一等.复垦项目中的尾矿库粉尘控制研究[A].见:第六次全国复垦学术会议论文集[C]. 1999, 415~425
    丁佳红,刘登义,储玲等.重金属污染土壤植物修复的研究进展和应用前景.生物学杂志. 2004, 21(4): 6~20
    董社琴,李冰雯,周健.超积累植物对土壤中重金属元素吸收机理的探讨[J].太原科技. 2004, (1): 64~66
    冯跃华,邹应斌,胡瑞芝.几种粉煤灰的特性及其硅、磷的农业化学行为研究[J].中国农业科学. 2005, 38(2): 341~349
    冯永军,李芬,王晓玲等.沉陷废弃地复垦新途径探讨[J].中国土地科学. 2004,18(5): 44~47
    高太忠,李景印.土壤重金属污染研究与治理现状[J].土壤与环境. 1999, 8(2): 137~140
    高岩,骆永明.蚯蚓对土壤污染的指示作用及其强化修复的潜力[J].土壤学报. 2005, 42(1): 140~148
    官会林,张云峰,张无敌等.滇池农田废弃物生物处理及资源化利用研究[J].农业环境科学学报. 2006, 25(增刊): 625~628
    郭平.长春市土壤重金属污染机理与防治对策研究[D].吉林大学博士学位论文. 2005
    郭水良,黄朝表,边媛等.金华市郊杂草对土壤重金属元素的吸收与富集作用(I) 26种重
    金属元素在杂草和土壤中的含量分析[J].上海交通大学学报(农业科学版). 2002, 20(1): 22~29.
    何品晶,顾国维,李鹜中等编著,城市污泥处理与利用[M].科学出版社. 2003: 39~54
    何荣智,卢喜平,何孟.水电站废弃地植被恢复与重建研究[J].四川水力发电. 2007, 26(1): 122~126, 136
    胡成松.工业废弃物的资源化回收利用及研究[D].苏州大学硕士学位论文. 2005
    胡树森.增施糠醛渣改良岗底碱土的试验[J].土壤. 1987, (3): 130~134.
    胡振琪.采煤沉陷地的土地资源管理与复垦[M].北京:煤炭工业出版社.1996
    胡振琪,魏忠义,秦萍.矿山复垦土壤重构的概念与方法[J].土壤. 2005, 37 (1): 8~12
    黄长干,张莉,余丽萍等.德兴铜矿铜污染状况调查及植物修复研究[J].江西农业大学学报. 2004, 26(4): 629~632
    黄会一.木本植物对土壤镉的吸收、累积、耐性[J].中国环境科学. 1989, 9(5): 323~330
    黄铭洪.环境污染与生态恢复[M].北京:科学出版社. 2000
    黄明勇,邳学杰,赵凌云等.海湾泥粉煤灰和碱渣综合利用中环境影响分析[J].四川农业大学学报. 2005, 23(4): 442~445
    姜理英,杨肖娥,叶正钱等.海州香薷和紫花香薷对Cu、Pb的吸收和积累[J].农业环境科学学报. 2003, 19(4): 524~528
    康惊涛.粉煤灰与酒糟、污泥对土地复垦的可行性研究[D].山东农业大学硕士学位论文. 2004
    柯文山,陈建军,黄邦全等.十字花科芸薹属5种植物对Pb的吸收和富集[J].湖北大学学报(自然科学版). 2004, 26(3): 236~238
    孔令韶.植物对重金属元素的吸收积累及忍耐、变异[J].环境科学. 1982, 3(1): 65~69
    寇喜寿.从糠醛废渣制取氮磷钾复合肥料[J].化学世界. 1986, (12): 558~560
    李芬,冯永军,王兆锋等.采煤沉陷地新型复垦材料研究[J] .水土保持学报. 2004, 18(3): 190~193
    李富平,杨福海,王树国.复垦土壤重金属污染综合评价方法探讨[J].冶金矿山设计与建设. 1997, 29(3): 57~60
    李贵宝,焦有,郭井水.粉煤灰农业利用展望.粉煤灰综合利用[J]. 1999, (3): 48~52
    李国学,张福锁.固体废物堆肥化与有机复混肥生产[M].北京:化学工业出版社. 2000
    李红艳,唐世荣,郑洁敏.两种生长在铜矿渣上的菊科植物的铜含量[J].农村生态环境. 2003, 19(4): 53~55
    李慧君,殷宪强,谷胜意等.污泥及污泥堆肥对改善土壤物理性质的探讨[J].陕西农业科学. 2004,(1):29~31
    李华,骆永明,宋静.不同铜水平下海洲香薷的生理特性和铜积累研究[J].土壤. 2002, (4): 225~228
    李晋川,白中科,张立城.露天煤矿土地复垦与生态重建[M].北京:科学出版社. 2000
    李树志.矿区生态破坏防治技术[M].北京:煤炭工业出版社. 1998
    李欣.重金属污染土壤修复技术的研究[D].湖南大学硕士学位论文. 2003
    李亚东,孙浩.啤酒厂下脚料的再利用.科技创业月刊[J]. 2004, (11): 152~153
    李永庚,蒋高明.矿山废弃地生态重建研究进展.生态学报[J]. 2004, 24(1): 95~100
    李祯,李胜荣,申俊峰等.粉煤灰和城市污泥配施对荒漠土壤持水性能影响的研究[[J].地球与环境. 2005, 33(2): 74~77
    李晓青.浅谈渠道防渗工程技术措施浅析.甘肃农业. 2007,(8): 81~83
    联合国粮农组织,土地评价纲要,土壤丛书,32号.罗马. 1976.
    廖晓勇,陈同斌,阎秀兰等.提高植物修复效率的技术途径与强化措施.环境科学学报. 2007, 27(6): 881~893
    梁朝仪主编.土地评价[M].郑州:河南科学技术出版社,1992: 99~100.
    粱勇.利用固体废弃物改良沙漠土的研究-以宁夏地区为例[D].北京:中国地质大学,2004
    梁羽坚,李述逑.糠醛渣对玉米增产效果的研究.吉林农业大学学报. 1983(2):53~58
    刘春生,杨守样主编.农业化学分析[M].北京:中国农业大学出版社.1996, 2l7
    刘黎明,张军连,张凤荣等编著.土地资源调查与评价[M].北京:科学技术文献出版社. 1994, 250~251
    刘绮,宁晓宇.丹东地区农业土壤污染及防治研究[J].环境科学进展. 1993, 11 (6): 29~41
    刘威,束文圣,兰崇钰.宝山堇菜(Viola baoshanensis)――一种新的镉超富集植物[J].科学通报. 2003, 48(19): 2046~2049
    刘秀梅,聂俊华,王庆仁. 6种植物对Pb的吸收与耐性研究[J].植物生态学报. 2002, 26(5): 533~537
    刘玉环,秦嘉海,陈广泉.全营养混合基质理化性质及其对人参果生长发育和产量的影响[J].土壤通报. 2005, 36(5): 716~719
    刘养清.利用糠醛废渣生产氮、磷、钾复合优质肥料的研究[J].山西师大学报(自然科学版). 1995,9(2),41~45
    吕瑶姣,张季爽,裴清清等.活化粉煤灰的结构和组成研究[J].中国环境科学. 1996, 16(1): 51~59.
    卢建明.米酒糟的综合利用[D],广东工业大学硕士学位论文(工程硕士). 2005
    陆引罡,黄建国,滕应等.重金属富集植物车前草对镍的影响[J].水土保持学报. 2004, 18(1): 108~110
    罗跃伟,黄加强.城市垃圾卫生填埋场排水系统探讨.江西煤炭科技. 2007,(2): 57~58
    牟德华,李艳.啤酒糟的成份分析及综合利用[J].食品科学. 1991,(9):28~31
    聂发辉.关于超富集植物的新理解[J].生态环境. 2005, 14(1): 136~138.
    聂俊华,刘秀梅,王庆仁.Pb(铅)富集植物品种的筛选[J].农业工程学报.2004,20(4):255~258
    彭少麟.恢复生态学与植被重建[J].生态科学. 1996, 15(2):27~31
    钱海燕等.黑麦草连茬对铜、锌污染土壤的耐性及其修复作用[J].江西农业大学学报. 2004, 26(5): 801~804
    钱中方,林达德.应用椭圆霍氏转换量测重叠叶片面积之影像处理.农业机械学刊.2000,9(4):47~64
    秦嘉海,陈广泉.人工合成土壤理化性质及其对番茄生长发育与产量的影响[J].中国生态农业学报. 2006, 14(2): 122~125
    秦嘉海,吕彪,南永慧等.糠醛渣的改土增产效益[J].土壤通报. 1994, (3): 237~238.
    任宏英.北京市城市污水厂污泥利用途径的研究[D].北京工业大学硕士学位论文. 2003
    邵海林.城市生活垃圾和污泥的土壤和作物效应[J].山西农业大学硕士研究生毕业论文. 2004
    申俊峰.粉煤灰、水库淤积物和污水沉淀物改良砂质贫瘠土壤植树种草的研究-以内蒙古包头试验区为例[D].北京中国地质大学. 2002
    申俊峰,李胜荣,孙岱生等.固体废弃物修复荒漠化土壤的研究-以包头地区为例[J].土壤通报,2004, 35 (3 ):267~270
    申俊峰,李胜荣,孙岱生等.用若干固体废弃物改良土壤的可行性研究[J].地质地球化学.2001,29(2):86~90
    沈振国,陈满怀,刘友良.土壤重金属污染的生物修复研究进展[J].农村生态环境. 2000, 16(2): 39~42
    史少军,赵坤,褚秀梅.土壤金属污染的植物修复及其改进措施[J].山东林业科技. 2006, 4(6):66~67
    束文圣,蓝崇钮,张志权.中国矿业废弃地的复垦对策研究[J].生态科学. 2000,19(2):24~28
    束文圣,杨开颜,张志权等.湖北铜绿山古铜矿冶炼渣植被与优势植物的重金属含量研究[J].应用与环境生物学报. 2001, 7(1): 7~12
    松权衡,王淑霞,于城.吉林省西部平原地区应用粉煤灰进行土壤改良的可行性分析[J]. 吉林地质. 2001, 20(2): 47~52,82
    苏德纯,黄焕忠.油菜作为超累积植物修复镉污染土壤的潜力[J].中国环境科学. 2002, 22(1): 48~51
    苏德纯,张锁福.粉煤灰钝化污泥对土壤理化性质及玉米重金属累积的影响[J].中国环境科学. 1997, 17 (4): 321~325
    孙汉文,安建华,梁淑轩等,固体废物污染状况分析与废物资源化的思考[J].河北大学学报(自然科学版). 2002, 26(5): 506~514
    孙克刚,杨占平,郭井水等.粉煤灰及其复肥对土壤物理性质和重金属淀积的影响[J].粉煤灰综合利用. 2002, (2): 22~23
    泰安市土壤肥料工作站编.泰安市土壤[M]. 1988, 12~13
    谭启玲,胡承孝,赵斌.城市污泥的特性及其农业利用现状.华中农业大学学报. 2002, 21(6):587~592
    唐辉等.桐油包膜尿素的养分释放速度及其对黑麦草生长的影响[J].植物营养与肥料学报. 2004, 10(5): 483~487.
    唐世荣.重金属在海州香薷和鸭跖草叶片提取物中的分配[J].植物生理学通讯. 2000,36(2):128
    田吉林等.大米草对有机汞的耐性、吸收及转化[J].植物生理与分子生物学学报. 2004, 30(5):577~582
    王殿武,刘国新.污泥和粉煤灰配施对土壤物理性质和汞积累的影响[J].河北农业大学学报. 1994, 17(增刊): 269~274
    王敦球.城市污水污泥重金属去除与污泥农用资源化试验研究[D].重庆大学博士学位论文. 2004
    王贵荣.酒糟利用情况调研报告[J].酿酒. 1998,(2): 1~5
    王凯荣,陈朝明.镉污染农田农业生态整治与安全利用模式[J].中国环境科学. 1998,1(2): 97~101.
    王激清,刘波,苏德纯.超积累镉油菜品种筛选[J].河北农业大学学报. 2003, 26(1): 13~15
    王建国等.模糊数学在土壤质量评价中的应用研究[J].土壤学报. 2001, 38(2): 176~183.
    王松良,郑金贵.芸苔属蔬菜的Cd富集特性及其修复土壤Cd污染的潜力[J].福建农林大学学报(自然科学版). 2004, 33(1): 94~99
    王晓玲,冯永军,李芬等.沉陷废弃地新型复垦基质主要化学性质研究[J].水土保持学报. 2005,19(3): 42~458
    王志宏,刘志斌,陈建平.黑岱沟露天煤矿土地复垦及生态重建规划研究[J].露天采矿技术. 2003,(1):19-21
    王志平.重度造碱地的糠醛渣改良与植物修复初步研究[D].东北师范大学硕士学位论文. 2005,11
    汪培庄,韩立岩.应用模糊数学.北京:北京经济学院出版社. 1989,209.
    魏树和,周启星.重金属污染土壤植物修复基本原理及强化措施探讨[J].生态学杂志. 2003,23(1): 5~72.
    魏树和.某铅锌矿坑口周闰具有重金属超积累特征植物的研究[J].环境污染治理技术与设备.2004,(3):33~39①
    魏树和,周启星,王新等.农田杂草的重金属超积累特性研究[J].中国环境科学.2004,24(1):105~109②
    魏树和,周启星,王新. 18种杂草对重金属的超积累特性研究[J].应用基础与工程科学学报. 2003, 11(2): 152~158③
    魏树和,周启星,王新等.一种新发现的镉超积累植物龙葵(solanumnigrumL)[J].科学通报. 2004, 19(24): 2568~2573④
    魏忠义,胡振琪,司继涛等.采煤沉陷地粉煤灰充填复垦土壤元素淋溶特性实验研究[J]. 农业环境保护. 2002, 21(1): 13~15,18
    韦朝阳,陈同斌,黄泽春等.大叶井口边草——一种新发现的富集砷的植物[J].生态学报. 2002, 22(5): 777~778
    韦朝阳,陈同斌.重金属超富集植物及植物修复技术研究进展[J].生态学报. 2001, 21(7): 1196~1203
    卫智军,李青丰,贾鲜艳等:矿业废弃地的植被恢复与重建[J].水土保持学报. 2003, 17(4):172~175
    吴欢,周兴.矿山废弃地生态恢复研究团广西师范学院学报[J]. 2003, 20(增刊): 32~35.
    吴双桃.镉污染土壤超富集植物选择和镉-锌复合污染实验研究[D].中南林学院硕士学位论文. 2003.2
    吴双桃,吴晓芙.铅锌冶炼厂土壤污染及重金属富集植物的研究[J].生态环境. 2004, 13(2): 156~157,160
    吴燕玉,陈涛,李书鼎.张士灌区镉污染综合防治技术研究[J].中国环境科学. 1985, 5(3): 1~7
    吴燕玉,陈涛,张学询.沈阳张士灌区镉的污染生态的研究[M].土壤-植物系统污染生态研究(高振民主编).中国科学技术出版社. 1986
    吴言忠,邢志良.采煤沉陷区土地复垦的综合利用研究[J].农业与技术. 2007, 27(3): 75~76
    夏汉平,蔡锡安.采矿地的生态恢复技术[J].应用生态学报. 2002,13(11): 1471~1476
    夏家淇.土壤环境质量标准详解[M].北京:中国环境科学出版社. 1996 夏星辉,陈静生.土壤重金属污染治理方法研究进展[J].环境科学. 1997,(3) :72~75 谢荣秀.湘潭锰矿废弃地土壤退化及其植被恢复的研究[D].中南林学院硕士学位论文. 2005
    邢力伟.农村实用工程技术[J].绿色食品. 2004, (02): 28~30
    薛栋森.美国污水污泥的研究和利用概况[J].国外农业环境保护. 1991, (1): 31~33
    薛生国,陈英旭,林琦等.中国首次发现的锰超积累植物商陆[J].生态学报. 2003, 23(5): 935~937
    薛志成.利用干啤酒糟代替部分精料饲喂泌乳牛的效果[J].中国供销商情,乳业导刊. 2004, (11): 35~36
    熊礼明.施肥与植物重金属吸收[J].农业环境保护. 1993, 12(5):217~222
    徐克.张士灌区镉污染综合治理及镉米利用[J].环境管理. 1984,(4):18 ~ 19.
    杨柳青,付明鑫.糠醛渣对苏打盐渍土的改良效果研究[J].土壤肥料. 1992, (1): 13~16
    扬修,高林.德兴铜矿矿山废弃地植被恢复与重建研究[J].生态学报. 2001,21(1): 1933~1940
    杨肖娥,龙新宪,倪吾钟等.东南景天(Sedum alredii H)——一种新的锌超积累植物[J].科学通报. 2002, 47(13): 1003~1006
    杨学良.柴达木盆地内陆盐渍土的冲洗技术[J].水利水电技术.1999,(2):35~38
    叶岱夫.郊区农业铅污染及其治理[J].农村生态环境. 1986 ,(2):37~42.
    易晓峨.城市污水厂污泥农用资源化研究[D].福建师范大学硕士学位论文. 2005
    殷捷,陈玉成.土壤重金属污染的全过程控制[J].四川环境. 2000 ,(1): 27~30
    尹军,陈雷,王鹤立编著,城市污水的资源化再生及热能回收利用[M].化学工业出版社. 2003: 178~190
    曾莹,杨明.酵啤酒糟产饲用木聚糖酶的基质条件及其酶学性质研究[J].中国酿造. 2006, (9): 12~15
    章家恩,徐琪.恢复生态学研究的一些基本问题探讨[J].应用生态学报. 1999, 10(1): 109~113
    张慧智,刘云国,黄宝荣等.锰矿尾渣污染土壤上植物受重金属污染状况调查[J].生态学杂志. 2004, 23(1): 111~113
    张万钧,郭育文,黄明勇等.三种固体废弃物综合利用的研究[J].中国工程科学. 2002,4(1):62~66
    张维碟.重金属污染土壤植物富集能力的诱导作用研究[D].浙江大学硕士学位论文. 2002
    张幸涛.城市污泥的减量化和资源化研究[D].重庆大学硕士学位论文. 2005
    张学洪,王敦球,解庆林等.城市污水污泥与垃圾和粉煤灰堆肥在水稻施肥上的应用[J]. 重庆建筑大学学报. 2001, 23(1): 49~52
    张行峰.实用农化分析[M].化学工业出版社. 2005
    郑海金,欧立业,华珞.粉煤灰草坪基质的渗滤特性及其环境效应[J].土壤通报. 2005, 36(6): 861~866
    郑喜坤,鲁安怀.土壤重金属污染现状与防治方法[J].土壤与环境. 2002,11(1): 79~84
    钟爽.矿山废弃地生态恢复理论体系及其评价方法研究[D].辽宁工程技术大学硕士学位论文. 2005
    朱法华,张景荣,荣鸿敏等.粉煤灰中污染物质的淋溶释放模型[J].环境科学学报. 1996,16(2): 203~210.
    朱南文,高延耀,周增炎.我国城市污水厂污泥处置途径的选择[J].上海环境科学. 1998, 17(11): 40~42
    周立祥,胡霭堂,戈乃玢等.城市污泥土地利用研究[J].生态学报. 1999, 19(2):185~193.
    周启星,高拯民.沈阳张士灌区镉循环的分室模型与污染防治对策研究[J].环境科学学报. 1995, 15(3): 273 ~281
    周启星,宋玉芳.植物修复的技术内涵及展望[J].安全与环境学报. 2001, 1(3): 48~53
    周琼.我国超富集·富集植物筛选研究进展[J].安徽农业科学. 2005,33(5): 910~912,916
    周学武.粉煤灰与污泥配施改良山东郑路华丰盐碱地的实验研究[D].中国地质大学博士学位论文. 2006
    周学武,孙岱生,房建国.利用矿山固体废弃物(粉煤灰、淤泥及污泥)改良矿山退化土地及种植实验[J].资源产业. 2005, 7(3): 62~65
    Anthony Bradshaw. Restoration of mined lands-using natural processes [J]. Ecological Engineering. l997, 8: 225~269
    Arthur MA, Rubin G. Uptake and accumulation of selenium by terrestrial plants growing on a coal fly landfill [J], Environmental Toxicology and Chemistry. 1992,11(9):1289~1299
    Baker A J M, Grath S P, Sidoli C M D, et al. The possibility of in situ heavy metal decontamination of polluted soils using crops of metal accumulating plants, Resource, Conservation and Recycling , 1994, 11: 41~49
    Banuelis G S, Ajwa H A, Mackey et al. Evaluation of different plant species used for phytore mediation of high soil selenium [J]. Journal of Environmental Quality.1997, 26(3)639~646
    Borken W, Muhs A, Beese F. Application of compost in spruce forests: effects on soil respiration, basal respiration and microbial biomass [J]. Forest Ecology and Management, 2002, 15(9): 49~58
    Bradshaw AD. Restoration of mined lands - using natural process. Ecol Eng, 1997, (8): 255~269
    Chaney R L,. Phytoremediation of soil metals [J]. Current Opinions in Biotechnology, 1997, (8): 279~284.
    Chaney, R. L. Plant uptake of inorganic waste constituents In: Land Treatment of Hazardous Wastes Ed. By part, J. F. et al. Noyes Data Corp, Park Ridge. l983:50~76
    Chaudhurl D, Tripathy S, Veeresh H, et al. Relationship of chemical fractions of heavy metals with microbial and enryme activities in sludge and ash-amended acid lateritic soil from India[J]. Environmental Geology, 2003, 45(1): 115~123
    Chumann A W, Summer M E. Evaluation of nutrient supply from fly ash-biosolids mixtures [J].Soil Sci. Soc. Am., 2000, 64: 419~426
    Clapp.C.E.S.A. Staek. D. E.Clay. and W. E. Larson. Sewage sludge organic matter and soil properties. P.Y. Chen and Y. Avnimelech(ed.) The role of organic matter in modernagriculture. Developments in Plant and soil sciences. Martinus Nijhoff Publ.Dordrecht, the Nether-lands.1986,209~253.
    Costigan P A, Bradshaw A D, Gemmell R. An reclamation of acidic colliery spoil waste [J].Acid production potential. Journal of Applied Ecology, 1981, 18:865~878
    Dudka S and Adriano D C. Environmental impacts of mental ore mining and processing: a review [J]. Journal of Environmental Qualify, 1997,590~602
    Du Keqin. Study on technique planting forests in fields packed with fly ash in huaibei coal mine subsided areas of china[J],Interaction Symposium on the Reclamation and Utilization of Coal Mining Wastes. Krakow Poland.1993.Ⅵ.Ⅱ. 891~899.
    Duvigneaud P, Denaeyer-De Smet S. Curviest vegetation au Katanga [J]. Bulletin de la Society Royale Bot antique de B elgique, 1963, 96: 193~ 211
    Emmerling C, Liebner C, Haubold-Rosar M, et al. Impact of application of organic waste materials on microbial and enrymeactivities of mine soils in the Lusatian coal mining region [J]. Plant and Soil. 2000, 220: 129~138
    Fang M, Wong J W C, Ma K K, et al. Co-composting of sewage sludge and coal fly ash: nutrient transformations [J]. Bioresourece Technology, 1999, 67: l9~24
    Hammer D, Kayser A, Keller C. Phytoextraction of Cd and Zn with Salix viminalis infield trials, Soil Use and Management, 2003, 19(3): 187~192
    Haug M D. Waste Containment and leachate in advanced pollution control technologies for thermal power plants. Prepared by Lobbe Technologies LTD. Regina,Saskatchewan,Canada,1987.
    Huang J W W,Chen J J,Berti W R,Cunningham S D. Phytoremediation of lead-contaminated soil: role of synthetic chelates in lead phytoextraction . Environ Sci. &Technol.,1997,31: 800~805
    Jaffer T, Reeves R D, Beequer T. The ecology of ultramafic and met2alliferous areas, ( Proc. Second Intern. Conf Serpentine Ecology, Nou2mea,New Caledonia, July 31 ~ Aug. 5, 1995) . ORSTOM, New Caledo2nia, 1997
    Jiang G M. Theory and practice in renegotiations of mining wasteland [J]. In: The researches on degraded ecosystem in China. Beijng. Chinese Science &Technology Press, l996.193~204.
    Karenlampi S, et al. Genetic engineering in the improvement of plants for phytoremediation of metal polluted soils [J]. Environ. Pollu., 2000.107:225~231
    Kendle A D, Bradshaw A D. The role of soil nitrogen ninth growth of trees on derelict land. Arbori J, 1992.16:103~122
    Latey J. Relationship between soil physical properties and crop production,In:B.A. Stewart. Advance in soil science,Vol. 1,Springer-Verlag New York Inc.1985.
    Mays,D.A.G. L Terman, and J. C. Duggan. Municipal compost: effect on crop yield and soil properties [J]. Envi-ron.Qual.1973,2(1):89~92.
    Meagher, R B. phytore mediation if toxic elemental and organic pollutants [J]. Current, opinion on Plant Biology. 2000,3(2):153~162
    Me Grath, S. P. Phytoextraction for soil remediation. In: Plants that Hyperaccumulate Heavy Metals. Ed. By Brooks, R. R. CAB International, Wallingford, UK, 1998.267~287
    Me Grath S P, Sidoli C M D, Baker. A J M. Reeves, RD. The potential for the metal-accumulating plants for the insitu decontamination of metal-polluted soils. In: integrated soil and sediment research: A basis for proper protection. Ed. by Ejisackers, H. J. P. and Hamers, T. Kluwe Academic publisher. Dordrecht l993: 673~676
    Pieta LF. Evolutionary response of plants to anthropogenic pollutants [J].Trends Ecol. Ecol. 1988, 3(9): 233~236
    Punshon T, Adriano D C, Weber J T. Restoration of drastically eroded land using coal fly ash and poultry biosolid[J]. The Science of the total Environment, 2002, 96: 209~225
    Reeves R D and Brooks R R. Hyperaccumulation of lead and zinc by two metallophytes from a mine area of Central Europe[ J ]. Environ Pol2lut Ser, 1983, (31) : 277 ~ 287
    Robinson B H, Brooks R R, Howes A W, et al. The potential of the high biomass nickel hyperaccumulator Berkheya coddii for phytoremeditation and phytomining [J]. Journal of Geochemical Exploration, 1997 ,60: 115 ~126
    Robinson B, Russell C, Hedley M, Clothier B. Cadmium adsorption by rhizo bacteria: Implications for New Zealand pasture~land[J]. Agric. Ecosyst. Environ., 2001,87:315~321
    Rugh C L,Senecoff J F,Meagher R B,et al. Development of transgenic yellow poplar for mercury phytoremediation [J]. N ature B iotech2nology,1998,16: 925~928
    Salt, D. A., Smith, R. D. and Raskin, I. Phytoremediation Annual review of plant physiology and plant molecular biology, 1998, 49: 643~668
    Sillanp , M ,Virkutyt J .用电动纠正法去除土壤中重金属研究[J].中国水土保持, 2000 ,7:20
    Spalding B P. Fixation of radio nuclides in soil and minerals by heating. Enviran. Sci. Technol. 2001, 35(21): 4327~4333
    Stigliani W M, Doelman P, Salomons W. Chemical time bombs: predicting the unpredictable [J].Environment, 1991, 33:4~30
    Su D C, Wong. J W C. The growth of Agropyron in an artificial soil mix from coal fly ash and sewage sludge [J]. Bioresource Technology, 1997, 59: 57~62
    Veeresh H, Tripathy S, Chaudhuri D, et al. Changes in physical and chemical erities of three soil types in India as a result of amendment with fly ash and sewage sludge[J]. Environmental Geology, 2003, 43: 513~520
    Vigerust,E. 1981. Physical properties in sewage sludge and sludge treated soils. In The Influence of Sewage Sludge Application on Physical and Biological Properties of Soils. D. Reidel Publishing Company.1983.
    Virendra S. Utilization of medicinal plants for wasteland [J]. Journal of Economic and Taxonomic. Botany, 2000, 24(1):99~103
    Wilkins D A. The measurement of tolerance to edaphic factors by means of root growth [J]. New Phytol. 1978, 80: 623~633
    Wu Q T, Deng J C, Cuo, Z M. et al. Phytoremediation of Zn/Cd contaminated soil with enhancing-chelates and co~crop system[C]. The Second International Conference on Soil Pollution and Remediation. Nanjing China, 2004, 9~12
    Xia Hanping, Kong Guohui, Ao Huixu, et al. Comparison of four plants in Pb and Cd uptake from oil shale residue Derived soil. J Rural Eco-Environ(农村生态环境), 2000,16(4):28~32(in Chinese)
    Xia H P, Shu W S. Resistance to and up take of heavy metals by Vetiveria zizanioides and Paspalum notatum from lead / zinc mine tailings[J]. Acta Ecol. Sinica, 2001, 21 (7) : 1121~1129
    Zayed, A M. Gowthanab, S. Terry, N. Phytoaccumulation of trace elements by wetlands plants I: Duckweeds [J]. Journal of Environmental Quality. 1998,27(3):715~721
    Zhenqi Hu, The Technique of Reclaiming Subsidence Areas by Use of a Hydraulic ridge Pump in Chinese Coal Mines, International Journal of Surface Mining, reclamation and Environment,1994, 8(4):137~ 140.
    Zhenqi Hu, Subsidence Land Reclamation by Use of a Hydraulic Dredge Pump in Chinese Coal Mines, Mining technology, 1996, 78(8):79~81.
    Zhu, YL. Zayed, A M. Qian, JH. et al. Phytore mediation of trace elements by wetlands plants II: Water hyacinth [J]. Journal of Environmental Quality. 1998,28(1):339~344

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700