用户名: 密码: 验证码:
基于区域尺度的水稻氮磷钾肥料效应及推荐施肥量研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水稻是全世界重要的粮食作物,水稻生产对保障全球粮食安全具有十分重要的意义。水稻的高产离不开氮、磷、钾肥的合理施用。肥料施用不足不能充分发挥水稻的产量潜力,施用过量则易引起环境污染。然而,长期以来,我国水稻生产中普遍存在施肥状况不清、施肥效果不明的问题,且由于缺乏适用于当前生产条件的土壤养分分级指标和推荐施肥方法,施肥不合理的现象常有发生。
     本研究通过分析湖北省2008年测土配方施肥项目获取的6530份土壤样品,以及2006-2010年在湖北省7个稻作区布置的626个水稻田间肥效试验的结果,以湖北省为例,从区域尺度系统分析了水田土壤的肥力现状及变化规律,研究了早、中、晚稻氮、磷、钾肥的施用效果及肥料利用率状况,建立了水田土壤氮、磷、钾养分供应能力的分级指标,并初步确定了水稻氮、磷、钾肥的适宜用量及推荐方法。主要研究结果如下:
     1.湖北省水稻土有机质、碱解氮、有效磷和速效钾含量及pH平均值分别为26.1g/kg、124.2mg/kg、13.1mg/kg、89.1mg/kg和6.3,主要分布范围分别为10-40g/kg、>90mg/kg、5-40mg/kg、50-150mg/kg和5.0-7.5。各养分元素在不同稻区的分布均存在一定的差异,从全省来看,有机质含量具有东、南高,西、北低的分布特征;碱解氮具有西、南高,东、北低的特征;速效钾和pH具有西、北高,东、南低的特征;而有效磷没有表现明显的区域分布规律。与第二次土壤普查相比,由于长期施用氮、磷肥和肥料用量不断增加以及秸秆还田面积和数量的增加,一方面促进了水稻土有机质、碱解氮和有效磷含量的提高,另一方面也加速了土壤的酸化;而钾肥用量的不足及高产水稻品种对钾素的大量吸收,也导致了土壤速效钾含量的下降。
     2.水稻施用氮、磷、钾肥均有显著的增产、增收效果。早、中、晚稻适量施氮后的增产量分别平均为1631、2021和1631kg/hm2,增产率分别为37.0%、35.7%和32.4%,增收值分别为2205、2965和2262元/hm2;适量施磷后的增产量分别平均为850、937和646kg/hm2,增产率分别为15.8%、14.0%和10.6%,增收值分别为1201、1423和921元/hm2;适量施钾后的增产量分别平均为648、876和750kg/hm2,增产率分别为11.4%、12.8%和13.0%,增收值分别为582、966和661元/hm2。相比于单一肥料的施肥效果,氮、磷、钾肥配施的增产、增收效果更加明显,早、中、晚稻的平均增产量分别为2128、2594和2068kg/hm2,增产率分别为57.3%、51.5%和45.6%,增加的净收益分别为2187、3071和2080元/hm2。可见,不同类型水稻的施肥效果是不同的,若以增产率为评价标准,早稻的氮肥、磷肥以及氮磷钾肥配施的增产效应均最高,而晚稻的钾肥增产效应最高。
     3.在适量施肥的条件下,湖北省水稻的氮肥偏生产力、农学利用率、吸收利用率和生理利用率分别平均为46.6kg/kg N、11.3kg/kg N、29.2%和36.5kg/kg N,相应的磷肥利用率指标分别平均为131.6kg/kg P2O5、14.7kg/kg P2O5、15.0%和78.6kg/kg P2O5,相应的钾肥利用率指标分别平均为92.1kg/kg K20、9.8kg/kg K20、43.0%和18.7kg/kg K2O。水稻对土壤氮、磷、钾素的依存率分别平均为65.3%、86.0%和80.1%,相应的对氮、磷、钾肥的依存率分别为34.7%、14.0%和19.9%,可见,水稻植株吸收的氮、磷、钾素主要来自于土壤,改善土壤供肥能力是提高水稻产量和节约肥料资源的有效措施。
     4.土壤碱解氮不能作为土壤供氮能力的有效评价指标,而无氮产量可有效评估土壤供氮能力,利用其建立的土壤供氮能力分级指标共有6个等级,所对应的相对产量分别为>90%、800%-90%、70*%-80%、60%-70%、50%-60%和≤50%。土壤有效磷和无磷产量都可作为评估土壤供磷能力的有效指标,利用它们建立的土壤供磷能力分级指标各等级所对应的相对产量相同,从等级1到等级6都是>95%、90%%-95%、85%-90%、80%-85%、75%-80%和≤75%。土壤速效钾和无钾产量均可有效评估土壤供钾能力,其中利用土壤速效钾建立的土壤供钾能力分级指标有5个等级,所对应的相对产量分别为>95%、90%-95%、85%-90%、80%-85%和≤80%;而利用无钾产量建立的土壤供钾能力分级指标有6个等级,所对应的相对产量分别为>95%、90%-95%、85%-90%、80%-85%、75%-80%和≤75%。
     5.湖北省早、中、晚稻利用肥料效应函数估算的最佳经济施氮量均值分别为135、149和158kg N/hm2,最佳经济施磷量均值分别为53、55和45kg P2O5/hm2,最佳经济施钾量均值分别为71、74和78kg K2O/hm2,分别比试验设定的2水平氮、磷、钾肥用量降低了6.5%-19.2%、14.1%-23.2%和15.5%-24.3%。早、中、晚稻在湖北省50%的田块上的适宜氮用量区间分别为110-180、120-180和130-200kg N/hm2,适宜磷用量区间分别为45-65、40-75和35-60kg P2O5/hm2,适宜钾用量区间分别为45-90、50-95和60-95kg K2O/hm2。早、中、晚稻的最佳经济施氮量、最佳经济施磷量和最佳经济施钾量在湖北省及不同稻区随相应土壤供肥能力的下降均呈逐渐上升的趋势,可见,在为水稻确定氮、磷、钾肥用量时应把土壤供肥能力考虑在内。另外,不同稻区氮、磷、钾肥的区域平均适宜施用量是不同的,因此应按不同区域推荐施肥量。总体来看,利用“以区域平均适宜施肥量为基础,根据土壤供肥能力进行微调”的方法推荐氮、磷、钾肥用量是可行的。
Rice is an important food crop of the world, and plays an important role in ensuring global food security. Nitrogen (N), phosphorus (P), and potassium (K) are essential nutrients that require careful management in intensive rice systems, since insufficient amounts might result in yield losses, and excessive application might harm the environment. However, farmers often tend to apply a large excess of N fertilizer but insufficient P and K fertilizer, primarily because of the absence of reliable methods to estimate optimal fertilizer application rates.
     Through the project of soil testing and fertilizer recommendation in2005-2009, a lot of data about soil nutrients in paddy fields were acquired. Based on the data obtained in2008, status quo of the soil fertilities in seven rice producing regions of Hubei province were systematic analyzed and compared with the data obtained during the second national soil survey to explore laws and causes of the variation of soil nutrients in paddy field. Besides, we conducted a large-scale study comprising626fields in seven rice regions of Hubei province. The overall goals were to assess yield and profit responses of rice to N, P and K fertilizer, investigate N, P and K fertilizer use efficiency, establish indigenous soil N, P and K supply classification systems, and provide recommendations for N, P and K fertilizer application rates in this large-scale region, thereby helping farmers perform reasonable fertilizer management. The main results are summarized below.
     1. At present, the paddy soils in Hubei Province were10-40g/kg or26.1g/kg on average in organic matter,>90mg/kg or124.2mg/kg on average in alkalystic N,5-40mg/kg or13.1mg/kg on average in available P, and50-150mg/kg or89.1mg/kg on average in available K, and5.0-7.5in pH or6.3on average. The soil nutrients varied to a varying extent from region to region. In view of the province as a whole, the distribution of organic matter was characterized by being high in the east and south and low in the west and north, that of alkalystic N being high in the west and south and low in the east and north, and that of available K and pH both being high in the west and north and low in the east and south, while that of available P did not show any apparent rule. Compared with the findings of the second soil survey, the contents of organic matter, alkalystic N and available P increased while pH decreased as a result of long-term application of N and P fertilizers at an increasing rate and increased area and rate of straw incorporation. However, inadequate application rate of K fertilizer and the adoption of high K-demanding rice cultivar led to decrease in available K in the soil.
     2. The application of N, P and K fertilizer increased the yield and profit of rice significantly. Compared with PK (without N) treatment of early, mid and late rice, yields of NPK treatment increased1631,2021and1631kg/hm2, and profits of NPK treatment increased2205,2965and2262Yuan/hm2, respectively. Compared withNK (without P) treatment of early, mid and late rice, yields of NPK treatment increased850,937and646kg/hm2, and profits of NPK treatment increased1201,1423and921Yuan/hm2, respectively. Compared with NP (without K) treatment of early, mid and late rice, yields of NPK treatment increased648,876and750kg/hm2, and profits of NPK treatment increased582,966and661Yuan/hm2, respectively. The average yield of NPK treatment of early, mid and late rice was2128,2594and2068kg/hm2higher than that of CK (without N, P and K) treatment, respectively. Compared with CK treatment, profits of NPK treatment of early, mid and late rice increased2187,3071and2080Yuan/hm2, respectively. These results showed that the combined application of N, P and K fertilizer significantly increased both rice yield and profit. The responses of different rices to fertilizer were different. The response to N and P fertilizer application for early rice was strongest, whereas the response to K fertilizer application for late rice was strongest.
     3. At present production conditions, nitrogen, phosphorus and potassium use efficiency of rice were partial factor productivity of applied fertilizer (PFP) of46.6kg/kg N,131.6kg/kg P2O5and92.1kg/kg K2O, agronomic efficiency (AE) of11.3kg/kg N,14.7kg/kg P2O5and9.8kg/kg K2O, recovery efficiency (RE) of29.2%,15.0%and43.0%, and physiological efficiency (PE) of36.5kg/kg N,78.6kg/kg P2O5and18.7kg/kg K2O in Hubei province, respectively. The average dependent rate of rice to soil N, P and K was65.3%,86.0%and80.1%, respectively. As a whole, the fertilizer use efficiency of early, mid and late rice was different, however N, P and K absorbed by three kinds of rice primarily came from soil but not fertilizer. As a result, sustaining and increasing soil fertility is an effective measure to increase rice yield and save fertilizer resources.
     4. The grain yield of no-N, rather than soil alkaline hydrolyzable-N and total N, is a better predictor of indigenous N supply (INS) in paddy fields. The classification of INS for early, mid and late rice was determined based on the relationship between relative yield and grain yield of no-N. Compared to the complete treatment, the relative yields of50%,60%,70%,80%and90%obtained from the no-N treatment were selected to establish the classification indices of the grain yield without N for rice. Both soil available P and grain yield of no-P are feasible predictor of indigenous P supply (IPS) in paddy fields. The classification of IPS for early, mid and late rice was determined based on the relationship between relative yield and soil available P or grain yield of no-P. Compared to the complete treatment, the relative yields of75%,80%,85%,90%and95%obtained from the no-P treatment were selected to establish the classification indices of soil available P and grain yield without P for rice. Both soil available K and grain yield of no-K are feasible predictor of indigenous K supply (IKS) in paddy fields as well. Compared to the complete treatment, the relative yields of80%,85%,90%and95%(or75%,80%,85%,90%and95%) obtained from the no-K treatment were selected to establish the classification indices of soil available K (or the grain yield without K) for
     5. The average economic optimum fertilizer rate of early, mid and late rice, which was determined according to fertilizer response models, was135,149and158kg/hm2for N,53,55and45kg/hm2for P2O5,71,74and78kg/hm2for K2O in Hubei province. Compared with the N, P2O5and K2O rate of the medium application level, average economic optimum N rate (EONR), economic optimum P rate (EOPR) and economic optimum K rate (EOKR) decreased by6.5%-19.2%,14.1%-23.2%and15.5%-24.3%, respectively. The50%confidence interval of optimum fertilizer rate of early, mid and late rice was110-180,120-180and130-200kg/hm2for N,45-65,40-75and35-60kg/hm2for P2O5,45-90,50-95and60-95kg/hm2for K2O in Hubei province. The obvious increasing trend, which was shown by the average EONR with decreasing INS, the average EOPR with decreasing IPS, and the average EOKR with decreasing IKS in Hubei province, proved the importance of indigenous nutrient supply for recommending fertilizer application rates of rice. With decreasing INS, IPS and IKS, an increasing trend of EONR, EOPR and EOKR was also shown for most rice regions. The economic optimum fertilizer rate differed among the seven rice regions in Hubei province. In conclusion, the recommended fertilizer application, based on regional mean optimal fertilizer rates in combination with indigenous nutrient supply, is feasible for regional rice production in China and other countries that have large numbers of small farmland areas and where agricultural testing equipment is absent or less modern.
引文
1. 鲍碧娟.如何提高磷肥利用率.磷肥与复肥,1995,1:65-67,36
    2. 鲍士旦.土壤农化分析.第3版.北京:中国农业出版社,2000.30-107
    3. 包耀贤,徐明岗,吕粉桃,黄庆海,聂军,张会民,于寒青.长期施肥下土壤肥力变化的评价方法.中国农业科学,2012,45:4197-4204
    4. 曹宁,陈新平,张福锁,曲东.从土壤肥力变化预测中国未来磷肥需求.土壤学报,2007,44:536-543
    5. 陈柏槐.湖北省优质水稻现状与发展思路.中国稻米,2004,5:12-15
    6. 陈浮,濮励杰,曹慧,彭补拙,杨桂山,周生路.近20年太湖流域典型区土壤养分时空变化及驱动机理.土壤学报,2002,39:236-245
    7. 陈露,杨建昌.氮肥对超级稻产量的影响及其生物学基础的研究进展.作物杂志,2012,6:19-24
    8. 陈新平,周金池,王兴仁,张福锁,宝德俊,贾晓红.小麦-玉米轮作制中氮肥效应模型的选择—经济和环境效益分析.土壤学报,2000,37:346-354
    9. 崔玉亭,程序,韩纯儒,李荣刚.苏南太湖流域水稻经济生态适宜施氮量研究.生态学报,2000,4:659-662
    10.戴茨华,王劲松,代平.从长期定位试验论红壤施磷的残效.中国农学通报,2009,25:93-97
    11.丁玉川,罗伟,徐国华.镁、钾营养及其交互作用对水稻产量、产量构成因素和养分吸收的影响.水土保持学报,2008,22:178-182
    12.豆映辉.温度条件对水稻氮肥施用技术的影响.中国农业气象,1991,12:23-25
    13.冯惟珠,苏祖芳,杜永林,周培南,季春梅.‘水稻灌浆期源质量与产量关系及氮素调控的研究.中国水稻科学,2000,14:24-30
    14.封志明.中国未来人口发展的粮食安全与耕地保障.人口研究,2007,31:15-29
    15.高祥照,马常宝,杜森.测土配方施肥技术.北京:中国农业出版社,2005.1-7,14-20
    16.龚少红,崔远来,黄介生,李亚龙.不同水肥处理条件下水稻生理指标及产量变化规律.节水灌溉,2005,2:1-4
    17.郭萌生,张红林,谢勇,邱声春,刘跃清,刘海平,张瑞祥.温度条件对杂交中晚稻结实率的影响.中国农业气象,2008,29:304-307
    18.郭朝晖,李合松,张杨珠,黄见良,黄昌勇.磷素水平对杂交水稻生长发育和磷素运移的影响.中国水稻科学,2002,16:151-156
    19.贺帆,黄见良,崔克辉,王强,汤蕾蕾,龚伟华,徐波,彭少兵,Buresh RJ.实时实地氮肥管理对不同杂交水稻氮肥利用率的影响.中国农业科学,2008,41:470-479
    20.贺帆,黄见良,崔克辉,曾建敏,徐波,彭少兵,Buresh RJ.实时实地氮肥管理对水稻产量和稻米品质的影响.中国农业科学,2007,40:123-132
    21.贺梅,张文忠,宋桂云,徐正进,张喜娟.钾肥对高产水稻生长发育的影响.辽宁农业科学,2007,1:12-14
    22.湖北省农业科学院土壤肥料研究所.湖北土壤钾素肥力与钾肥应用.北京:中国农业出版社,1996.14-35
    23.胡泓,王光火.钾肥对杂交水稻养分积累以及生理效率的影响.植物营养与肥料学报,2003,9:184-189
    24.黄见良,崔克辉.湖北省水稻养分资源综合管理技术体系的建立与应用.见:申建波,张福锁主编,水稻养分资源综合管理理论与实践.北京:中国农业大学出版社,2006.236-264
    25.黄欠如,胡锋,李辉信,赖涛,袁颖红.红壤性水稻土施肥的产量效应及与气候、地力的关系.土壤学报,2006,43:926-933
    26.黄绍敏,宝德俊,皇甫湘荣,许为钢,胡琳,李民.长期定位施肥小麦的肥料利用率研究.麦类作物学报,2006,26:121-126
    27.戢林,张锡洲,李廷轩.基于“3414”试验的川中丘陵区水稻测土配方施肥指标体系构建.中国农业科学,2011,41:84-92
    28.姜子绍,宇万太.农田生态系统中钾循环研究进展.应用生态学报,2006,17:545-550
    29.孔宏敏,何圆球,吴大付,李成亮.长期施肥对红壤早地作物产量和土壤肥力的影响.应用生态学报,2004,15:782-786
    30.孔庆波,章明清,李娟,姚宝全,张青.福建省晚稻测土配方施肥指标体系研究.热带作物学报,2010,31:1873-1880
    31.兰全美,张锡洲,李廷轩.水旱轮作条件下免耕土壤主要理化特性研究.水土保持学报,2009,23:145-149
    32.郎秀云.人地矛盾视角下的中国现代农业模式.理论探讨,2007,6:90-93
    33.李成亮,何园球,王艳玲,刘晓利.氮磷钾肥对红壤区水稻增产效应的影响.中国水稻科学,2007,21:179-184
    34.李国学,张福锁.固体废物堆肥化与有机复混肥生产.北京:化学工业出版社,2000.47-55
    35.李华,杨肖娥,罗安程.不同氮钾条件下水稻基因型氮、钾积累利用差异.中国水稻科学,2002,16:86-88
    36.李季,靳乐山,崔玉亭,韩纯儒.南方水田农用化学品投入水平及分析——以湖北湖南农户调查为例.农业环境保护,2001,20:333-336,344
    37.李继云,刘秀娣,周伟,孙建华,童依平,刘文杰,李振声,王培田,姚树江.有效利用土壤营养元素的作物育种新技术研究.中国科学(B辑),1995,25:41-48
    38.李家康,林葆.化肥在我国农业生产中的作用与展望.见:中国植物营养与肥料学会,加 拿大钾磷研究所(PPI/PPIC)编,肥料与农业发展国际学术讨论会论文集.北京:中国农业科技出版社,1999.19-27
    39.李家康,林葆,梁国庆,沈桂芹.对我国化肥使用前景的剖析.植物营养与肥料学报,2001,7: 1-10
    40.李景蕻,李刚华,杨从党,王绍华,刘正辉,王强盛,丁艳峰.增加土壤温度对高海拔生态区水稻分蘖成穗及产量形成的影响.中国水稻科学,2010,24:36-42
    41.李菊梅,王朝辉,李生秀.有机质、全氮和可矿化氮在反映土壤供氮能力方面的意义.土壤学报,2003,40:232-238
    42.李娟,章明清,孔庆波,姚宝全,颜明娟,林琼.福建早稻测土配方施肥指标体系研究.植物营养与肥料学报,2010,16:938-946
    43.李生秀,李世清.不同水肥处理对旱地土壤速效氮、磷养分的影响.干旱地区农业研究,1995,13:6-13
    44.李实烨,王家玉,孔万根.稻田土壤供氮性能的研究Ⅱ.双季稻种植过程中施肥对土壤供氮性能和水稻产量的影响.土壤学报,1982,19:13-21
    45.李卫国.钾肥对水稻生长发育的影响机理.山西农业科学,2001,29:37-39
    46.李文彪,刘荣乐,郑海春,李书田,郜翻身,刘继培.内蒙古河套灌区春玉米推荐施肥指标体系研究.中国农业科学,2012,45:93-101
    47.李文彪,郑海春,郜翻身,李书田,刘继培,刘荣乐.内蒙古河套灌区春小麦推荐施肥指标体系研究.植物营养与肥料学报,2011,17:1327-1334
    48.李熙英,吕龙石,李桂花,权成武,全顺子.氮磷钾不同施肥量对水稻产量构成因素的影响.延边大学农学学报,1997,19:157-160
    49.李玉田.我国钾化肥使用的历史、现状和对策.北京农业科学,1992,10:30-35
    50.李忠芳.长期施肥下我国典型农田作物产量演变特征和机制.[博士学位论文].北京:中国农业科学院图书馆,2009
    51.廖育林,郑圣先,聂军,鲁艳红,谢坚,杨曾平.长期施用化肥和稻草对红壤水稻土肥力和生产力持续性的影响.中国农业科学,2009,42:3541-3550
    52.林葆.提高作物产量,增加施肥效应.见:中国土壤学会编,中国土壤科学的现状与前景.江苏:江苏科学技术出版社,1991.29-36
    53.林葆,李家康.我国化肥的肥效及其提高的途径—全国化肥试验网的主要结果.土壤学报,1989,26:273-279
    54.凌启鸿.作物群体质量.上海:上海科技出版社,2000.
    55.刘建中,李振声,李继云.利用植物自身潜力提高土壤中磷的生物有效性.生态农业研究,1994,2:16-23.
    56.柳金来,宋继娟,李福林,刘荣清.氮肥施用量对水田土壤肥力和水稻植株养分含量及产 量的影响.农业与技术,2000,20:8-12
    57.刘立军,桑大志,刘翠莲,王志琴,杨建昌,朱庆森.实时实地氮肥管理对水稻产量和氮素利用率的影响.中国农业科学,2003,36:1456-1461
    58.刘树堂,姚源喜,隋方功,孟祥霞,王秀珍.长期定位施肥对土壤磷、钾素动态变化的影响.生态环境,2003,12:452-455
    59.刘晓燕.我国农田土壤肥力和养分平衡状况研究.[博士后学位论文].北京:中国农业科学院图书馆,2008
    60.刘逊忠.稻草持续还田定位监测结果与分析.广西农学报,2007,22:15-17
    61.刘运武.磷对杂交水稻生长发育及其生理效应影响的研究.土壤学报,1996,33:308-316
    62.鲁如坤.我国土壤氮、磷、钾的基本状况.土壤学报,1989,26:280-286
    63.鲁如坤.土壤磷素水平和水体环境保护.磷肥与复肥,2003,18:4-8
    64.鲁如坤,时正元,顾益初.土壤积累态磷研究Ⅱ.磷肥的表观积累利用率.土壤,1995,27:286-289
    65.卢志红,嵇素霞,张美良,刘经荣.长期定位施肥对水稻土磷素形态的影响.植物营养与肥料学报,2009,15:1065-1071
    66.罗莲香,袁彩庭,卢普相,郑煜基,张美兴,罗彩嫦,罗金宏,马苑群.在高产栽培中磷肥不同施用量对水稻生长效应和养分吸收的影响.热带亚热带土壤科学,1995,4:30-35
    67.马晓群,许莹,赵海燕.江淮地区气温变化对一季中稻产量和产量构成的影响.地理研究,2008,27:603-612
    68.潘圣刚,曹凑贵,蔡明历,汪金平,王若涵,原保忠,翟晶.不同灌溉模式下氮肥水平对水稻氮素利用效率、产量及其品质的影响.植物营养与肥料学报,2009,15:283-289
    69.彭少兵,黄见良,钟旭华,杨建昌,王光火,邹应斌,张福锁,朱庆森,Buresh R,WittC.提高中国稻田氮肥利用率的研究策略.中国农业科学,2002,35:1095-1103
    70.全国土壤普查办公室.中国土壤.北京:中国农业出版社,1998.843-984
    71.单玉华,王余龙,黄建晔,安藤丰,山本由德,董桂春,周小冬.中后期追施15N对水稻氮素积累与分配的影响.江苏农业研究,2000,21:18-21
    72.沈仁芳,蒋柏藩.石灰性土壤无机磷的形态分布及其有效性.土壤学报,1992,29:80-85
    73.石元亮,王玲莉,刘世彬,聂鸿光.中国化学肥料发展及其对农业的作用.土壤学报,2008,45:852-864
    74.时正元,鲁如坤.农田养分再循环研究——Ⅰ.作物秸秆养分的利用率.土壤,1993,6:281-285,314
    75.司友斌,王慎强,陈怀满.农田氮、磷的流失与水体富营养化.土壤,2000,4:188-193
    76.王洪杰,李宪文,史学正,于东升.不同土地利用方式下土壤养分的分布及其与土壤颗粒组成关系.水土保持学报,2003,17:44-46,50
    77.王激清,李君,刘社平.冀西北地区农田土壤养分现状、变化与评价——以宣化县为例.干旱区资源与环境,2010,24:158-163
    78.王强盛,甄若宏,丁艳锋,吉志军,曹卫星,黄丕生.钾肥用量对优质粳稻钾素积累利用及稻米品质的影响.中国农业科学,2004,37:1444-1450
    79.王庆云,徐能海.湖北省土系概要.武汉:湖北科学技术出版社,1997.5-6
    80.王圣瑞,陈新平,高祥照,毛达如,张福锁.“3414”肥料试验模型拟合的探讨.植物营养与肥料学报,2002,8:409-413
    81.王淑英,胡克林,路苹,于同泉.北京平谷区土壤有效磷的空间变异特征及其环境风险评价.中国农业科学,2009,42.1290-1298
    82.王伟妮,鲁剑巍,鲁明星,李小坤,李云春,李慧.湖北省早、中、晚稻施氮增产效应及氮肥利用率研究.植物营养与肥料学报,2011,17:545-553
    83.王伟妮,王亚艺,姚忠清,鲁明星,姚善军,刘清荣,彭玉华,鲁剑巍.早稻“3414”施肥效果及推荐用量研究.湖北农业科学,2008a,47:1268-1271
    84.王伟妮,王亚艺,姚忠清,鲁明星,姚善军,刘清荣,彭玉华,鲁剑巍.中稻“3414”施肥效果及推荐用量研究.湖北农业科学,2008b,47:1416-1419
    85.王伟妮,王亚艺,姚忠清,鲁明星,姚善军,刘清荣,彭玉华,鲁剑巍.晚稻“3414”施肥效果及推荐用量研究.湖北农业科学,2009,48:306-309
    86.王秀斌,徐新朋,孙刚,孙静文,梁国庆,刘光荣,周卫.氮肥用量对双季稻产量和氮肥利用率的影响.植物营养与肥料学报,2013,19:1279-1286
    87.王旭,李贞宇,马文奇,张福锁.中国主要生态区小麦施肥增产效应分析.中国农业科学,2010,43:2469-2476
    88.王艳杰,付桦.雾灵山地区土壤有机质全氮及碱解氮的关系.农业环境科学学报,2005,24:85-90
    89.王义芳,梅桂芳,丁波,张青,朱美萍.氮磷钾不同配比对水稻产量及其性状的影响.大麦与谷类科学,2007,4:46-48
    90.魏义长,白由路,杨俐苹,林昌华,姚政,罗国安,徐四新,宋韦,朱春梅.基于ASI法的滨海滩涂地水稻土壤有效氮、磷、钾丰缺指标.中国农业科学,2008,41:138-143
    91.吴文革,张四海,赵决建,吴桂成,李泽福,夏加发.氮肥运筹模式对双季稻北缘水稻氮素吸收利用及产量的影响.植物营养与肥料学报,2007,13:757-764
    92.谢坚,郑圣先,廖育林,鲁艳红,向艳文,聂军.缺磷型稻田土壤施磷增产效应及土壤磷素肥力状况的研究.中国农学通报,2009,25:147-154
    93.谢建昌,周健民.我国土壤钾素研究和钾肥使用的进展.土壤,1999,31:244-254
    94.谢建昌,周健民,Hardter R.钾与中国农业.南京:河海大学出版社,2000.
    95.谢晓金,李秉柏,李映雪,李昊宇,赵小艳,杨沈斌,王志明.抽穗期高温胁迫对水稻产 量构成要素和品质的影响.中国农业气象,2010,31:411-415
    96.谢迎新,熊正琴,赵旭,邢光熹,郭天财.富营养化河水灌溉对稻田土壤氮磷养分贡献的影响——以太湖地区黄泥土为例.生态学报,2008,28:3618-3625
    97.邢光熹,颜晓光.中国农田N20排放的分析估算与减缓对策.农村生态环境,2000,16:1-6
    98.徐华,邢光熹,蔡祖聪,鹤田治雄.土壤水分状况和氮肥施用及品种对稻田N20排放的影响.应用生态学报,1999,10:186-188
    99.徐建华.我国农业可持续发展面临的困境与对策.生态经济,2001,1:4-6
    100.徐玲,张杨珠,曾希柏,周卫军,周清,夏海螯.不同施肥结构对稻田土壤肥力质量的影响.湖南农业大学学报(自然科学版),2006,32:362-367
    101.徐志平,姚宝全,章明清,林琼,陈子聪,李娟,颜明娟,张建丽.福建主要粮油作物测土配方施肥指标体系研究Ⅰ.土壤基础肥力对作物产量的贡献率及其施肥效应.福建农业学报,2008,23:396-402
    102.薛正平,曹星卫,段项锁,丁美花.精准农业水稻最佳氮肥施用量研究.电国生态农业学报,2003,11:53-55
    103.闫湘.我国化肥利用现状与养分资源高效利用研究.[博士学位论文].北京:中国农业科学院图书馆,2008
    104.杨晓光,刘志娟,陈阜.全球气候变暖对中国种植制度可能影响Ⅰ.气候变暖对中国种植制度北界和粮食产量可能影响的分析.中国农业科学,2010,43:329-336
    105.叶全宝,张洪程,魏海燕,张瑛,汪本福,夏科,霍中洋,戴其根,许轲.不同土壤及氮肥条件下水稻氮利用效率和增产效应研究.作物学报,2005,31:1422-1428
    106.易亮,李凯荣,张冠华,唐荣华.渭北黄土高原经济林地土壤养分特征研究.水土保持研究,2009,16:186-190
    107.曾勇军,石庆华,潘晓华,韩涛.施氮量对高产早稻氮素利用特征及产量形成的影响.作物学报,2008,34:1409-1416
    108.张福锁.测土配方施肥技术要览.北京:中国农业大学出版社,2006.3-10
    109.张福锁,陈新平,陈清.中国主要作物施肥指南.北京:中国农业大学出版社,2009.
    110.张福锁,崔振岭,王激清,李春俭,陈新平.中国土壤和植物养分管理现状与改进策略.植物学通报,2007,24:687-694
    111.张福锁,王激清,张卫峰,崔振岭,马文奇,陈新平,江荣风.中国主要粮食作物肥料利用率现状与提高途径.土壤学报,2008,45:915-924
    112.张仕祥,李辉信,胡锋,黄发泉,黄花香.早稻磷肥残效对当年晚稻产量的影响.土壤学报,2006,43:611-616
    113.张四代,张卫峰,王激清,王利,马文奇,张福锁.长江中下游地区化肥消费与供需特征 及调控策略.农业现代化研究,2008,29:100-103
    114.张桃林,潘剑军,刘绍贵,王兴祥,李忠佩.集约农业利用下红壤地区土壤肥力与环境质量变化及调控——江西省南昌市郊区和余江县案例研究.土壤学报,2007,44:584-591
    115.张永春,汪吉东,沈明星,沈其荣,许仙菊,宁运旺.长期不同施肥对太湖地区典型土壤酸化的影响.土壤学报,2010,47:465-472
    116.张玉屏,曹卫星,朱德峰,周爱珠,林贤青,陈惠哲,周正春.红壤稻田钾肥施用量对超级稻生长及产量的影响.中国水稻科学,2009,23:633-638
    117.赵辉,邵素华,谢东坡.分析数据中离群值的处理方法.周口师范学院学报,2004,21:70-71,115
    118.赵庆雷,王凯荣,马加清,杨连群,谢小立,张世永,袁守江.长期不同施肥模式对稻田土壤磷素及水稻磷营养的影响.作物学报,2009,35:1539-1545
    119.周全来,赵牧秋,鲁彩艳,史奕,陈欣.P肥施入土壤后的变化进程及对P淋失的影响.生态与农村环境学报,2006,22:80-83
    120.周学文,赵小敏,胡国瑞,陈凤华,郭熙.南方丘陵地区水田土壤养分变异分析.江西农业大学学报,2009,31:919-926
    121.朱德峰,程式华,张玉屏,林贤青,陈惠哲.全球水稻生产现状与制约因素分析.中国农业科学,2010,43:474-479
    122.朱华雄,瞿商.粮食安全:中国的还是全球的?——基于海外新中国粮食安全的研究视域.当代中国史研究,2011,18:107-112,127
    123.朱兆良.我国水稻生产中土壤和肥料氮素的研究.土壤,1981,1:1-6
    124.朱兆良.中国土壤N素.江苏:江苏科技出版社,1992.
    125.朱兆良.推荐氮肥适宜施用量的方法论刍议.植物营养与肥料学报,2006,12:1-4
    126.朱兆良.中国土壤氮素研究.土壤学报,2009,45:778-783
    127.朱兆良,金继运-保障我国粮食安全的肥料问题.植物营养与肥料学报,2013,19:259-273
    128.朱兆良,张绍林,徐银华.平均适宜施氮量的含义.土壤,1986,6:316-317
    129.邹长明,秦道珠,徐明岗,申华平,王伯仁.水稻的氮磷钾养分吸收特性及其与产量的关系.南京农业大学学报,2002,25:6-10
    130.邹娟,鲁剑巍,陈防,李银水.基于ASI法的长江流域冬油菜区土壤有效磷、钾、硼丰缺指标研究.中国农业科学,2009,42:2028-2033
    131. Aciego Pietri JC, Brookes PC. Relationships between soil pH and microbial properties in a UK arable soil. Soil Biol Biochem,2008,40:1856-1861
    132. Adhikari C, Bronson KF, Panuallah GM, Regmi AP, Saha PK, Dobermann A, Olk DC, Hobbs PR, Pasuquin E. On-farm soil N supply and N nutrition in the rice-wheat system of Nepal and Bangladesh. Field Crops Res,1999,64:273-286
    133. Basamba TA, Barrios E, Amezquita E, Rao IM, Singh BR. Tillage effects on maize yield in a Colombian savanna oxisol:Soil organic matter and P fractions. Soil Till Res,2006,91:131-142
    134. Bockman OC, Kaarstad O, Lie OH, Richards I. Agriculture and Fertilizers. Norsh Hydro, Oslo: Agricultural Group,1990.
    135. Broadbent FE, De Datta SK, Laureles EV Measurement of nitrogen utilization efficiency in rice genotypes. Agron J,1987,79:786-791
    136. Bullock DG, Bullock DS. Quadratic and quadratic-plus-plateau models for predicting optimal nitrogen rate of corn:A comparison. Agron J,1994,86:191-195
    137. Cao J, Jing Q, Zhu Y, Liu XJ, Zhuang S, Chen QC, Cao WX. A knowledge-based model for nitrogen management in rice and wheat. Plant Prod Sci,2009,12:100-108
    138. Cassman KG, Dobermann A, Sta Cruz PC, Gines GC, Samson MI, Descalsota JP, Alcantara JM, Dizon MA, Oik DC. Soil organic matter and the indigenous nitrogen supply of intensive irrigated rice systems in the tropics. Plant Soil,1996a,182:267-278
    139. Cassman KG, Gines GC, Dizon MA, Samson MI, Alcantara JM. Nitrogen-ruse efficiency in tropical lowland rice systems:Contributions from indigenous and applied nitrogen. Field Crops Res,1996b,47:1-12
    140. Cassman KG, Kropff MJ, Gaunt J, Peng SB. Nitrogen use efficiency of rice reconsidered:What are the key constraints. Plant Soil,1993,156:359-362
    141. Cassman KQ Peng SB, Olk DC, Ladha JK, Reichard W, Dobermann A, Singh U. Opportunities for increased nitrogen-use efficiency from improved resource management in irrigated rice systems. Field Crops Res,1998,56:7-39
    142. Cerrato ME, Blackmer AM. Comparison of models for describing corn yield response to nitrogen fertilizer. Agron J,1990,82:138-143
    143. Chalmers AG, Withers PJA. Phosphorus leaching from soils enriched with phosphorus loadings from organic manures. In:Foy RH, Dils R, eds., Practical and innovative measures for the control of agricultural phosphorus losses to water. An OECD Sponsored workshop,1998.144-145
    144. Chen J, Huang Y, Tang YH. Quantifying economically and ecologically optimum nitrogen rates for rice production in south-eastern China. Agric Ecosyst Enviro,2011,142:195-204
    145. Clampett WS, Tran DY Nguyen VN. The development and use of integrated crop management for rice production. In:Proceedings of the 20th Session of the International Rice Commission. Bangkok, Thailand. Italy, Rome:FAO,2003.135-144
    146. Cui ZL, Chen XP, Li JL, Xu JF, Shi LW, Zhang FS. Effect of N fertilization on grain yield of winter wheat and apparent N losses. Pedosphere,2006,16:806-812
    147. Cui ZL, Zhang FS, Chen XP, Dou ZX, Li JL. In-season nitrogen management strategy for winter wheat:Maximizing yields, minimizing environmental impact in an over-fertilization context. Field Crops Res,2010,116:140-146
    148. De Datta S K. Principles and practices of rice production. New York:John Wiley,1981.618
    149. De Datta SK. Improving nitrogen fertilizer efficiency in lowland rice in tropical Asia Fert Res, 1986,9:171-186
    150. De Datta SK, Gomez KA, Descalsota JP. Changes in yield response to major nutrients and in soil fertility under intensive rice cropping. Soil Sci,1988,146:350-358
    151. Dobermann A. Nitrogen use efficiency-state of the art. In:Paper of the IFA International Workshop on Enhanced-Efficiency Fertilizers. Frankfurt, Germany.2005.
    152. Dobermann A, Cassman KG, Mamaril CP, Sheehy JE. Management of phosphorus, potassium, and sulfur in intensive, irrigated lowland rice. Field Crops Res,1998,56:113-138
    153. Dobermann A, Cruz PCS, Cassman KG Fertilizer inputs, nutrient balance, and soil nutrient-supplying power in intensive, irrigated rice systems I. Potassium uptake and K balance. Nutr CyclAgroecosyst,1996,46:1-10
    154. Dobermann A, Witt C, Abdulrachman S, Gines HC, Nagarajan R, Son TT, Tan PS, Wang GH, Chien NV, Thoa VTK, Phung CV, Stalin P, Muthukrishnan P, Ravi V, Babu M, Simbahan GC, Adviento MAA, Bartolome V Estimating indigenous nutrient supplies for site-specific nutrient management in irrigated rice. Agron J,2003,95:924-935
    155. Dobermann A, Witt C, Dawe D, Abdulrachman S, Gines HC, Nagarajan R, Satawathananont S, Son TT, Tan PS, Wang GH, Chien NV, Thoa VTK, Phung CV, Stalin P, Muthukrishnan P, Ravi V, Babu M, Chatuporn S, Sookthongsa J, Sun Q, et al. Site-specific nutrient management for intensive rice cropping system in Asia. Field Crops Res,2002,74:37-66
    156. Fageria NK, Baligar VC, Jones CA. Growth and mineral nutrition of field crops. New York:NY, 1991.159-197
    157. Fageria NK, Baligar VC, Wright RJ, Carvalho JRP. Lowland rice response to potassium fertilization and its effect on N and P uptake. Fert Res,1990,21:157-162
    158. FAO. Statistical Databases, Food and Agriculture Organization (FAO) of the United Nations. 1960. http://www.fao.org.
    159. FAO. Statistical Databases, Food and Agriculture Organization (FAO) of the United Nations. 1980. http://www.fao.org.
    160. FAO. Statistical Databases, Food and Agriculture Organization (FAO) of the United Nations. 2000. http://www.fao.org.
    161. FAO. Statistical Databases, Food and Agriculture Organization (FAO) of the United Nations. 2001. http://www.fao.org.
    162. FAO. Statistical Databases, Food and Agriculture Organization (FAO) of the United Nations. 2004. http://www.fao.org.
    163. FAO. Statistical Databases, Food and Agriculture Organization (FAO) of the United Nations. 2007. http://www.fao.org.
    164. FAO. Statistical Databases, Food and Agriculture Organization (FAO) of the United Nations. 2008. http://www.fao.org.
    165. FAO. Statistical Databases, Food and Agriculture Organization (FAO) of the United Nations. 2009. http://www.fao.org.
    166. Ghaley BB, Hogh-Jensen H, Christiansen JL. Recovery of nitrogen fertilizer by traditional and improved rice cultivars in the Bhutan Highlands. Plant Soil,2010,332:233-246
    167. Godfray HCJ, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, Pretty J, Robinson S, Thomas SM, Toulmin C. Food security:The challenge of feeding 9 billion people. Science,2010, 327:812-818
    168. Guo JH, Liu XJ, Zhang Y, Shen JL, Han WX, Zhang WF, Christie P, Goulding KWT, Vitousek PM, Zhang FS. Significant acidification in major Chinese croplands. Science,2010,327: 1008-1010
    169. Haefele SM, Naklang K, Harnpichitvitaya D, Jearakongman S, Skulkhu E, Romyen P, Phasopa S, Tabtim S, Suriya-arunroj D, Khunthasuvon S, Kraisorakul D, Youngsuk P, Amarante ST, Wade LJ. Factors affecting rice yield and fertilizer response in rainfed lowlands of northeast Thailand. Field Crops Res,2006,98:39-51
    170. Haefele SM, Wopereis MCS, Donovan C, Maubuisson J. Improving the productivity and profitability of irrigated rice production in Mauritania. Eur J Agron,2001,14:181-196
    171. Haefele SM, Wopereis MCS, Ndiaye MK, Barro SE, Isselmou MO. Internal nutrient efficiencies, fertilizer recovery rates and indigenous nutrient supply of irrigated lowland rice in Sahelian West Africa. Field Crops Res,2003,80:19-32
    172. Heckrath G, Brookes PC, Poulton PR, Goulding KW. Phosphorus leaching from soils containing different phosphorus concentrations in the Broadbalk experiment. J Environ Qual,1995,24: 904-910
    173. Heffer P. Assessment of fertilizer use by crop at the global level (2006/07-2007/08). International Fertilizer Industry Association (IFA),2009-04. http://www.fertilizer.org/ifa.
    174. Hejcman M, Kunzova E. Sustainability of winter wheat production on sandy-loamy Cambisol in the Czech Republic:Results from a long term fertilizer and crop rotation experiment. Field crops res,2010,115:191-199
    175. Horst WJ, Kamh M, Jibrin JM, Chude VO. Agronomic measures for increasing P availability to crops. Plant Soil,2001,237:211-223
    176. Hossain MF, White SK, Elahi SF, Sultana N, Choudhury MHK, Alam QK, Rother JA, Gaunt JL. The efficiency of nitrogen fertiliser for rice in Bangladeshi farmers'fields. Field Crops Res,2005, 93:94-107
    177. Huang JL, He F, Cui KH, Buresh RJ, Xu B, Gong WH, Peng SB. Determination of optimal nitrogen rate for rice varieties using a chlorophyll meter. Field Crops Res,2008,105:70-80
    178. Inthapanya P, Sipaseuth, Sihavong P, Sihathep V, Chanphengsay M, Fukai S, Basnayake J. Genotype differences in nutrient uptake and utilization for grain yield production of rainfed lowland rice under fertilised and non-fertilised conditions. Field Crop Res,2000,65:57-68
    179. IRRl. World riee statistics 1985. Philippines, Banos L:International Rice Research Institute,1986
    180. Janssen BH, Guiking FCT, van der Eijk D, Smaling EMA, Wolf J, van Reuler H. A system for quantitative evaluation of the fertility of tropical soils (QUEFTS). Geoderma,1990,46:299-318
    181. Ju XT, Xing GX, Chen XP, Zhang SL, Zhang LJ, Liu XJ, Cui ZL, Yin B, Christie P, Zhu ZL, Zhang FS. Reducing environmental risk by improving N management in intensive Chinese agricultural systems. Proc Nat Acad Sci USA,2009,106:3041-3046
    182. Kunzova E, Hejcman M. "Yield development of winter wheat over 50 years of FYM, N, P and K fertilizer application on black earth soil in the Czech Republic. Field crops res,2009,111: 226-234
    183. Kunzova E, Hejcman M. "Yield development of winter wheat over 50 years of nitrogen, phosphorus and potassium application on greyic Phaeozem in the Czech Republic. Eur J Agron, 2010,33:166-174
    184. Kushibuchi K. Historical changes in rice cultivars. In:Japanese Ministry of Agriculture, Forestry, and Fishery, Science of the Rice Plant, vol. III:Genetics. Tokyo, Japan,1997.837-875
    185. Ladha JK, Pathak H, Krupnik TJ, Six J, Kessel C. Efficiency of fertilizer nitrogen in cereal production:Retrospects and prospects. Adv Agron,2005,87:85-156
    186. Larson BA, Frisvold GB. Fertilizers to support agricultural development in sub-Saharan Africa: What is needed and why*. Food Policy,1996,21:509-525
    187. Liu XY, He P, Jin JY, Zhou W, Sulewski G, Phillips S. Yield Gaps, Indigenous nutrient suppry, and nutrient use efficiency ofwheat in China. Agron J,2011,103:1452-1463
    188. MarschnerH. Mineral nutrition of higher plants. San Diego:Academic Press,1995.
    189. McDonald DJ. Temperate rice technology for the 21st century-The New South Wales example. In:Proceedings of the First Temperate Rice Conference. Yanco, Australia,1994.1-12
    190. Mulvaney RL, Khan SA, Ellsworth TR Need for a soil-based approach in managing nitrogen fertilizers for profitable corn production. Soil Sci Soc Am J,2006,70:172-182
    191. Novoa R, Loomis RS. Nitrogen and plant production. Plant Soil,1981,58:177-204
    192. Ohnishi M, Horie T, Homma K, Supapoj N, Takano H, Yamamoto S. Nitrogen management and cultivar effects on rice yield and nitrogen use efficiency in Northeast Thailand. Field Crops Res, 1999,64:109-120
    193. Olfs HW, Blankenau K, Brentrup F, Jasper J, Link A, Lammel J. Soil-and plant-based nitrogen-fertilizer recommendations in arable farming. J Plant Nutr Soil Sci,2005,168:414-431
    194. Olk DC, Cassman KG, Simbahan G, Cruz PCS, Abdulrachman S, Nagarajan R, Tan PS, Satawathananont S. Interpreting fertilizer-use efficiency in relation to soil nutrient-supplying capacity, factor productivity, and agronomic efficiency. Nutr Cycling Agroecosyst,1999,53: 35-41
    195. Osterhaus JT, Bundy LG, Andraski TW. Evaluation of the Illinois Soil Nitrogen Test for predicting corn nitrogen needs. Soil Sci Soc Am J,2008,72:143-150
    196. Pathak H, Aggarwal PK, Roetter R, Kalra N, Bandyopadhaya SK, Prasad S,Van Keulen H. Modelling the quantitative evaluation of soil nutrient supply, nutrient use efficiency, and fertilizer requirements of wheat in India. Nutr Cycling Agroecosyst,2003,65:105-113
    197. Peng SB, Buresh RJ, Huang JL, Yang JC, Zou YB, Zhong XH, Wang GH, Zhang FS. Strategies for overcoming low agronomic nitrogen use efficiency in irrigated rice systems in China. Field Crops Res,2006,96:37-47
    198. Peng SB, Buresh RJ, Huang JL, Zhong XH, Zou YB, Yang JC, Wang GH, Liu YY, Hu RF, Tang QY, Cui KH, Zhang FS, Dobermann A. Improving nitrogen fertilization in rice-by site-specific N management. Agron Sustain Dev,2010,30:649-656
    199. Peng SB, Huang JL, Zhong XH, Yang JC, Wang GH, Zou YB, Zhang FS, Zhu QS, Buresh R, Witt C. Challenge and opportunity in improving fertilizer-nitrogen use efficiency of irrigated rice in China. SciAgric Sin,2002,1:776-785
    200. Pettigrew WT. Potassium influences on yield and quality production for maize, wheat, soybean and cotton. Physiol Plant,2008,133:670-681
    201.Pheav S, Bell RW, White PF, Kirk GJD. Fate of applied fertilizer phosphorus in a highly weathered sandy soil under lowland rice cropping, and its residual effect. Field Crops Res,2003, 81:1-16
    202. Poss R, Smith CJ, Dunin FX, Angus JF. Rate of soil acidification under wheat in a semi-arid environment. Plant Soil,1995,177:85-100
    203. Reddy DD, Rao AS, Rupy TR. Effects of continuous use of cattle manure and fertilizer phosphorus on crop yields and soil organic phosphorus in Vartisol. Bioresour Technol,2000,75: 113-118
    204. Roberts TL, Ross WJ, Norman RJ, Slaton NA, Wilson Jr CE. Predicting nitrogen fertilizer needs for rice in Arkansas using alkaline hydrolyzable-nitrogen. Soil Sci Soc Am J,2011,75:1161-1171
    205. Romanya J, Rovira P. Organic and inorganic P reserves in rain-fed and irrigated calcareous soils under long-term organic and conventional agriculture. Geoderma,2009,151:378-386
    206. Royal Society of London. Reaping the benefits:Science and the sustainable intensification of global agriculture. London:Royal Society,2009.
    207. Russell CA, Dunn BW, Batten GD, Williams RL, Angus JF. Soil tests to predict optimum fertilizer nitrogen rate for rice. Field Crops Res,2006,97:286-301
    208. Saidou A, Janssen BH, Temminghoff EJM. Effects of soil properties, mulch and NPK fertilizer on maize yields and nutrient budgets onferralitic soils in southern Benin. Agr Ecosyst Environ,2003, 100:265-273
    209. SAS Institute. SAS/STAT User's Guide,Version 6.03 ed. SAS Inst, Cary, NC.2002.
    210. Schmidt JP, DeJoia AJ, Ferguson RB, Taylor RK, Young RK, Havlin JL. Corn yield response to nitrogen at multiple in-field locations. Agron J,2002,94:798-806
    211. Sharpley AN, Daniel TC, Edwards DR Phosphorus movement in the landscape. J Prod Agric, 1993,6:492-500
    212. Sharpley AN, Rekolainen S. Phosphorus in agriculture and its environmental implications. In: Tunney H, Carton OT, Brookes PC, Johnston AE, eds, Phosphorus loss from soil to water. Irish Republic, Wexford:Proceedings of aworkshop,1997.1-53
    213. Shoji S, Kanno H. Use of polyolefin-coated fertilizers for increasing fertilizer efficiency and reducing nit rate leaching and nitrous oxide emission. Fert Res,1994,3:45-48
    214. Simard RR, Cluis D, Gangbazo G, Beauchemin S. Phosphorus status of forest and agricultural soils ftom a watershed of high animal density. J Environ Qual,1995,24:1010-1017
    215. Slaton NA, Golden BR, Norman RJ, Wilson Jr CE, DeLong RE. Correlation and calibration of soil potassium availability with rice yield and nutritional status. Soil Sci Soc Am J,2009,73: 1192-1201
    216. Smil V Phosphorus in the environment:Natural flows and human interferences. Annu Rev Energ Environ,2000,25:53-88
    217. Spargo JT, Alley MM, Thomason WE, Nagle SM. Illinois soil nitrogen test for prediction of fertilizer nitrogen needs of corn in Wginia, Soil Sci Soc Am J,2009,73:434-442
    218. Stewart WM, Dibb DW, Johnston AE, Smyth TJ. The contribution of commercial fertilizer nutrients to food production. Agron J,2005,97:1-6
    219. Thiyagarajan TM, Stalin P, Dobermann A, Cassman KG, ten Berge HFM. Soil N supply and plant N uptake by irrigated rice in Tamil Nadu. Field Crops Res,1997,51:55-64
    220. Timsina J, Singh U, Badaruddin M, Meisner C, Amin MR. Cultivar, nitrogen, and water effects on productivity, and nitrogen-use efficiency and balance for rice-wheat sequences of Bangladesh. Field Crops Res,2001,72:143-161
    221. Turner BL, Haygarth PM. Phosphorus in leachate from grassland soils. In:Foy RH, Dils R, eds, Practical and innovative measures for the control of agricultural phosphorus losses to water. Arlington, VA, United States:An OECD Sponsored workshop,1998.152-153
    222. van Nguyen N, Ferrero A. Meeting the challenges of global rice production. Paddy Water Environ, 2006,4:1-9
    223. Wihardjaka A, Kirk GJD, Abdulrachman S, Mamaril CP. Potassium balances in rainfed lowland rice on a light-textured soiL Field Crops Res,1999,64:237-247
    224. Witt C, Cassman KG, Olk DC, Biker U, Liboon SP, Samson MI, Ottow JCG Crop rotation and residue management effects on carbon sequestration, nitrogen cycling and productivity of irrigated rice systems. Plant Soil,2000,225:263-278
    225. Witt C, Dobermann A, Abdulrachman S, Gines HC, Wang GH, Nagarajan R, Satawatananont S, Son TT, Tan PS, Tiem LY, Simbahan GC, Olk DC. Internal nutrient efficiencies of irrigated lowland rice in tropical and subtropical Asia. Field Crops Res,1999,63:113-138
    226. Xia YQ, Yan XY Ecologically optimal nitrogen application rates for rice cropping in the Taihu Lake region of China. Sustain Sci,2012,7:33-44
    227. Xiao YL, Zhang YZ, Hu RZ, Huang YX, Zhou Q, Yuan ZP, Yang DP, Shu L. Effect of rice-based cropping system on organic matter status in soils. Pedosphere,1997,7:349-354
    228. Yadav RL. Assessing on-farm efficiency and economics of fertilizer N, P and K in rice wheat systems of India. Field Crops Res,2003,81:39-51
    229. Yadav RL, Dwivedi BS, Prasad K, Tomar OK, Shurpali NJ, Pandey PS. Yield trends, and changes in soil organic-C and available NPK in a long-term rice-wheat system under integrated use of manures and fertilisers. Field Crops Res,2000,68:219-246
    230. Yuan LP. Hybrid rice technology for food security in the world. In:International Conference on Sustainable Rice Systems. FAO, Rome, Italy,2004.
    231. Zeng SC, Su ZY, Chen BQ Wu QT, Ouyang Y Nitrogen and phosphorus runoff losses from orchard soils in South China as affected by fertilization depths and rates. Pedosphere,2008,18: 45-53

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700