用户名: 密码: 验证码:
湖北宜昌柑橘园微肥施用及酸性土壤改良效果研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
通过宜昌宽皮柑橘产区养分调查,确定影响柑橘生长的障碍因子。针对土壤酸化和微量元素普遍缺乏两个问题进行探讨,通过两年的田间不同用量石灰改良酸化土壤试验,以及两个点连续三年的微肥矫正试验,以及通过盆栽试验的方法,实施连续两年的不同用量石灰与生物质炭改良酸性黄棕壤效果的对比研究和不同制备材料生物质炭改良酸性黄棕壤的效果研究,得到主要结果如下:
     1.通过宜昌市宽皮柑橘产区养分调查发现:宜昌市宽皮柑橘产区存在严重的土壤酸化状况,尤其是宜都市、枝江市、当阳市(半月镇和王店镇)、夷陵区(鸦鹊岭镇和龙泉镇)应合理施用石灰改良酸化土壤。同时,宜昌市宽皮柑橘产区土壤氮、钾不足,应重氮、钾肥,控磷肥,微量元素主要表现为硼、锌缺乏。其中夷陵区(龙泉镇和小溪塔镇)有机质偏低,应增施有机肥,宜都市、夷陵区(龙泉镇和小溪塔镇)还应适当补充镁肥。通过果实品质与叶片养分进行相关性分析发现,果实可溶性固形物与叶片养分含量无显著相关关系。果实可滴定酸与叶片P和Ca呈极显著负相关关系,与叶片K、Mg、Cu呈极显著正相关关系,与叶片Fe和Mn呈显著正相关关系。果实固酸比与叶片P和Ca呈极显著正相关,与叶片K和Mg呈极显著负相关,与叶片Fe、Mn、Cu、Zn呈显著负相关。果实Vc含量与叶片P呈显著负相关,与叶片Ca和B呈显著负相关,与叶片K和Cu呈显著正相关。
     2.研究硼锌肥施用对土壤有效硼、锌含量和柑橘叶片、果实对硼、锌的营养吸收的影响,以及对柑橘果实产量和品质的提升效果。针对酸性黄棕壤柑橘园,土壤施用硼砂是快速的矫治柑橘B缺乏的施肥措施,施用硼砂第一年就可以提高土壤和叶片B含量,但第三年才能显著提高温州蜜柑产量。而土壤施用硫酸锌虽然可以有效的提高土壤有效Zn含量,但需要至少三年的连续施用才能在树体中表现矫治效果并提高果实品质。硼锌肥对果实产量和品质的提升作用不同,硼肥可以通过提高温州蜜柑挂果量来提高产量,而锌肥对果实品质影响更明显,硼锌肥配施可以兼顾的提高果实产量和品质。因此,在缺硼锌黄棕壤柑橘园,采取灌根的施用方法,每株施用40g硫酸锌和20g硼砂可以有效的矫治硼锌缺乏,并在连续施用三年后提高温州蜜柑果实产量和品质。
     3.研究EDDHA-Fe肥单施与配施锌、锰肥对土壤有效铁、锰、锌含量和柑橘树体对铁、锰、锌的吸收,以及果实产量和品质的影响。施用EDDHA-Fe肥与锌肥显著增加了土壤有效Fe和有效Zn含量,但施用锰肥对土壤有效Mn含量无影响。试验第二年后,单施Fe肥以及配施Zn、Mn肥处理均可以显著增加叶片活性Fe含量,但对叶片全Fe含量无显著影响。单施Fe肥处理显著降低了叶片全Zn含量,试验第三年,Fe+Zn和Fe+Zn+Mn处理可以提高叶片全Zn含量。所有处理对土壤和叶片中Mn的含量无影响。所有处理均可提高柑橘果实产量,Fe+Zn处理效果最佳。单施Fe肥对果实可溶性固形物无影响,大幅度降低果实酸度,提高固酸比,Fe+Zn和Fe+Zn+Mn处理可以提高果实可溶性固形物、可滴定酸和Vc含量,品质改良效果最佳。综上所述,单施Fe肥会诱导树体Zn缺乏,并且Fe和Zn对柑橘果实产量的提升作用不同,Fe主要影响挂果量,Zn可以提高果实单果重,另外,Zn对果实品质的提升效果更明显。因此,针对石灰性土壤柑橘园,每株施用60g EDDHA-Fe和40g硫酸锌能有效矫治铁锌缺乏,并兼顾产量提高和品质提升。
     4.研究了不同石灰施用量对酸性柑橘园土壤酸度、养分有效性以及树体养分吸收、果实产量和品质的影响。温州蜜柑叶片不同矿质养分动态变化以及累积规律各异,整体来看,成熟叶片N、P、K、Ca、Mg、Mn均表现为前低后高,而Fe表现为前高后低。针对新生春稍叶片,P主要在幼果期期以前累积,N、Mg、Cu主要在果实膨大期以前累积,Mn在果实转色期以前累积,Ca、Fe在整个生育期表现为稳定的持续累积,而K和Zn主要在幼果期以前累积,然后随着果实的生长累积量逐渐降低。另外,中、高量石灰处理可以有效的中和耕层土土壤酸度,提高土壤P、Ca、Mg有效性和树体P、K、Mg吸收,同时降低了土壤N、Fe、Mn、Cu、Zn的有效性和树体Mn吸收,并且降低果实可滴定酸,提高果实固酸比。土壤酸化会导致柑橘果实酸度增加,施用石灰可能通过对P和Ca元素吸收的促进作用和Mn的抑制作用来影响果实品质。针对酸化黄棕壤柑橘园,采用撒施的施用方法,田间推荐施用量2kg/株。
     5.研究了不同用量石灰和生物质炭对土壤酸度、微生物特性、养分有效性以及温州蜜柑树体对养分的吸收和果实品质的影响。石灰和生物质炭均可以有效的提高土壤pH,改良酸化土壤。但石灰的改良效果随着时间的延长而降低,生物质炭表现出更持久的改良效果。土壤微生物量碳随着石灰和生物质炭施用量的增加呈现先增加后将低的趋势,土壤呼吸则随着施用量的增加而增加,与低量和中量石灰与生物质炭处理相比,高量处理虽然降低了土壤微生物量,但却显著增加了土壤微生物的活性。生物质炭含有丰富的矿质养分,对土壤养分和树体养分吸收的提升优于石灰,生物质炭不仅可以中和土壤酸度,还可以作为一种肥源提高土壤肥力,增加植株对养分的吸收。施用石灰和生物质炭均可以降低温州蜜柑果实可滴定酸含量,中量石灰处理和中、高量的生物质炭处理还可以增加果实固酸比。施用石灰和生物质炭可能通过促进树体P的吸收,同时减低Fe、Mn、Cu的吸收来降低酸度,增加固酸比。另外,施用石灰和生物质炭可以通过增加土壤脲酶活性和蔗糖酶活性来提高果实品质。生物质炭对温州蜜柑果实的品质提升效果优于石灰,尤其BC-2处理。对石灰而言,L-2处理(石灰施用量:2.4g/kg)具有最佳的果实品质提升效果,对果实可滴定酸的降幅为16.2%,对果实固酸比的增幅为21.8%。在三个不同用量生物质炭处理中,BC-2处理(生物质炭施用量:2%)具有最佳的果实品质提升效果,对果实可滴定酸的降幅为25.0%,对果实固酸比的增幅为31.7%。
     6.研究了三种材料制备生物质炭对夷陵区温州蜜柑产区代表性酸性黄棕壤土壤酸度,土壤养分有效性,土壤微生物量和酶活性,以及对枳壳幼苗生长和养分吸收的影响。三种材料生物质炭均可以有效的中和土壤酸度,增加土壤pH,但只有花生壳炭可以促进枳壳幼苗的生长和生物量的累积。花生壳炭和水稻秸秆炭可以提高土壤微生物量碳、土壤基础呼吸,花生壳炭表现最佳效果。三种材料生物质炭对土壤酶活性的影响不同,但均显著增加所测酶活性的几何平均数(GMea),花生壳炭、水稻秸秆炭、油菜秸秆炭较对照分别增加了47.2%、36.9%、25.8%。施用生物质炭降低了土壤碱解N含量和有效Fe、Mn、Cu、Zn含量,但却大幅度增加了枳壳幼苗中Fe、Mn、Cu、Zn在地上部组织中的分配比例,其中以油菜秸秆炭增加幅度最大。水稻秸秆炭和油菜秸秆炭含有更丰富的矿质养分,作为肥源较花生壳炭有更好的促进土壤和植株矿质养分含量的效果,但由于花生壳生物质炭显著增加了枳壳幼苗生物量,表现出更高的养分累积量。因此,虽然三种生物质炭均可以有效的中和酸性黄棕壤的酸度,花生壳炭对枳壳幼苗生长和生物量的累积的促进效果最佳,水稻秸秆炭次之,这种积极效果不是由于生物质炭对土壤和植株矿质养分含量的作用,而是取决于花生壳炭对土壤微生物量和酶活性的促进作用。
The obstruction factor of affecting the growth of citrus was confirmed by the investigation on nutrients contained in Yichang Citrus Reticulata. Also, soil acidification and general lack of microelement were discussed. By acidic soil remediation under different dosages of lime in fields in two consecutive years, microelement fertilizer correction of two points in three consecutive years. And through pot experiment, the comparative study was conducted on remediation effect of different dosages of lime and biochar on acidic yellow brown soil in two consecutive years. Additionally, the remediation effect of biochar of different materials was observed on acidic yellow brown soil. The main results were as follows:
     1. The investigation on nutrients of Citrus Reticulata in producing area of Yichang City was found that:soil acidification of large area significantly existed in the producing area of Citrus Reticulata in Yichang City, especially in Yidu City, Zhijiang City, Banyue Town and Wangdain Town in Dangyang, Yaque ling Town and Longquan Town in Yiling District, among which lime should be reasonably used to improve soil acidification. Meanwhile, N and K deficiency were observed in the producing area of Citrus Reticulata in Yichang City. So N and K fertilizer should be attached importance to and P fertilizer be controlled. Microelement deficiency of B and Zn was observed. So in Longquan Town and Xiaoxi ta Town in Yiling District, organic fertilizer should be increasing applied due to low levels of organic matter. Also, Mg fertilizer should be added appropriately in Yidu City and Longquan Town and XiaoxitaTown in Yiling District. The correlation analysis on fruit quality and Leaf nutrient showed significant correlation between fruit total soluble solids (TSS) and leaf nutrient. The fruit titratable acid (TA) showed a highly significant negative correlation with P, Ca in leaves, a highly significant positive correlation with K, Mg and Cu in leaves and a positive correlation with Fe and Mn in leaves. And TSS:TA was observed to have a highly significant positive correlation with P, Ca in leaves, a highly significant negative correlation with K, Mg in leaves and a significant negative correlation with Fe, Mn, Cu and Zn in leaves. Additionally, the fruit Vc content showed a significant negative correlation with P, Ca and B in leaves and a significant positive correlation with K and Cu in leaves.
     2. The effects of application of B, Zn or their combination on the soil B and Zn contents, leaf and fruit B and Zn contents, and citrus fruit yield and quality. In the acid yellow brown soil, the soil application of borax was a rapid and effective measure to cure citrus B deficiency, application of borax could improve soil and leaf B contents in this first year, but increased citurs yield significantly in the third year. Although soil application of zinc sulfate could improve the soil available Zn contents, it is need at least three years of continuous application to cure citrus tissue Zn deficiency and improve fruit quality. B and Zn affected fruit yield and quality in different ways. The yield increased after the application of B was due to the augmentation of the fruit number, while fruit quality was improved by Zn. the co-application of B and Zn could both improve the fruit yield and quality. Therefore, in the acid yellow brown soil with low B and Zn availability, soil application of40g zinc sulfate and20g borax per tree could effectively increase cure Zn and B deficiency using the method of root-irrigation, and increase yields and quality in Satsuma mandarin with a continuous application over at least three years.
     3. The effects of varying applications of Fe-EDDHA, Zn and Mn combinations on the soil Fe, Mn and Zn contents, leaf and fruit Fe, Mn and Zn contents, and citrus fruit yield and quality. Soil available Fe and Zn concentrations were raised significantly through the application of Fe-EDDHA and Zn, whereas the soil available Mn concentration was not increased through the application of Mn. In the second year, Fe-EDDHA alone or co-application of Mn and Zn raised the leaf active Fe content significantly without influencing the leaf and fruit Fe concentrations. The Zn concentrations in leaf and fruit decreased when Fe-EDDHA was applied exclusively, but increased when Fe+Zn and Fe+Zn+Mn were applied in the third year. There was no significant difference in leaf and fruit Mn concentrations among all treatments. All of the treatment increased the fruit number, particularly Fe+Zn. Although Fe-EDDHA alone did not influence fruit total soluble solid (TSS), it did sharply decrease fruit titratable acid (TA) and increase TSS:TA. Fruit TSS, TA and Vc content were raised significantly through the application of Fe+Zn and Fe+Zn+Mn. In conclusion, the application of Fe-EDDHA alone could induce zinc deficiency, and Fe and Zn play different roles that affect fruit yield in calcareous soil. The citrus fruit number was mainly affected by Fe while the mean fruit weight was improved by Zn. Moreover, Zn was a more important factor than Fe in improving the citrus fruit quality. Therefore, soil application of60g Fe-EDDHA and20g zinc sulfate per tree could effectively increase cure Fe and Zn deficiency and increase both yield and quality in Satsuma mandarin in calcareous soil.
     4. The effects of different application rate of lime were studied on soil acidity of acidic soil in citrus orchard, nutrient availability, nutrient uptake of trees and yield and quality of fruit. The dynamic changes of different mineral nutrients and accumulative laws varied with each other in satsuma mandarin leaves. As a whole, N, P, K, Ca, Mg and Mn in mature leaves appeared from low to high, however, Fe showed from high to low. According to the newborn early-spring leaves, P, N, Mg and Cu started to accumulate before fruit expansion period, Mn started to accumulate before colour-changed period, Ca and Fe showed stably continuous accumulation in the whole growth period, however, K and Zn mainly accumulated in young fruit period, and gradually decreased with the increasing growth accumulation of fruit. In addition, lime treatment of medium and high amount could effectively neutralize the topsoil acidity and improve the effectiveness of P, Ca and Mg in soil and absorption of K and Mg in trees, while reducing the effectiveness of N, Fe, Mn, Cu and Zn in soil and the absorption of Mn in trees. Meanwhile, the fruit titratable acid (TA) could be increased by liming, and the TSS/TA be increased. Threefore, acidity of citrus fruit could be caused by soil acidification, and with liming, fruit quality may be affected by absorption promotion of P and Ca and inhibition of Mn. So, for acidification of citrus orchard with yellow brown soil, the application rate of2kg/strain was recommended in fields using the method of surface broadcasting.
     5. The effects of different dosages of lime and biochar were observed on soil acidity, microbiologic properties, nutrient availability, nutrient uptake of satsuma mandarin trees and fruit quality. Lime and biochar could effectively increase the soil PH and neutralize soil acidification. However, remediation effect of lime would decrease with the extension of time, but biochar showed more lasting effect. With the application rate of lime and biochar increasing, microbial biomass tended to first rise and then drop, along with the increase in soil respiration. Compared with low and medium amount of lime and biochar treatment, the high amount treatment significantly increased microbial activity, although lowering the microbial biomass. The improvement of biochar on absorption of soil and tree nutrients was superior to that of lime due to its abundant mineral nutrients. Additionally, soil acidity could be neutralized by biochar, and as a fertilizer source, it could improve soil fertility and increase the absorption of nutrients in plants. Furthermore, the content of titratable acid (TA) in satsuma mandarin fruit could be decreased with the application of lime or biochar, and TSS.TA could be increased with the medium amount of lime, along with medium or high amount of biochartreatment. In addition, the application of lime and biochar could reduce the acidity and increase TSS:TA due to the probable absorption promotion of P in trees and absorption reduction of Fe, Mn and Cu. Biochar had the better promotion effect on fruit quality than lime, particularly BC-2. For the lime, L-2(2.4g/kg) had the best effect on fruit quality promotion, L-2could decrease the TA by16.2%, and increase the TSS/TA by21.8%. For the lime, BC-2(2%) had the best effect on fruit quality promotion, BC-2could decrease the TA by25.0%, and increase the TSS/TA by31.7%.
     6. The effects of biochar derived from three feedstocks on the acidity, chemical and microbial properties of the acidic soil, nutrients absorption and growth of trifoliate orange seedlings (Poncirus trifoliata L.) were studied. All of the three biochars derived from three feedstocks could neutralize soil acidity and increase soil pH. However, only peanut hull biochar significantly increased plant growth and the biomass of trifoliate orange seedlings. Soil microbial biomass C and basal respiration were increased by peanut hull and rice straw biochar, particularly peanut hull biochar. The effect of three biochars on soil enzyme activity is various, but the GMea of the assayed enzyme activities increased47.2%,36.9%and25.8%by peanut hull, rice and rape straw biochar, respectively. Biochars decreased soil available N, Fe, Mn, Cu and Zn contents, But it markedly increased the the Fe, Mn, Cu, Zn allocation proportion in the tissue of aboveground of trifoliate orange seedlings, particularly rape straw biochar. rice straw and rape straw biochars which had more abundant mineral nutrient contents, as the fertilizer source had better enhancement effect for the soil and plant mineral nutrient contents compare to the peanut hull biochar, while peanut hull biochar resulted in higher plant nutrients accumulation due to the improvement of biomass of trifoliate orange seedlings. although the three biochars effectively neutralized soil acidity, peanut hull biochar had the greater positive effect on trifoliate orange seedlings growth, and secondarily rice straw biochar. The positive effects were not related to soil and plant nutrients, but to the soil microbial biomass and enzyme activity.
引文
1.敖俊华,黄振瑞,江永,邓海华,陈顺,李奇伟.石灰施用对酸性土壤养分状况和甘蔗生长的影响.中国农学通报,2010,26:266-269.
    2.鲍江峰,夏仁学,彭抒昂,李国怀.湖北省纽荷尔脐橙园土壤营养状况及其对果实品质的影响.土壤,2006,38:75-80.
    3.鲍士旦.土壤农化分析.北京:中国农业出版社,2000.
    4.蔡东,李国怀,龚丽,朱炜.鄂南棕红壤区施用石灰对桃树叶片的影响.中国农学通报,2011,27:270-276.
    5.岑慧贤,王树功.模拟酸雨对土壤盐基离子的淋溶释放影响.环境污染与防治,2001,23:13-15.
    6.陈朝阳.南平市植烟土壤pH状况及其与土壤有效养分的关系.中国农学通报,2011,27:149-153.
    7.陈桂芬,黄玉溢,熊柳梅,刘斌,刘永贤.钙肥对春甜桔产量和品质的影响.南方农业学报,2013:92-95.
    8.陈怀满.环境土壤学.北京:科学出版社,2005.
    9.陈青云,张晶,谭启玲,孙学成,赵小虎,胡承孝.4种磷肥对土壤-叶菜类蔬菜系统中镉生物有效性的影响.华中农业大学学报,2013,32:.78-82.
    10.程先富,陈梦春,郝李霞,史学正.红壤丘陵区农田土壤酸化的时空变化研究.中国生态农业学报,2008,16:1348-1351.
    11.段小华,胡小飞,邓泽元,陈伏生,鲁顺保.模拟酸雨和铝添加对茶树生长及生理生化特性的影响.江西农业大学学报,2012,34:304-310.
    12.段兴国,王国平,屠乃美,向鹏华.施用石灰对酸性植烟土壤的改良效果.作物研究,2010,24:36-38.
    13.方熊,刘菊秀,尹光彩,赵亮,刘世忠,褚国伟,李义勇.丘陵林地土壤酸化改良剂的集中施用-自然扩散修复技术研究.环境科学,2013,34: 293-301.
    14.关松荫.土壤酶及其研究法.北京:农业出版社,1986.
    15.郭朝晖,黄昌勇,廖柏寒.模拟酸雨对污染土壤中Cd, Cu和Zn释放及其形态转化的影响.应用生态学报,2003,14:1547-1550.
    16.韩文炎,王皖蒙,杨明臻,贾仲君.茶园土壤细菌丰度及其影响因子研究.茶叶科学,2013,33:147-154.
    17.何冰,陈莉,李磊,张超兰,陈红路,刘宝庆,李宏成,徐博妮.石灰和泥炭处理对超积累植物东南景天清除土壤重金属的影响.安徽农业科学,2012,40:2948-2951.
    18.何电源.关于稻田施用石灰的研究.土壤学报,1992,1:93
    19.胡承孝,吴平.鄂南棕红壤旱地施用石灰和硫酸镁对油菜的效应.华中农业大学学报,1997,16:571-575.
    20.胡红青,李学垣,刘景福,黄俊福,王代长.红壤上直接施用磷矿粉的增产效果和改土作用.土壤与环境,1994,4.
    21.胡小飞,李敬,陈伏生,方向民.模拟酸沉降加重对丘陵红壤区茶树铝根际效应的影响.生态文明建设中的植物学:现在与未来—中国植物学会第十五届会员代表大会暨八十周年学术年会论文集一第2分会场:植物生态与环境保护,2013.
    22.胡小凤,王正银,孙倩倩,游媛.缓释复合肥料在不同pH值紫色土中氨挥发特性.农业工程学报,2009:100-103.
    23.黄运湘,廖柏寒,王志坤.模拟酸雨对森林红壤中铝的溶出及不同土层酸度变化的影响.生态环境,2005,14:478-482.
    24.江泽普,韦广泼,蒙炎成,黄玉溢.广西红壤果园土壤酸化与调控研究.西南农业学报,2004,16:90-94.
    25.李合生.植物生理生化分析方法.北京:高等教育出版社,2000.
    26.李健,施清.福建柑桔园营养施肥状况及其施肥改进建议.果树科学,1998,15:145-149.
    27.李庆军,林英,李俊良,刘成连,原永兵.土壤pH和不同酸化土壤改良剂对苹果果实品质的影响.中国农学通报,2010,26:209-213.
    28.李少旋.苹果粗皮病诱发因子的调查与研究.[硕士学位论文].山东:山东农业大学图书馆,2011.
    29.李士杏,王定勇.重庆地区20年间紫色土酸化研究.重庆师范大学学报:自然科学版,2005,22:70-73.
    30.李寿田,周健民,王火焰,陈小琴,杜昌文.不同土壤磷的固定特征及磷释放量和释放率的研究.土壤学报,2003,06:908-914.
    31.李淑仪,蓝佩玲,廖新荣,徐胜光.砖红壤磷的有效性研究.生态环境,2003,12:170-171.
    32.梁梅青,薛珺,范玉兰,李勋,彭良志.赣南脐橙园土壤酸化特征研究.中国南方果树,2010,39:6-8.
    33.林媚,冯先桔,温明霞,王燕斌.浙江台州柑橘主产区土壤养分现状分析.现代农业科技,2007:11-12.
    34.林泽安, 王乾章,周富忠.利川市石灰在黄金梨上的应用效果研究.农业 科技通讯,2013:118-120.
    35.刘广深,许中坚.模拟酸雨对土壤有效磷衰减的影响.矿物学报,2002,22:35-38.
    36.刘加芬,李慧峰,于婷,王玉霞,李芳东,李林光.沂蒙山区苹果园肥料施入特点调查分析.果树学报,2011,28:558-562.
    37.刘俐,宋存义,李发生.模拟酸雨对红壤中硅铝铁释放的影响.环境科学,2007,28:2376-2382.
    38.龙光强,蒋璃霁,孙波.长期施用猪粪对红壤酸度的改良效应.土壤,2012,44:727-734.
    39.鲁剑巍,陈防,王富华,刘冬碧,万运帆,余常兵,胡芳林,王明锐,王运华.湖北省柑橘园土壤养分分级研究. 植物营养与肥料学报,2002,8:390.
    40.鲁如坤,时正元.磷在土壤中有效性的衰减.土壤学报,2000,37:323-329.
    41.孟赐福,周梅芳,周俊三.红壤桔园施用磷钾肥和石灰对温州蜜柑产量及品质的影响.中国柑桔,1991,04:3-6.
    42.沈兆敏,张伯雍,何天富,谢治银.我国柑桔的生态适宜性区划研究.中国农业科学,1984,25:1-7.
    43.师刚强,赵艺,施泽明,倪师军.土壤pH值与土壤有效养分关系探讨.现代农业科学,2009:93-94.
    44.苏天明,李杨瑞,江泽普,韦广泼,蒙炎成.泥炭对菜心-土壤系统中重金属生物有效性的效应研究.植物营养与肥料学报,2008,14:339-344
    45.孙秀琴.土壤酸碱度与各种营养元素可给性和甘蔗产量的关系.福建甘蔗,1993:38-41.
    46.万贵怡,周茂林,李玲.粉煤灰改良红壤性中低产田(地)的试验研究.江西农业科技,1994,4:30-34.
    47.王涵,王果,黄颖颖,陈璟,陈妹妹.pH变化对酸性土壤酶活性的影响.生态环境,2008,17:2401-2406.
    48.王见月,刘庆花,李俊良,金圣爱,原永兵.胶东果园土壤酸度特征及酸化原因分析.中国农学通报,2010,26:164-169.
    49.王世强,胡长玉,程东华,廖万有,李娜,陈玲,房江育.调节茶园土壤pH对其土著微生物区系及生理群的影响.土壤,2011,43:76-80.
    50.王水良,王平,王趁义.降水酸度对马尾松根际环境中铝形态的影响.水土保持学报,2010,03:247-251.
    51.王文婧.模拟酸雨影响下皖南红壤阳离子释放特征的研究.[硕士学位论文].芜 湖:安徽师范大学图书馆,2012
    52.王绪奎,徐茂,汪吉东,王建明,张永春.太湖地区典型水稻土大时间尺度下的肥力质量演变.中国生态农业学报,2009,17:220-224.
    53.王衍安,董佃朋,李坤,李新会,刘娣,李德全,束怀瑞.铁锌互作对苹果锌,铁吸收分配的影响.中国农业科学,2007,40:1469-1478.
    54.王忠和,李早东,王义华.烟台和威海地区果园土壤酸度评价.中国果树,2009:16-18.
    55.王忠和,李早东,王义华.烟台市苹果园土壤状况调查报告.落叶果树,2011:13-15.
    56.魏良稠,周厚基.缺铁失绿秋白梨树强力树干注射铁肥的效果初报.中国农业科学,1990,23:45-52.
    57.吴金水,林启美,黄巧云,贺纪正,肖和艾.土壤微生物生物量测定方法及其应用.北京:北京气象出版社,2004.
    58.肖厚军,王正银,何佳芳,苟久兰.磷石膏改良强酸性黄壤的效应研究. 水土保持学报,2008,22:62-66
    59.肖文芳.施用石灰和磷矿粉对桃园土壤养分和树体营养的影响.[博士学位论文].武汉:华中农业大学,2009.
    60.熊伟,夏仁斌,吴正亮,杨灿芳,冯洋,熊静丹,徐烯铭.重庆三峡库区柑桔园土壤酸性转化原因初探.中国南方果树,2010,39:12-14.
    61.徐仁扣.某些农业措施对土壤酸化的影响.农业环境保护,2002,21:385-388.
    62.薛进军,李绍华.铁肥品种和施肥方式对黄化苹果树复绿和铁含量的影响.果树科学,1999,16:246-249.
    63.杨青,刘云,黎纯斌,胡光灿,周帮国,李春红,陈玉.宜昌市柑橘园土壤肥力调查研究.中国园艺文摘,2013,29:7-10.
    64.杨生权.土壤和叶片养分状况对柑橘产量和品质的影响.[硕士学位论文]重庆:西南大学,2008.
    65.姚槐应,黄昌勇.土壤微生物生态学及其实验技术.北京:科学出版社,2006.
    66.叶元林,张作文,张彦娟,王盛洪.衢州市桔园红壤酸度与果实品质的关系(初报).土壤通报,1991,S1:39-41.
    67.于天仁.中国土壤的酸度特点和酸化问题.土壤通报,1988,19:49-51.
    68.于忠范,张振英,王平,丛建强.胶东果园土壤酸化现状及原因分析.烟台果树,2010,02:31-32.
    69.盂赐福,傅庆林,水建国,吴益伟.浙江中部红壤施用石灰对土壤交换性钙, 镁及土壤酸度的影响.植物营养与肥料学报,1999,5:129-136.
    70.俞元春,丁爱芳.模拟酸雨对土壤酸化和盐基迁移的影响.南京林业大学学报,2001,25:39-42.
    71.张长明.不同施肥处理对秭归脐橙土壤和叶片养分及柠檬酸代谢的影响[硕士学位论文].武汉:华中农业大学图书馆,2013
    72.张传英.日照市东港区苹果园酸化土壤调节技术研究.中国园艺文摘,2010,04:42-43.
    73.赵静,李欣,张鲜鲜,章超,沈向,王洪强,陈浪波.土壤pH值对黄金梨果实品质的影响. 安徽农业科学,2009,27:13037-13040.
    74.赵其国.中国东部红壤地区土壤退化的时空变化机理及调控.北京:科学出版社,2002.
    75.赵其国,张桃林,鲁如坤.我国东部红壤地区土壤退化的时空变化,机理及调控对策的研究.土壤学报,2000(增刊),37:1-62
    76.赵全桂,卢树昌,吴德敏,周海燕,陈清.施肥投入对招远农田土壤酸化及养分变化的影响.中国农学通报,2008,24:301-306.
    77.赵友淦,林济忠,周定康,周洪光.山地瓯柑园施用石灰改善果实品质试验初报.浙江亚热带作物通讯,2009,1:25-26.
    78.邹春琴,陈新平,张福锁,毛达如.活性铁作为植物铁营养状况诊断指标的相关研究.植物营养与肥料学报,1998,4:399-406.
    79. Abd-Allah A. Effect of spraying some macro and micro nutrients on fruit set, yield and fruit quality of Washington Navel orange trees. J Appl Sci Res, 2006, 2: 1059-1063
    80. Abrego J, Arauzo J, Sanchez JL, Gonzalo A, Cordero T, Rodriguez-Mirasol J. Structural changes of sewage sludge char during fixed-bed pyrolysis. Ind Eng Chem Res, 2009,48:3211-3221
    81. Aciego Pietri J, Brookes P. Relationships between soil pH and microbial properties in a UK arable soil. Soil Biol Biochem,2008,40:1856-1861
    82. Acosta-Martinez V, Tabatabai M. Enzyme activities in a limed agricultural soil. Biol Fert Soils,2000,31:85-91
    83. Ahmad M, Soo Lee S, Yang JE, Ro H-M, Han Lee Y, Sik Ok Y. Effects of soil dilution and amendments (mussel shell, cow bone, and biochar) on Pb availability and phytotoxicity in military shooting range soil. Ecotox Environ Safe, 2012, 79: 225-231
    84. Alloway BJ. Zinc in soils and crop nutrition. 2th ed. Paris: IZA and IFA Brussels, 2008. 30-34
    85. Amonette JE, Joseph S. Characteristics of biochar: Microchemical properties. In: Lehmann J and Joseph S eds., Biochar for Environmental Management: Science and Technology, London:Earthscan, 2009:33-52
    86. Atkinson CJ, Fitzgerald JD, Hipps NA. Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils:a review. Plant Soil, 2010,337: 1-18
    87. Bailey SW, Horsley SB, Long RP. Thirty years of change in forest soils of the Allegheny Plateau, Pennsylvania. Soil Sci Soc Am J, 2005,69: 681-690
    88. Barak P, Jobe BO, Krueger AR, Peterson LA, Laird DA. Effects of long-term soil acidification due to nitrogen fertilizer inputs in Wisconsin. Plant Soil, 1997, 197: 61-69
    89. Belyaeva O, Haynes R. Comparison of the effects of conventional organic amendments and biochar on the chemical, physical and microbial properties of coal fly ash as a plant growth medium. Environ Ear Sci, 2012, 66:1987-1997
    90. Bhowmick N, Banik B, Hasan M, Ghosh B. Response of pre-harvest foliar application of zinc and boron on mango cv. Amrapali under New Alluvial Zone of West Bengal. Indian J Hortic, 2012, 69:428-431
    91. Bolan NS, Adriano DC, Curtin D. Soil acidification and liming interactions with nutrientand heavy metal transformationand bioavailability. Adv Agron, 2003,78: 215-272
    92. Brady NC, Weil RR. Elements of the nature and properties of soils.2th ed. Pearson Prentice Hall, 2010
    93. Butterly C, Baldock J, Tang C. The contribution of crop residues to changes in soil pH under field conditions. Plant Soil, 2013,366:185-198
    94. Caires E, Garbuio F, Churka S, Barth G, Correa J. Effects of soil acidity amelioration by surface liming on no-till corn, soybean, and wheat root growth and yield. Eur J Agron,2008,28:57-64
    95. Camacho-Cristobal JJ, Rexach J, Gonzalez-Fontes A. Boron in plants:deficiency and toxicity. J Invest Plant Biol, 2008,50:1247-1255
    96. Cantrell KB, Hunt PG, Uchimiya M, Novak JM, Ro KS. Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar. Bioresource Technol, 2012,107: 419-428
    97. Cao X, Harris W. Properties of dairy-manure-derived biochar pertinent to its potential use in remediation. Bioresource Technol, 2010, 101:5222-5228
    98. Castaldi S, Riondino M, Baronti S, Esposito F, Marzaioli R, Rutigliano F, Vaccari F, Miglietta F. Impact of biochar application to a Mediterranean wheat crop on soil microbial activity and greenhouse gas fluxes. Chemosphere, 2011,85:1464-1471
    99. Chan K, Van Zwieten L, Meszaros I, Downie A, Joseph S. Agronomic values of greenwaste biochar as a soil amendment. Soil Research, 2008a, 45:629-634
    100. Chan K, Van Zwieten L, Meszaros I, Downie A, Joseph S. Using poultry litter biochars as soil amendments. Soil Research,2008b,46:437-444
    101. Chan KY, Xu Z. Biochar: nutrient properties and their enhancement. In: Joseph S and Lehmann J eds., Biochar for environmental management: science and technology. London: Earthscan,2009:67-84
    102. Cheng C-H, Lehmann J, Thies JE, Burton SD, Engelhard MH. Oxidation of black carbon by biotic and abiotic processes. Org Geochem, 2006, 37:1477-1488
    103. Crowley DE, Smith W, Faber B, Manthey JA. Zinc fertilization of avocado trees. Hortscience,1996,31:224-229
    104. Darilek JL, Huang B, Wang Z, Qi Y, Zhao Y, Sun W, Gu Z, Shi X. Changes in soil fertility parameters and the environmental effects in a rapidly developing region of China. Agriculture, ecosystems & environment, 2009, 129:286-292
    105. de Mello Prado R, Natale W, da Silva JAA. Liming and quality of guava fruit cultivated in Brazil. Sci Hortic-amsterdam,2005, 106:91-102
    106. Dell B, Huang L. Physiological response of plants to low boron. Plant Soil, 1997, 193:103-120
    107. El-Azeem SAA, Ahmad M, Usman AR, Kim K-R, Oh S-E, Lee SS, Ok YS. Changes of biochemical properties and heavy metal bioavailability in soil treated with natural liming materials. Environ Earth Sci, 2013,70:3411-3420
    108. Fisher A, Eaton G, Porritt S. Internal bark necrosis of Delicious apple in relation to soil pH and leaf manganese. Can J Plant Sci, 1977, 57:297-299
    109. Foy CD. Physiological effects of hydrogen, aluminum, and manganese toxicities in acid soil. Soil acidity and liming, 1984:57-97
    110. Frankenberger Jr W, Johanson J, Nelson C. Urease activity in sewage sludge-amended soils. Soil Biol Biochem, 1983,15:543-549
    111. Galloway JN, Townsend AR, Erisman JW, Bekunda M, Cai Z, Freney JR, Martinelli LA, Seitzinger SP, Sutton MA. Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science, 2008,320:889-892
    112. Garcia-Marco S, Martinez N, Yunta F, Hernandez-Apaolaza L, Lucena JJ. Effectiveness ethylenediamine-N(o-hydroxyphenylacetic)-N'(p-hydroxyphenylacetic) acid (o, p-EDDHA) to supply iron to plants. Plant Soil, 2006, 279:31-40
    113. Gaskin J, Steiner C, Harris K, Das K, Bibens B. Effect of low-temperature pyrolysis conditions on biochar for agricultural use. Trans. Asabe,2008,51:2061-2069
    114. Gaskin JW, Speir RA, Harris K, Das K, Lee RD, Morris LA, Fisher DS. Effect of peanut hull and pine chip biochar on soil nutrients, corn nutrient status, and yield. Agron J, 2010, 102:623-633
    115. Gruber N, Galloway JN. An Earth-system perspective of the global nitrogen cycle. Nature,2008,451:293-296
    116. Guo J, Liu X, Zhang Y, Shen J, Han W, Zhang W, Christie P, Goulding K, Vitousek P, Zhang F. Significant acidification in major Chinese croplands. Science, 2010, 327: 1008-1010
    117. Hasani M, Zamani Z, Savaghebi G, Fatahi R. Effects of zinc and manganese as foliar spray on pomegranate yield, fruit quality and leaf minerals. J Soil Sci Plant Nutr, 2012,12:471-480
    118. Hong CO, Lee DK, Chung DY, Kim PJ. Liming effects on cadmium stabilization in upland soil affected by gold mining activity. Arch Environ Con Tox, 2007, 52: 496-502
    119. Hoyt PB. The relationship of internal bark necrosis in 'delicious' apples to tree characteristics and soil properties. Communications in Soil Science & Plant Analysis, 1988,19:1041-1048
    120. Huang H, Hu C, Tan Q, Hu X, Sun X, Bi L. Effects of Fe-EDDHA application on iron chlorosis of citrus trees and comparison of evaluations on nutrient balance with three approaches. Sci Hortic-amsterdam, 2012, 146:137-142
    121. Jeffery S, Verheijen F, Van Der Velde M, Bastos A. A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis. Agriculture, Ecosystems & Environment, 2011,144:175-187
    122. Kaniuczak J, Nazarkiewicz M. Effect of liming and mineral fertilization on the enzymatic activity of greyubrown podzolic soils formed from loess. Polish J Soil Sci, 2008,41:201-207
    123. Karhu K, Mattila T, Bergstrom I, Regina K. Biochar addition to agricultural soil increased CH4 uptake and water holding capacity—Results from a short-term pilot field study. Agriculture, ecosystems & environment, 2011,140:309-313
    124. Kemmitt SJ, Wright D, Goulding KW, Jones DL. pH regulation of carbon and nitrogen dynamics in two agricultural soils. Soil Biol Biochem,2006,38:898-911
    125. Khan AS, Ullah W, Malik AU, Ahmad R, Saleem BA, Rajwana IA. Exogenous applications of boron and zinc influence leaf nutrient status, tree growth and fruit quality of Feutrell's Early (Citrus reticulata Blanco). Pak. J. Agric. Sci, 2012, 49: 113-119
    126. Kolb SE, Fermanich KJ, Dornbush ME. Effect of charcoal quantity on microbial biomass and activity in temperate soils. Soil Sci Soc Am J, 2009, 73:1173-1181
    127. Laird DA, Fleming P, Davis DD, Horton R, Wang B, Karlen DL. Impact of biochar amendments on the quality of a typical Midwestern agricultural soil. Geoderma, 2010, 158:443-449
    128. Lalande R, Gagnon B, Royer I. Impact of natural or industrial liming materials on soil properties and microbial activity. Can J Soil Sci, 2009, 89:209-222
    129. Lawrence GB, Lapenis AG, Berggren D, Aparin BF, Smith KT, Shortle WC, Bailey SW, Varlyguin DL, Babikov B. Climate dependency of tree growth suppressed by acid deposition effects on soils in Northwest Russia. Environ Sci Technol, 2005,39: 2004-2010
    130. Lehmann J. Bio-energy in the black. Front Ecol Environ.,2007,5:381-387
    131. Lehmann J, Joseph S. Biochar for environmental management: science and technology. London: Earthscan,2009
    132. Liang B, Lehmann J, Solomon D, Kinyangi J, Grossman J, O'neill B, Skjemstad J, Thies J, Luizao F, Petersen J. Black carbon increases cation exchange capacity in soils. Soil Sci Soc Am J, 2006, 70:1719-1730
    133. Liu X, Zhang A, Ji C, Joseph S, Bian R, Li L, Pan G, Paz-Ferreiro J. Biochar's effect on crop productivity and the dependence on experimental conditions—a meta-analysis of literature data. Plant Soil, 2013,373:583-594
    134. Marschner H, Marschner P. Marschner's mineral nutrition of higher plants. London: Academic press, 2012.49-70
    135. Matson P, Lohse KA, Hall SJ. The globalization of nitrogen deposition: consequences for terrestrial ecosystems. AMBIO: A Journal of the Human Environment, 2002, 31: 113-119
    136. Maurer MA, Taylor KC. Effect of foliar boron sprays on yield and fruit quality of navel oranges. Citrus and Deciduous Fruit and Nut Research Report, 1999, http://hdl.handle.net/10150/222531
    137. Mengel K. Iron availability in plant tissues-iron chlorosis on calcareous soils. Plant Soil, 1994,165:275-283
    138. Mengel K, Planker R, Hoffmann B. Relationship between leaf apoplast pH and iron chlorosis of sunflower (Helianthus annuus L.). J Plant Nutr,1994,17:1053-1065
    139. Moon DH, Dermatas D, Menounou N. Arsenic immobilization by calcium-arsenic precipitates in lime treated soils. Sci Total Environ, 2004, 330:171-185
    140. Morales F, Grasa R, Abadia A, Abadia J. Iron chlorosis paradox in fruit trees. J Plant Nutr, 1998,21:815-825
    141. Nunez-Moreno H, Walworth JL, Pond AP. Manure and soil zinc application to 'Wichita'pecan trees growing under alkaline conditions. Hortscience, 2009, 44: 1741-1745
    142. Nakamura T, Nakamura M. Ecophysiological mechanisms characterising fen and bog species:focus on variations in nitrogen uptake traits under different soil-water pH. Oecologia, 2012, 168:913-921
    143. Novak JM, Lima I, Xing B, Gaskin JW, Steiner C, Das K, Ahmedna M, Rehrah D, Watts DW, Busscher WJ. Characterization of designer biochar produced at different temperatures and their effects on a loamy sand. Ann Environ Sci, 2009, 3:2
    144. Ok Y, Chang S, Feng Y. Sensitivity to acidification of forest soils in two watersheds with contrasting hydrological regimes in the oil sands region of Alberta. Pedosphere, 2007,17:747-757
    145. Overrein L. Sulphur pollution patterns observed:leaching of calcium in forest soil determined. AMBIO, 1972,1:145-147
    146. Paz-Ferreiro J, Gasco G, Gutierrez B, Mendez A. Soil biochemical activities and the geometric mean of enzyme activities after application of sewage sludge and sewage sludge biochar to soil. Biol Fert Soils, 2012, 48:511-517
    147. Paz-Ferreiro J, Trasar-Cepeda C, Leiros M, Seoane S, Gil-Sotres F. Biochemical properties in managed grassland soils in a temperate humid zone:modifications of soil quality as a consequence of intensive grassland use. Biol Fert Soils, 2009, 45: 711-722
    148. Paz-Ferreiro J, Trasar-Cepeda C, Leiros M, Seoane S, Gil-Sotres F. Biochemical properties of acid soils under native grassland in a temperate humid zone. New Zeal J Agr Res, 2007, 50:537-548
    149. Pestana M, Correia PJ, de Varennes A, Abadia J, Faria EA. The use of floral analysis to diagnose the nutritional status of orange trees. J Plant Nutr, 2001,24:1913-1923
    150. Pierson E, Clark R. Ferrous iron determination in plant tissue. J Plant Nutr, 1984, 7: 107-116
    151. Pignatello JJ, Kwon S, Lu Y. Effect of natural organic substances on the surface and adsorptive properties of environmental black carbon (char):Attenuation of surface activity by humic and fulvic acids. Environ Sci Technol, 2006, 40:7757-7763
    152. Pocknee S, Sumner ME. Cation and nitrogen contents of organic matter determine its soil liming potential. Soil Sci Soc Am J, 1997, 61:86-92
    153. Rojas CL, Romera FJ, Alcantara E, Perez-Vicente R, Sariego C, Garcia-Alonso JI, Boned J, Marti G. Efficacy of Fe (o, o-EDDHA) and Fe (o, p-EDDHA) isomers in supplying Fe to strategy I plants differs in nutrient solution and calcareous soil. J Agr Food Chem,2008,56:10774-10778
    154. Ross G, Hoyt P, Neilsen G. Soil chemical and mineralogical changes due to acidification in Okanagan apple orchards. Can J Soil Sci, 1985,65:347-355
    155. Rousk J, Baath E, Brookes PC, Lauber CL, Lozupone C, Caporaso JG, Knight R, Fierer N. Soil bacterial and fungal communities across a pH gradient in an arable soil. The ISMEjournal, 2010, 4:1340-1351
    156. Rousk J, Brookes PC, Baath E. Contrasting soil pH effects on fungal and bacterial growth suggest functional redundancy in carbon mineralization. Appl Environ Microb, 2009,75:1589-1596
    157. Sato K, Takahashi A. Acidity neutralization mechanism in a forested watershed in central Japan. Water, air, and soil pollution, 1996, 88:313-329
    158. Shi R, Baβler R, Zou C, Romheld V. Is iron phloem mobile during senescence in trees? A reinvestigation of Rissmuller's finding of 1874. Plant Physiol Biochem, 2011, 49:489-493
    159. Shrestha G, Traina SJ, Swanston CW. Black carbon's properties and role in the environment: A comprehensive review. Sustainability, 2010, 2:294-320
    160. Sidhu A, Sidhu B, Brar J. Fruit yield and quality of peach (Prunus persica Batsch.) as influenced by differential application of zinc. HortFlora Research Spectrum, 2012,1: 231-234
    161. Singh R, Sharma R, Tyagi S. Pre-harvest foliar application of calcium and boron influences physiological disorders, fruit yield and quality of strawberry (Fragaria × ananassa Duch.). Sci Hortic-amsterdam,2007,112:215-220
    162. Smil V. Nitrogen and food production: proteins for human diets. AMBIO: A Journal of the Human Environment, 2002, 31:126-131
    163. Smith BR, Cheng L. Fe-EDDHA Alleviates Chlorosis inConcord'Grapevines Grown at High pH. Hortscience, 2006, 41:1498-1501
    164. Smith SJ, Aardenne JV, Klimont Z, Andres RJ, Volke A, Delgado Arias S. Anthropogenic sulfur dioxide emissions:1850-2005. Atmospheric Chemistry and Physics, 2011,11:1101-1116
    165. Sohi S, Krull E, Lopez-Capel E, Bol R. A review of biochar and its use and function in soil. Adv Agron,2010,105:47-82
    166. Song W, Guo M. Quality variations of poultry litter biochar generated at different pyrolysis temperatures. J Anal Appl Pyrol, 2012, 94:138-145
    167. Souza RFd, Faquin V, Andrade ATd, Torres PRF. Phosphorus forms in soils under influence of liming and organic fertilization. Revista Brasileira de Ciencia do Solo, 2007,31:1535-1544
    168. Souza RF, Faquin V, Torres PRF, Baliza DP. Liming and organic fertilizer:influence on phosphorus adsorption in soils. Revista Brasileira de Ciencia do Solo, 2006, 30: 975-983
    169. Srivastava A, Singh S. Zinc nutrition in 'Nagpur' mandarin on haplustert. J Plant Nutr, 2009,32:1065-1081
    170. Srivastava A, Singh S. Zinc nutrition, a global concern for sustainable citrus production. J Sustain Agr, 2005,25:5-42
    171. Steinbeiss S, Gleixner G, Antonietti M. Effect of biochar amendment on soil carbon balance and soil microbial activity. Soil Biol Biochem, 2009, 41:1301-1310
    172. Stiles W, Robinson T, Reid WS. Fertilization of apple orchards through drip irrigation systems (fertigation). New York Fruit Quarterly, 1995,3:7-10
    173.Swietlik D. Zinc nutrition in horticultural crops. Horticultural reviews, 1999, 23: 109-178
    174. Tang C, Sparling G, McLay C, Raphael C. Effect of short-term legume residue decomposition on soil acidity. Aust J Soil Res, 1999, 37:561-573
    175. Tariq M, Sharif M, Shah Z, Khan R. Effect of foliar application of micronutrients on the yield and quality of sweet orange (Citrus sinensis L.). Pakistan J Biol Sci, 2007, 10
    176. Uchimiya M, Wartelle LH, Klasson KT, Fortier CA, Lima IM. Influence of pyrolysis temperature on biochar property and function as a heavy metal sorbent in soil. J Agr Food Chem,2011,59:2501-2510
    177. Ullah S, Khan A, Malik A, Afzal I, Shahid M, Razzaq K. Foliar application of boron influences the leaf mineral status, vegetative and reproductive growth, yield and fruit quality of'Kinnow'mandarin (Citrus reticulata Blanco.). J Plant Nutr, 2012, 35: 2067-2079
    178. Van Breemen N, Driscoll C, Mulder J. Acidic deposition and internal proton sources in acidification of soils and waters. Nature,1984,307:599-604
    179. Van Zwieten L, Kimber S, Morris S, Chan K, Downie A, Rust J, Joseph S, Cowie A. Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant Soil, 2010, 327:235-246
    180. Vitousek PM, Naylor R, Crews T, David M, Drinkwater L, Holland E, Johnes P, Katzenberger J, Martinelli L, Matson P. Nutrient imbalances in agricultural development. Science, 2009, 324:1519
    181. Wang L, Butterly C, Yang X, Wang Y, Herath H, Jiang X. Use of crop residues with alkaline slag to ameliorate soil acidity in an Ultisol. Soil Use Manage,2012, 28: 148-156
    182. Wang N, Li JY, Xu RK. Use of agricultural by - products to study the pH effects in an acid tea garden soil. Soil Use Manage,2009,25:128-132
    183. Wojcik P, Treder W. Effect of drip boron fertigation on yield and fruit quality in a high-density apple orchard. J Plant Nutr, 2006, 29:2199-2213
    184. Wojcik P, Wojcik M, Klamkowski K. Response of apple trees to boron fertilization under conditions of low soil boron availability. Sci Hortic-amsterdam, 2008,116: 58-64
    185. Xu RK, Zhao AZ, Yuan JH, Jiang J. pH buffering capacity of acid soils from tropical and subtropical regions of China as influenced by incorporation of crop straw biochars. J Soil Sedim,2012,12:494-502
    186. Xu R, Coventry DR. Soil pH changes associated with lupin and wheat plant materials incorporated in a red-brown earth soil. Plant Soil, 2003,250:113-119
    187. Xu R, Coventry DR, Farhoodi A, Schultz J. Soil acidification as influenced by crop rotations, stubble management, and application of nitrogenous fertiliser, Tarlee, South Australia. Soil Research,2002,40:483-496
    188. Yao H, Campbell CD, Qiao X. Soil pH controls nitrification and carbon substrate utilization more than urea or charcoal in some highly acidic soils. Biol Fert Soils, 2011,47:515-522
    189. Yuan JH, Xu RK, Wang N, Li JY. Amendment of acid soils with crop residues and biochars. Pedosphere, 2011a, 21:302-308
    190. Yuan J-H, Xu R-K, Zhang H. The forms of alkalis in the biochar produced from crop residues at different temperatures. Bioresource Technol, 2011b, 102:3488-3497
    191. Yuan JH, Xu RK. The amelioration effects of low temperature biochar generated from nine crop residues on an acidic Ultisol. Soil Use Manage, 2011,27:110-115
    192. Zhang L, Xu CC, Champagne P. Overview of recent advances in thermo-chemical conversion of biomass. Energ Convers Manag, 2010, 51:969-982
    193. Zhang Q, Streets DG, Carmichael GR, He K, Huo H, Kannari A, Klimont Z, Park I, Reddy S, Fu J. Asian emissions in 2006 for the NASA INTEX-B mission. Atmospheric Chemistry and Physics, 2009, 9:5131-5153
    194. Zhao W, Cai ZC, Xu ZH. Does ammonium-based N addition influence nitrification and acidification in humid subtropical soils of China?. Plant Soil, 2007, 297:213-221

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700