用户名: 密码: 验证码:
土壤可蚀性动态变化机制与土壤可蚀性估算模型
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤可蚀性是土壤侵蚀研究的前沿科学问题,也是土壤侵蚀预报及其环境效应评价模型的重要参数。本论文针对我国土壤侵蚀预报的需要,尤其是土壤退化问题凸显的东北黑土区土壤侵蚀预警的需求,在集成已有研究成果的基础上,采用野外调查、田间动态监测与原位测定、室内理化分析和模拟降雨试验等相结合的研究方法,确定了表征土壤可蚀性的关键因子及其主要指标,阐明了各关键因子的动态变化特征和内在机制,评价了EPIC、USLE、RUSLE2和Dg等现有土壤可蚀性估算模型在我国(流域尺度和区域尺度)的适用性,最终建立了适用于我国主要水蚀区土壤可蚀性估算模型。主要结论如下:
     1)确定了影响土壤可蚀性的关键因子及其主要表征指标。采用敏感性分析、相关分析、通径分析和因子降维联合分析的方法,确定了土壤可蚀性关键影响因子,包括土壤质地类关键因子、土壤结构类关键因子、土壤力学和团聚作用类关键因子,以及土壤有机质类关键因子;其中,土壤质地类关键因子对土壤可蚀性的确定具有决定性作用,为核心关键因子;土壤有机质类关键因子则主要通过对其它3个关键因子的作用而对土壤可蚀性进行影响,为土壤可蚀性辅助关键因子。同时,提出了4类关键因子的主要表征指标为土壤黏粒含量(CLA)、土壤颗粒几何平均直径(Dg)、>0.25mm水稳性团聚体含量(WSA>0.25)、机械破碎作用下的土壤团聚体平均重量直径(MWD_(SW))、土壤抗剪强度(τ)、土壤容重(ρ)、消散作用下的土壤团聚体平均重量直径(MWD_(SW))和土壤有机质(SOM);建议在实际应用中可根据指标易获取性选择不同的指标组合。
     2)明晰了土壤质地类关键因子的变化特征并提出了一种优化的土壤质地信息表达方法。通过对Shirazi方法进行修正,提出了适用于任意粒径划分标准的修正颗粒几何平均直径和几何标准差的计算方法。修正算法改善了原方法对不同质地分类制外延性差的缺点,将任意粒径分布条件下所得到的粉粒含量和粘粒含量平均转换相对误差降低至-4.83%和19.31%。同时发现,土壤粘粒含量在流域尺度上随土层厚度的增加呈显著的波动增加趋势;坡面尺度上,坡顶部位或至坡肩部位为主要的物质输出区,而坡脚部位为主要的物质输入区(沉积部位)。而在时间尺度上,土壤质地关键因子在长历时农耕作用下,粘粒含量随开垦历史的增加呈显著的减小趋势,但未达到改变土壤质地的水平。
     3)阐明了土壤有机质关键因子的时空变化特征。土壤有机质层厚度存在明显的空间变异性,流域尺度上土壤有机质层平均厚度由流域上游至下游逐渐增加,变化范围为23~51cm;坡面尺度上,有机质层厚度由坡顶至坡脚部位逐渐加厚,在坡面宣布或坡脚部位由于发生沉积,导致埋藏土壤现象出现。土壤有机质含量在时间尺度上存在变化,对于次降雨和年际间时间尺度,土壤有机质含量存在不显著的下降趋势;而对于多年时间尺度,土壤有机质含量呈显著减小的趋势。同时发现,在黑土区短坡长、直型坡条件下,表层土壤主要以<0.25mm微团聚体的形式迁出,次降雨过程的单位面积微团聚体有机质流失量为13.2~35.6g/m2。
     4)揭示了土壤团聚体破碎机制。发现随粘粒含量的增高土壤团聚体稳定性增强;而随初始含水量的增加土壤团聚体受消散作用的破坏程度明显减弱,其作用强度可分三个阶段:“气爆”作用阶段(初始含水量<10%)、消散作用迅速减小阶段(初始含水量介于10%~20%)和消散作用极弱阶段(初始含水量>20%)。研究区土壤的团聚体破碎机制主要为消散作用和粘粒膨胀作用,团聚体破坏作用按作用程度的排序为:消散作用(“气爆”现象)>粘粒膨胀作用>机械破坏作用。
     5)研究了冻融循环作用对土壤团聚体的作用机制。冻融循环作用通过初始含水量和冻融循环次数对团聚体稳定性进行作用;随着土壤初始含水量的增加,3~5和1~2mm两粒级的土壤团聚体稳定性下降。冻融循环次数的作用则表现为,在冻融作用初期(循环次数<3),冻融作用对各粒级各初始含水量的土壤团聚体表现出破坏的作用;而随着冻融次数的增加,冻融循环则表现出促进团聚体形成的作用。冻结温度对土壤团聚体稳定性的影响不显著。
     6)分析了干湿交替作用下土壤团聚体粒径再分布的过程及相应的阈值现象。干湿交替过程初期对团聚体稳定性造成的影响最大,且其破坏作用对大团聚体更为明显;干湿交替作用对各粒级初始粒径团聚体主要表现为促进<0.2mm微团聚体向0.2~1mm粒径团聚体转化的作用;同时发现,该粒径转化过程是在干湿交替作用力的累积作用下完成的,存在阈值现象(3次),一旦达到形成新生团聚体的阈值后其聚合作用随之下降。
     7)建立了适用于我国主要水蚀区的土壤可蚀性估算模型。系统评价了USLE、RUSLE2、EPIC和Dg模型在我国(流域尺度和区域尺度)的适用性,发现RUSLE2适用于宾州河流域,而USLE模型和Dg模型分别在东北黑土区和黄土高原地区的区域尺度上表现出较好的估算结果。基于中国土壤可蚀性基础数据库,建立了包含Dg和SOM两个因子且具有明显物理意义的土壤可蚀性估算模型“DG-OM”,模型具有较高的预报精度,能够满足我国土壤可蚀性估算的需要。同时,发现了我国四个主要水蚀区的土壤可蚀性分布情况为(以加权平均值为依据):黄土高原地区>东北黑土区>西南紫色土区≈南方红壤区(第四纪红粘土)。
Soil erodibility is a key indicator to evaluate soil susceptibility to erosion and crucial forpredicting soil loss and evaluating its environmental effects. Mechanism study on soilerodibility, which plays an important role in the domain of soil erosion, provides theoreticalfoundation for soil loss quantification and prediction. To meet needs of implementing soilconservation practices in China, especially for one of the serious eroded area--the black soilregion in NE China, a systematic study on the dynamic mechanism of soil erodibility and itscalculation was conducted. The experimental investigations on dynamic mechanism of soilerodibility and its indicators were studied by field investigating, in-situ monitoring, rainfallsimulation experiments, combining with laboratory physical-chemical analysis and statisticalanalysis. The key soil erodibility factors and their suitable indicators were proposed; theintrinsic mechanisms and variation characteristics of soil erodibility key indicators (e.g., soiltexture, soil organic matter content and soil aggregate stability), which caused the variationsof soil erodibility, were exposited. Moreover, the applicability of EPIC (Erosion ProductivityImpact Calculator), USLE (Universal Soil Loss Equation), RUSLE2(Revised Universal SoilLoss Equation), and Dg models (soil erodibility estimator based on geometric mean diameterof the soil particles) were assessed, at the watershed scale and regional scale; revised modelsfor the aforementioned models were also given. A soil erodibility estimator with highpredicting precision for China was also established and validated. Main results of this studywere as follows:
     1) A set of soil erodibility key factors and corresponding indicators were proposed byusing a combined analysis of sensitivity analysis, correlation analysis, path analysis, andfactor dimension reduction. The key factors reflecting soil erodibility behaviors included: soiltexture key factor, soil structure key factor, soil shear-strength key factor, and soil organicmatter key factor. Among them, soil texture key factor was the fundamental index for soilerodibility, and was decisive for quantifying the K value. While, it’s also found that soilorganic matter key factor played an assisting role for the other three soil erodibility factors,which was the same path for the other key factors to affecting soil erodibility. Moreover, thecharacterized indicators for the soil erodibility key factors were indicated, which containedCLA (clay content), Dg (geometric mean diameter of the soil particles), WSA>0.25(>0.25mm water-stable aggregate content), MWDWS(mean weight diameter of soil aggregate by shakingtreatment in LB method), soil shear-strength (τ), soil bulk density (ρ), MWDSW(mean weightdiameter of soil aggregate by slow wetting treatment in LB method), and SOM (soil organicmatter content). An adjustable combination of the aforementioned characterized indicatorswas suggested, by considering with the specific research purpose and the ease of indicatorobtaining.
     2) Dynamic characteristics of soil texture key factor were analyzed, and a more efficientsoil texture expression method was suggested. Based on Shirazi’s method, a revised soiltexture expression method containing Dg and δg was proposed, which has the feature tonormalizing and conversing soil particle distribution information. The revised Shirazi’smethod was improved by extending its extensionality for different soil texture taxonomies,which make sure that the revised method can be applied for Chinese texture taxonomy andother optional classification. The related error was reduced to-4.83%and19.34%for siltcontent and clay content respectively, when converted from the optional classification to theUSDA soil texture taxonomy. Results also showed that clay content represent a significantfluctuations increase trend along the increase of soil thickness (A horizon) at a watershedscale; while, for the slope scale, it showed that the upper slope and slope shoulder area areeroded area, and the slope toe is found as a materials imported area (i.e., depositional area).Moreover, for the time scale, clay content showed a significant decrease trend along the longreclamation time and it did not reach the level to change soil texture.
     3) Spatial and temporal variations of soil organic matter key factor were clarified. Asignificant spatial varies of A horizon thickness was found for both watershed scale and slopescale. At watershed scale, it showed that A horizon thickness increased from the upper reachto the down reach of Binzhouhe Basin, and the thickness changed from23to51cm; at aslope scale, it indicated that the thickness of A horizon was thicker at slope toe than the toparea of a slope, and a few soil profiles with berried soil phenomenon were also been found atthe slope toe area. We also exposited temporal variations of soil organic matter at differenttime scale. Under a single rainstorm or few years time scale (less than five years in thisresearch), soil organic matter content represent a slight decrease trend, and for a long timeseries (30to100years) a significant decrease was found. Moreover, we found that <0.25mmmicro-aggregate was the main transport particle size under a short slope-length and straightblack soil slope. Soil organic matter was eroded and transport combined with themicro-aggregate, and the loss rate was13.2to35.6g/m2for a single rainfall event.
     4) The breakdown mechanism of soil aggregate was indicated by applying the threetreatments (i.e., slow wetting treatment, fast wetting treatment, and stirring after pre-wetting treatment) of LB method and Yoder method. We found that clay content has a significanteffect on soil aggregate stability, aggregate stability increased with the increase of claycontent. Impact of initial soil moisture on aggregate stability was also found; it showed thatthe slaking effect was weakened along the increase of soil initial moisture. The decreaseprocess of slacking effect showed obviously periodic behaviors, three stages were divided to I)high-intensity slaking stage, with the initial soil moisture less than10%, II) sharplydecreasing stage, with initial soil water content between10%and20%, and III) stable stage,whose slacking effect nearly die out, with initial moisture larger than20%. The dominant soilaggregate breakdown mechanism were slaking and swelling for the research area, and theorder of their affected degree on breaking soil aggregates was as follow: slaking> swelling>mechanical breakdown effect.
     5) We investigated the mechanism of soil aggregate stability’s variation by exploringfreeze-thaw cycles’ impact on soil aggregate stability and micro-aggregate distribution.Results showed that the role of freeze-thaw cycles on aggregate stability was realized by theinfluences of initial aggregate water content and numbers of freeze-thaw cycles. It indicatedthat stabilities for3-5mm and1-2mm soil aggregates decreased with the increase of initialwater content. Moreover, freeze-thaw serious destroyed soil aggregate stability at verybeginning (i.e., freeze-thaw cycles less than3times); on the contrary, freeze-thaw cyclesturned to increasing soil aggregate stability along the increase times of freeze-thaw cycles.Different frozen temperature (-10℃and-25℃) did not show significant difference tofreeze-thaw cycles impact.
     6) We explored the dry-wetting cycles’ impact on soil aggregate stability and itsmicro-aggregate distribution, and found threshold value for the dry-wetting effect. Resultsshowed that serious damage on aggregate stability happened at the beginning of dry-wettingcycles, and the damage degree was more obvious on the large soil aggregate (i.e.,3-5mmaggregate). It’s also found that dry-wetting cycles promoted <0.2mm micro-aggregateconvert to0.2-1mm aggregate for all initial soil aggregate size. And the promotion wascomplicated by the accumulation of dry-wetting effect; there was a threshold as3timesdry-wetting cycles, when it reached the threshold the degree of dry-wetting impact onaggregate stability reducing sharply.
     7) A Chinese soil erodibility estimator was established, based on a Chinese soilerodibility database. A comprehensive assessment for USLE, RUSLE2, EPIC, and Dg models’applicability was conducted at watershed scale and regional scale. Results showed thatRUSLE2was suitable for the research watershed, and the USLE and Dg models can beapplied directly for the black soil region and the Loess Plateau, respectively, without calibration. Based on the Chinese soil erodibility database, a multiple regression, obtained bythe nonlinear best fitting techniques, yielded a significant relationship (DG-OM model),explaining K values with a combination of Dg (geometric mean diameter) and OM (soilorganic matter). Moreover, soil erodibility values for the four main water erosion areas inChina were in the order as: the Loess Plateau> the black soil region (NE China)> the purplesoil region (SE China)> the red soil region (Quaternary red clay, South China).
引文
《宾县土壤》,黑龙江省宾县土壤普查办公室,1984.
    安和平.2000.北盘江中游地区土壤抗蚀性及预测模型研究.水土保持学报,14(4):38-42.
    卜兆宏,杨林章等.2002.太湖流域苏皖汇流区土壤可蚀性K值及其应用的研究.土壤学报,39(3):296-300.
    蔡强国,赵宏夫,王忠科.1995.永定河上游张家口市水土流失规律与坡地改良利用.北京:中国环境科学出版社.
    查小春,贺秀斌.1999.土壤物理力学性质与土壤侵蚀关系研究进展.水土保持研究,6(2):98-104.
    窦葆璋.1978.土地利用方式对黄绵土抗冲性的影响.陕西省土壤学会1978年学术年会论文集
    范云涛,雷廷武,蔡强国.2008.湿润速度对土壤表面强度和土壤团聚体结构的影响.农业工程学报,24(5):46-50.
    方华军,杨学明,张晓平,梁爱珍,申艳.2007.黑土坡耕地侵蚀和沉积对物理性组分有机碳积累与损耗的影响.土壤学报,44(3):467-474.
    方华军,杨学明,张晓平,梁爱珍.2005.137Cs示踪技术研究坡耕地黑土侵蚀和沉积特征.生态学报,25(6):141-147.
    高德武.1993.黑龙江省土壤流失方程中土壤可蚀性因子(K)的研究.国土与自然资源研究,(3):40-43.
    高学田,侯庆春,唐克丽.1998.陕西神府矿区束鸡沟流域风蚀水蚀交互作用特征研究.干旱区地理,21(1):34-39.
    黑龙江省宾县土壤普查办公室.1984.宾县土壤(内部资料)
    胡小平,王长发.2001. SAS基础及统计实例教程.陕西:西安地图出版社
    黄昌勇.2000.土壤学.北京:中国农业出版社:69-80
    黄丽,董舟.1998.三峡库区紫色土养分流失的试验研究.土壤侵蚀与水土保持学报,4(1):8-13.
    黄丽,张光远,丁树文,蔡崇法,蔡强国.1999.侵蚀紫色土土壤颗粒流失的研究.土壤侵蚀与水土保持学报,5(1):35-39/85.
    黄义端.1981.我国主要地面物质抗侵蚀性能初步研究.中国科学院西北水土保持研究所,黄土高原水土流失综合治理科学讨论会资料汇编
    姜小三,潘剑君等.2004.土壤可蚀性K值的计算和K值图的制作方法研究——以南京市方便小流域为例.土壤,36(2):177-180.
    蒋德麒,朱显谟.1962.水土保持.中国农业土壤论文集.上海:上海科学技术出版社
    蒋定生,范兴科,李新华,赵合理.1995a.黄土高原水土流失严重地区土壤抗冲性的水平和垂直变化规律研究.水土保持学报,9(2):1-8.
    蒋定生,李新华等.1995b.论晋陕蒙接壤区土壤抗冲性与水土保持措施体系.水土保持学报,9(1):1-7.
    蒋定生.1978.黄土抗蚀性的研究.土壤学报,(4):20-23.
    蒋光毅.2006.人工模拟降雨条件下紫色土土壤可蚀性研究.[硕士学位论文].重庆:西南大学
    蒋剑敏,熊毅.1956.土壤胶体膨胀的初步研究.土壤学报,4(2):129-142
    金争平,史培军等.1992.黄河黄甫川流域土壤侵蚀系统模型和治理模式.北京:海洋出版社
    景可,王万忠,郑粉莉.2005.中国土壤侵蚀与环境.北京:科学出版社.
    拉尔(Lal R.).1991.土壤侵蚀研究方法.北京:科学出版社.
    李朝霞.2005.降雨过程中红壤表土结构变化与侵蚀特点.[博士学位论文].武汉:华中农业大学.
    李建牢,刘世德.1987.罗玉沟流域土壤抗蚀性分析.中国水土保持,(11):34-37/8.
    李娜.2009.黑龙江省西部坡耕地土壤侵蚀规律试验研究.[硕士学位论文].哈尔滨:东北农业大学
    李学垣.2001.土壤化学.北京:高等教育出版社:49-50
    李勇,吴钦孝,朱显谟.1990.黄土高原植物根系提高土壤抗冲性能的研究.水土保持学报,4(1):1-16.
    梁音,史学正.1999.长江以南东部丘陵山区土壤可蚀性K值研究.水土保持研究,6(2):47-52.
    刘宝元,张科利,焦菊英.1999.土壤可蚀性及其在侵蚀预报中的应用.自然资源学报,4(4):345-350.
    刘国彬,梁一民.1997.黄土高原草地植被恢复与土壤抗冲性形成过程Ⅰ.草地植被恢复生物量特征.水土保持研究,4(5):102-110/121.
    刘国彬.1997.黄土高原草地植被恢复与土壤抗冲性形成过程Ⅱ.植被恢复不同阶段土壤抗冲性特征.水土保持研究,4(5):111-121.
    刘吉峰,李世杰等.2006.青海湖流域土壤可蚀性K值研究.干旱区地理,29(3):321-326.
    刘文耀.1999.云南昭通盆地降雨侵蚀与土壤可蚀性的初步研究.云南地理环境研究,11(2):76-82.
    陆兆雄,陈浩等.1990.土壤抗剪力及可蚀性的时空变化规律.晋西黄土高原土壤侵蚀规律研究文集.北京:水利电力出版社
    吕喜玺,沈荣明.1992.土壤可蚀性因子K值的初步研究.水土保持学报,6(1):63-70.
    孟凯,王德录,张兴义,隋跃宇,刘鸿翔,韩晓增.2002.黑土有机质分解,积累及其变化规律.土壤与环境,11(1):42-46.
    缪驰远,刘宝元,刘刚等.2008.东北典型黑土区剖面粒径分布特征及其可蚀性研究.水土保持学报,22(8):18-23
    史德明,杨艳生,姚宗虞.1983.土壤侵蚀调查方法中的侵蚀试验研究和侵蚀量测定问题.中国水土保持,(6):15-19.
    史学正,于东升,吕喜玺.1995.用人工模拟降雨仪器研究我国亚热带土壤的可蚀性.水土保持学报,9(3):38-42.
    史学正,于东升,邢廷炎.1997.用田间实测法研究我国亚热带土壤的可蚀性.土壤学报,34(4):399-405.
    史志华,闫峰陵,李朝霞,王天巍.2007.红壤表土团聚体破碎方式对坡面产流过程的影响.自然科学进展,17(2):217-224.
    水利部,中国科学院,中国工程院.2010.中国水土流失与生态安全:东北黑土卷.北京:科学出版社
    唐克丽.1961.生草灰化与黑钙土的团粒结构—抗蚀性能.全苏土壤侵蚀会议论文集
    唐克丽.1964.生草灰化与黑钙土的抗蚀性能及其提高途径.中国科学情报所中国留学生论文
    唐克丽.2004.中国水土保持.北京:科学出版社
    田积莹,黄义端.1960.子午岭连家砭地区土壤物理性质与土壤抗侵蚀性能指标的初步研究.土壤学报,8(2):110-121.
    汪景宽,王铁宇,张旭东等.2002.黑土土壤质量演变初探I—不同开垦年限黑土主要质量指标演变规律.沈阳农业大学学报,33(l):43-47.
    王彬,郑粉莉,王玉玺.2012.东北典型薄层黑土区土壤可蚀性模型适用性分析.农业工程学报,28(6):126-131.
    王彬.2009.东北典型薄层黑土区土壤可蚀性关键因子分析与土壤可蚀性计算.[硕士学位论文].杨凌:西北农林科技大学
    王恩姮,赵雨森,陈祥伟.2010.季节性冻融对典型黑土区土壤团聚体特征的影响.应用生态学报,21(4):889-894.
    王风,韩晓增,李良皓,张克强.冻融过程对黑土水稳性团聚体含量影响.冰川冻土,31(5):915-919.
    王艳忠,胡耀国,李定强等.2008.粤西典型崩岗侵蚀剖面可蚀性因子初步分析.生态环境,17(1):403-410.
    王佑民,郭培才,高维森.1994.黄土高原土壤抗蚀性研究.水土保持学报,8(4):11-16.
    王禹,杨明义,刘普灵.2010.典型黑土直型坡耕地土壤侵蚀强度的小波分析.核农学报,24(1):98-103
    王云崎.2006.三峡库区森林理水调洪机理及空间配置研究.[硕士学位论文].北京:北京林业大学
    吴普特,周佩华,郑世清.1993.黄土丘陵区(Ⅲ)土壤抗冲性研究—以天水站为例.水土保持学报,7(3):19-36.
    肖波.2008.黄土高原水蚀风蚀交错区生物结皮对土壤水文过程的影响.[博士学位论文].北京:中国科学院研究生院
    肖培青,郑粉莉.2003.上方汇水汇沙对坡面侵蚀过程的影响.水土保持学报,17(3):25-26/41.
    辛刚.2001.关于不同开垦年限黑土质量变化的研究[硕士学位论文].沈阳:沈阳农业大学
    邢廷炎,史学正,于东升.1998.我国亚热带土壤可蚀性的对比研究.土壤学报,35(3):296-302.
    熊毅,陈家坊.1990.土壤胶体的性质.土壤胶体(第三册).北京:科学出版社
    熊毅,李庆逵.1987.中国土壤(第二版).北京:科学出版社
    熊毅.1974.土粒团聚及有机质在土粒团聚中的作用.土壤农化,(3):1-7.
    许明祥,刘国彬,卜崇峰等.2002.圆盘入渗仪法测定不同利用方式土壤渗透性试验研究.农业工程学报,18(4):54-58.
    许明祥,刘国彬,赵允格.2005.黄土丘陵区土壤质量评价指标研究.应用生态学报,16(10):1843-1848.
    闫峰陵,史志华,蔡崇法,李朝霞.2007.红壤表土团聚体稳定性对坡面侵蚀的影响.土壤学报,44(4):577-583.
    闫峰陵.2008.红壤表土团聚体稳定性特征及其对坡面侵蚀过程的影响.[硕士学位论文].华中农业大学
    阎百兴,杨育红,刘兴土等.2008.东北黑土区土壤侵蚀现状与演变趋势.中国水土保持,12:26-30
    杨学明,张晓平,方华军等.2004.20年来部分黑土耕层有机质和全氮含量的变化.地理科学,24(6):710-714.
    杨玉盛.1992.不同利用方式下紫色土可蚀性的研究.水土保持学报,6(3):52-58.
    杨子生.1999.滇东北山区耕地土壤可蚀性因子.山地学报,17:10-15
    于东升,史学正,粱音等.1997.应用不同人工模拟降雨方式对土壤可蚀性K值的研究.土壤侵蚀与水土保持学报,3(2):53-57.
    于东升,史学正.2000.低丘红壤干旱地土壤渗透性与可蚀性定量关系的研究.土壤学报,37(3):316-322.
    余新晓,陈利华.1987.黄土高原沟壑区土壤抗蚀性的初步研究.中国水土保持学会,中国水土保持学会第一次学术讨论交流论文.
    袁志发,周静芋.2002.多元统计分析,北京:科学出版社.
    翟伟峰.2008.齐齐哈尔市典型黑土区土壤可蚀性K值研究.[硕士学位论文].哈尔滨:东北师范大学
    张兵.2009.紫色丘陵区土壤可蚀性模拟研究.[硕士学位论文].重庆:西南大学.
    张国枢,庄季平,肖笃宁等.1993.中国黑土系统分类的初步研究. In:《中国土壤系统分类研究丛书》编委会.中国土壤系统分类进展.北京:科学出版社:245-254
    张科利,蔡永明,刘宝元,江忠善.2001.黄土高原地区土壤可蚀性及其应用研究.生态学报,21(10):1687-1695.
    张科利,蔡永明,刘宝元等.2001.土壤可蚀性动态变化规律研究.地理学报,56(6):673-681.
    张科利,彭文英,杨红丽.2007.中国土壤可蚀性值及其估算.土壤学报,44(1):7-12.
    张黎明.2005.我国南方不同类型土壤可蚀性K值机相关因子研究.[硕士学位论文].海南:华南热带农业大学.
    张少良,张兴义,崔战利.2007.哈尔滨市辖区黑土有机质,全氮的空间异质性分析.农业系统科学与综合研究,23(3):333-337.
    张宪奎,许靖华等.1992.黑龙江省土壤流失方程的研究.水土保持通报,12(4):1-9.
    张宪奎.1995.黑龙江省土壤流失方程应用简介.国土与自然资源研究,1:30-31.
    张晓平,梁爱珍,申艳等.2006.东北黑土水土流失特点.地理科学,26(6):687-692
    张之一,张元福,朱玺纯.1984.白浆土开垦后土壤有机质的数量及其组成的变化.黑龙江八一农垦大学学报,2:73-77.
    张之一.2010.黑龙江省土壤开垦后土壤有机质含量的变化.黑龙江八一农垦大学学报,22(1):1-4.
    赵辉.2008.南方花岗岩地区红壤侵蚀与径流输沙规律研究.[硕士学位论文].北京:北京林业大学
    赵其国,刘良梧.1990.人类活动与土地退化,见:中国科协学会部编.中国土地退化防治研究.北京:中国科学技术出版社
    赵晓光,石辉.2003.水蚀作用下土壤抗蚀能力的表征.干旱区地理,26(1):12-16.
    趙诚斋,吕秉光.1964.水稻土的力学性质与水分含量的关系.土壤学报,12(1):132-142
    郑粉莉,高学田.2000.黄土坡面土壤侵蚀过程与模拟.西安:陕西人民出版社
    郑粉莉,江忠善,高学田.2008.水蚀过程与预报模型.北京:科学出版社.
    郑粉莉,杨勤科,王占礼.2004.水蚀预报模型研究.水土保持研究,11(4):13-24.
    郑粉莉,赵军.2004.人工模拟降雨大厅及模拟降雨设备简介.水土保持研究,11(4):177-178
    郑粉莉.1997.坡面侵蚀分带侵蚀过程与降水—土壤水转化、土壤退化关系研究[博士学位论文].杨凌:中科院水土保持研究所.
    郑晓萍,卢升高.2005.富铁土团聚体稳定性的表征及其物理学机制.浙江大学学报(农业与生命科学版),31(3):305-310
    中国科学院南京土壤研究所.1977.土壤理化分析.上海:上海科学技术出版社
    中国科学院南京土壤研究所土壤物理研究室编.1978.土壤物理性质测定方法.北京:科学出版社
    周佩华,武春龙.1993.黄土高原土壤抗冲性试验研究方法探讨.水土保持学报,(1):29-34.
    周佩华,张学栋,唐克丽.2000.黄土高原土壤侵蚀与旱地农业国家重点实验室土壤侵蚀模拟实验大厅降雨装置.水土保持通报,20(4):27-30.
    朱显谟.1954.泾河流域土壤侵蚀现象及其演变.土壤学报,2(4):209-222.
    朱显谟.1960.黄土地区植被因素对水土流失的影响.土壤学报,8(2):110-121.
    朱祖祥.1982.土壤学.北京:农业出版社.
    Ahmad H.M.N., Sinclair A., Jamieson R., Madani A., Hebb B., Havard P., and Yiridoe E.K.2011.Modeling sediment and nitrogen export from a rural watershed in Eastern Canada using the soil andwater assessment tool. Journal of Environmental Quality,40,1182–1194.
    Amézketa E.1999. Soil aggregate stability: a review. Sustainable Agriculture.14,83-151
    Amézketa E., Singer M.J., Le Bissonnais Y.1996. Testing a new procedure for measuring water-stableaggregation. Soil Sci. Soc. Am.60(3),888-894.
    Bajracharya R.M., and Lal R.1992. Seasonal soil loss and erodibility variation on a Miamian silt loam soil.Soil Sci. Soc. Am. J.56(5),1560-1565.
    Baver L.D.1933. Some factors effecting erosion. Agricultural Engineering.14,51-52.
    Baver L.D., Gardner W.H., et al.1972. Soil physics, Cambridge Univ Press.
    Bennett H.H.1926. Some comparisons of the properties of humid-tropical and humid-temperatureAmerican soils, with special reference to indicated relations between chemical composition andphysical properties. Soil Sci.21(5),349-376.
    Benoit G. R.1973. Effect of freeze-thaw cycles on aggregate stability and hydraulic conductivity of threesoil aggregate sizes. Soil Science Society of America Journal,37(1):3-5.
    Bouyoucos G.J.1935. The clay ratio as a criterion of susceptibility of soils to erosion. Journal of AmericanSociety of Agronomy.27,738-741.
    Bradford J.M., and Huang C.1992. Applications of a laser scanner to quantify soil micro topography. SoilScience Society of America Journal56(1):14-21.
    Bryan R.B,1971. The influence of forest action on soil-aggregate stability. Transactions of the Institute ofBritish Geographers.54,71-88.
    Bryan R.B.1968. The development, use and efficiency of indices of soil erodibility. Geoderma.2(1),5-26.
    Bryan R.B.2000. Soil erodibility and processes of water erosion on hillslope. Geomorphology.32(3-4),385-415.
    Bryan, R.B., Govers, G., Poesen, J.,1989. The concept of soil erodibility and some problems of assessmentand application. Catena.16(4-5),393-412.
    Chan K.Y., and Mullins C.E.1994. Slacking characteristics of some Australian and British soils. Eur. J. SoilSci.45:273-283.
    Chandra S., De S.K.1978. A simple laboratory apparatus to measure relative erodibility of soils. SoilScience.125(2),115-121.
    Chenu C., Arrouays D., et al.2000. Organic matter influence on clay wet-stability and soil aggregatestability. Soil Science Society of America Journal,64(4):1479-1486.
    Chuancun Q.N.,1979. Soil Anti-erodibility. In: Japanese soil physical properties mensuration committee(Ed.), Soil physical properties measurement. Chongqing science and technology documentation press,Chongqing, China. Pp.559-603.
    Coote D.R., Malcolm C.A., Wall G.J., Dickinson W.T., Rudra R.P.1988. Seasonal variation of erodibilityindices based on shear strength and aggregate stability in some Ontaril soils. Can. J. Soil Sci.68,405-416.
    Dagesse D.2011. Effect of Freeze-Drying on Soil Aggregate Stability. Soil Science Society of AmericaJournal.75(6):2111-2121
    Dapples E.1975. Laws of distribution applied to sand sizes. Geological Society of American.142:37-61
    Darboux F., and Bissonnais Y.L.2007. Changes in structural stability with soil surface crusting:consequences for erodibility estimation. European Journal of Soil Science,58(5):1107-1114.
    Dusan Z.1982. Soil Erosion. Elsevier, Amsterdam, pp.64-167.
    Edwards L.1991. The effect of alternate freezing and thawing on aggregate stability and aggregate sizedistribution of some Prince Edward Island soils. Journal of Soil Science,42(2):193-204.
    Ekwue E.I.,1992. Effect of organic and fertilizer treatments on soil physical properties and erodibility. Soiland Tillage Research.22(3-4),199-209.
    Elliot W.J., Leibenow A.M., Laflen J.M., Kohl K.D.(Eds.),1989. A compendium of soil erodibility datafrom WEPP cropland soil field erodibility experiments1987and1988. NSERL Report No.3.USDA-ARS-NSERL, West Lafayette, Ind.
    Ellison W.D.1947. Soil erosion studies–Part I. Agricultural Engineering.28,145-146.
    El-Swaify S.A., Dangler E.W.1977. Erodibility of selected tropical soils in relation to structural andhydrologic parameters. In: Soil Erosion: Prediction and Control. Proceedings National Soil ErosionConference at Purdue University, May24-26,1976. Soil Conservation Society of America,Ankeny, Iowa, pp.105-114.
    Emerson W.1967. A classification of soil aggregates based on their coherence in water. Soil Research,5(1):47-57.
    Emerson W., and Greenland D.1990. Soil aggregates-formation and stability. In: Boodt M.F., HayesM.H.B., Herbillon A.(eds.), Soil colloids and their associations in aggregates. Plenum Press.
    Flanagan D.C., Nearing M.A.(Eds.),1995. USDA-Water erosion prediction project: hillslope profile andwatershed model documentation. NSERL Report No.10. USDA-ARS National Soil ErosionResearch Laboratory, West Lafayette, IN47097-1196.
    Formanek G., McCool D., Papendick R.I.1984. Freeze-thaw and consolidation effects on strength of a wetsilt loam. Transactions of ASAE,27(6);1749-1752.
    Giovannini G., Vallejo R., Lucchesi S., Bautista S., Ciompi S., Llovet J.2001. Effect of land use andeventual fire on soil erodibility in dry Mediterranean conditions. Forest Ecology and Management.147(1),15-23.
    Gussak V.B.1946. A device for the rapid determination of erodibility of soils and some results of itsapplication. Abstract in Soils and Fertilizers. No.10.
    Hairsine P., and Rose C.1991. Rainfall detachment and deposition: sediment transport in the absence offlow-driven processes. Soil Science Society of America Journal,55(2):320-324.
    Hanay A., Sahin U., et al.2003. Decrease in hydraulic conductivity of clay soils with salinity-sodicityproblems due to freezing and thawing effect. Acta Agric Scand (B)53(4):208-210.
    Hénin S., Monnier G., and Combeau A.1958. Méthode pour I’étude de la stabilité structural des sols.Annales Agronomiques,9:73-92.
    Hosoyamada K.1986. The effect of rainfall and soil properties on farmland conservation. Journal ofIrrigation Engineering and Rural Planning.9,5-14.
    Hudson N.W.1995. Soil Conservation (3rdEd.). Ames, Iowa State University Press,391pp.
    Hussein M.H., Kariem T.H., Kariem T.H., Othman A.K.2007. Predicting soil erodibility in northern Iraqusing natural runoff plot data. Soil and Tillage Research,94(1):220-228.
    Imeson A.C., and Vis M.1984. Seasonal-variations in soil erodibility under different land-use types inLuxembourg. Journal of Soil Science,35(2):323-331.
    Irani R.R., and Callis C.F.1963. Particle size: measurement, interpretation, and application, John Wiley&Sons New York.
    ISO/DIS10930.2011. Soil quality-Measurement of the stability of soil aggregates subjected to the actionof water. International Organization for Standardization, Geneva, Switzerland.
    Kheyrabi D., and Monnier G.1968. étude expérimentale de l’influence de la composition granulométriquedes terres sur leur stabilité structurale. Ann. Agron19(2):129-152.
    Kinnell P.I.A.2010. Event soil loss, runoff and the Universal Soil Loss Equation family of models: Areview. Journal of Hydrology,385(1-4):384-397.
    Kirby P.C., Mehuys G.R.1987a. The seasonal variation of soil erosion by winter in South-Western Quebec.Can. J. Soil Sci.67,55-63.
    Kirby P.C., Mehuys G.R.1987b. Seasonal variation of soil erodibility in southwestern Quebec. Journal ofSoil and Water Conservation.42,211-215.
    Klik A., and Zartl A.S.2001. Comparison of soil erosion simulations using WEPP and RUSLE with fieldmeasurements. In: Ascough II, J.C., Flanagan, D.C.(Eds.), ASAE Pub#701P0007. ASAE, St.Joseph, MI.
    Knapen A. and Poesen J.2010. Soil erosion resistance effects on rill and gully initiation points anddimensions. Earth Surface Processes and Landforms,35(2):217-228.
    Knisel W.G.(Ed.),1980. CREAMS: a field scale model for chemicals, runoff and erosion from agriculturalmanagement systems, USDA Conservation Research Report No.26.
    Laflen J.M., Elliot W.J., Simanton J.R., Holzhey C.S., Kohl K.D.1991. WEPP soil erodibility experimentsfor rangeland and crop land soils. Journal of Soil and Water Conservation.46(1),39-44.
    Le Bissonnais Y.1996. Aggregate stability and assessment of soil crustability and erodibility I. Theory andmethodology. European Journal of Soil Science,47(4):425-437.
    Le Bissonnais Y., Bruand A., et al.1989. Laboratory experimental study of soil crusting: Relation betweenaggregate breakdown mechanisms and crust structure. Catena,16(4-5):377-392.
    Le Bissonnais Y., Renaux B., and Delouche H.1995. Interactions between soil properties and moisturecontent in crust formation, runoff and interrill erosion from tilled loess soils. Catena25(1-4):33-46.
    Lehrsch G., Sojka R., et al.1991. Freezing effects on aggregate stability affected by texture, mineralogy,and organic matter. Soil Science Society of America Journal55:1401-1406.
    Lehrsch G.A.1998. Freeze-thaw cycles increase near-surface aggregate stability. Soil Science.163(1):63.
    Li Z.X., Cai C.F., Shi Z.H., Wang T.W.2005. Aggregate Stability and Its Relationship with Some ChemicalProperties of Red Soils in Subtropical China. Pedosphere,15(1):129-136.
    Loch R., and Foley J.1994. Measurement of aggregate breakdown under rain-Comparison with tests ofwater stability and relationships with field measurements of infiltration. Soil Research,32(4):701-720.
    Meyer L.D., McCune D.L.1958. Rainfall simulator for runoff plots. Agric. Engr.39,644-648.
    Middleton H.E.1930. Properties of soils which influence soil erosion. USDA, Technical Bulletin178,16pp.
    Misra R.K., Rose C.W.1996. Application and sensitivity analysis of process-based erosion model GUEST.European J. Soil Sci.47,593-604
    Morgan R.P.C.,2005. Soil Erosion and Conservation (3rded.). Blackwell Publishing, MA, USA,304pp.
    Morgan R.P.C., Quinton J.N., Smith R.E., Govers G., Poesen J.W.A., Auerswald K., Chisci G., Torri D.,Styczen M.E.,1998. The European Soil Erosion Model (EUROSEM): a dynamic approach forpredicting sediment transport from fields and small catchments. Earth Surface Processes andLandforms.23(6),527-544.
    Mostaghimi S, Young R A, Wilts AR, et al.1988. Effects of frost action on soil aggregate stability.Transaction of the ASAE,31(2):435-439.
    Mutchler C.K., Carter C.E.1983. Soil erodibility variation during the year. Transactions of the ASAE.26(4),1102-1104.
    Nash J.E., and Sutcliffe J.V.1970. River flow forecasting through conceptual models. Part I: a discussion ofprinciples. Journal of Hydrology,10,282–290.
    Nearing M. A., and Bradford J.M.1985. Single water drop splash detachment and mechanical properties ofsoils. Soil Sci. Soc. Am. J.49:547-552.
    Nearing M.A., Bradford J.M., Holtz R.D.1987. Measurement of waterdrop impact pressures on soilsurfaces. Soil Science Society of America journal.51(5):1302-1306.
    Nearing M.A., Foster G.R., Lane L.J., Finkner S.C.1989a. A process-based soil erosion model forUSDA-Water Erosion Prediction Project technology. Trans ASAE.32(5),1587-1593.
    Nearing M.A., Page D.I., Simanton J.R., Lane L.J.1989b. Determining erodibility parameters fromrangeland field data for a process-based erosion model. Trans. ASAE.32(3),919-924.
    Oades J., and Waters A.1991. Aggregate hierarchy in soils. Soil Research,29(6):815-828.
    Olson T.C., and Wischmeier W.H.1963. Soil erodibility evaluations for soils on the runoff and erosionstations. Soil Sci. Soc. Am. Proc.27,590-592.
    Oztas T., and Fayetorbay F.2003. Effect of freezing and thawing processes on soil aggregate stability.Catena.52(1):1-8.
    Pelle T.C.1937. The relation of certain physical characteristics to the erodibility of soils. Soil Sci. Soc. Am.Proc.2,97-100.
    Rejman J., Turski R., Paluszek J.1998. Spatial and temporal variations in erodibility of Loess Soil. Soiland Tillage Research.46,61-68.
    Renard K.G., Foster G.R., Weesies G.A., McCool D.K., and Yoder D.C.1997. Prediction rainfall erosionby water, a guild to conservation planning with the revised universal soil loss equation (RUSLE).USDA Agricultural Handbook No.703. U.S. Government Printing Office, Washington D.C, USA.
    R mkens M.J.M.2010. Erosion and Sedimentation Research in Agricultural Watersheds in the USA: fromPast to Present and Beyond. In: Sediment Dynamics for a Changing Future. Banasik, K., Horowitz,A.J., Owens, P.N., Stone, M., Walling, D.E.(Eds.), IAHS Publication337,17-26.
    R mkens M.J.M., Poesen J.W.A., Wang J.Y.,1988. Relationship between the USLE soil erodibility factorand soil properties. In: Rimwanichland S.(Ed.), Conservation for Future Generations. Bangkok, pp.371-385.
    R mkens M.J.M., Roth C.B., Nelson D.W.1977. Erodibility of selected clay sub-soils in relation tophysical and chemical properties. Soil Sci. Soc. Am. J.41,954-960.
    R mkens M.J.M., Young R.A., Poesen J.W.A., McCool D.K., El-Swaify S.A., Bradford J.M.1997.Chapter3. Soil erodibility factor (K). In: Renard, K.G., Foster, G.R., Weesies, G.A., McCool, D.K.,Yoder, D.C.(Eds.), Predicting Soil Erosion by Water: A Guide to Conservation Planning with theRevised Universal Soil Equation (RUSLE). Agriculture Handbook No.703. US Department ofAgriculture, Washington, DC, pp.65-99.
    Sahin U., Angin I., et al.2008. Effect of freezing and thawing processes on some physical properties ofsaline–sodic soils mixed with sewage sludge or fly ash. Soil and Tillage Research,99(2):254-260.
    Salvador Sanchis M.P., Torri D., Borselli L., Poesen J.2007. Climate effects on soil erodibility. EarthSurface Processes and Landforms.33(7),1082-1097.
    Santhi C., Arnold J.G., Williams J.R., Hauck L.M., and Dugas W.A.2001. Application of a watershedmodel to evaluate management effects on point and nonpoint source pollution. Transactions of theASAE,44,1559–1570.
    Sharply A.N., Williams J.R.1990. EPIC-Erosion/Productivity impact calculator Ⅰ, Model documentation.U.S. Department of Agriculture Technical Bulletin, No.1768.
    Shirazi M.A., Boersma L.1984. A unifying quantitative analysis of soil texture. Soil Sci. Soc. Am. J.48(1),142-147.
    Simanton J.R., West L.T., Weltz M.A., Wingate G.D.1987. Rangeland experiments for water erosionprediction project. ASAE Paper No.87-2545. American Society of Agricultural Engineers, St.Joseph, MI.
    Skaggs T.H., Arya L.M., Shouse P.J., and Mohanty B.P.2001. Estimating particle-size distribution fromlimited soil texture data. Soil Science Society of America Journal65(4):1038-1044.
    Soil Survey Staff.1993. Soil survey manual. USDA-Soil Conservation Service. Agric. Handb.18. U.S. Gov.Print. Office, Washington, DC.
    Staricka J., and Benoit G.1995. Freeze-drying effects on wet and dry soil aggregate stability. Soil ScienceSociety of America Journal,59(1):218-223.
    Swanson N. P.1965. Rotating-boom rainfall simulator. Trans. Am. Soc. Agric. Engr.8,71-72.
    Teixeira P.C., and Misra R.K.1997. Erosion and sediment characteristics of cultivated forest soils asaffected by the mechanical stability of aggregates. Catena30(2-3):119-134.
    Torri D., Poesen J., Borselli L.1997. Predictability and uncertainty of the soil erodibility factor using aglobal dataset. Catena.31(1-2),1-22.
    Truman C.C., Bradford J.M., and Ferris J.E.1990. Antecedent water content and rainfall energy influenceon soil aggregate breakdown. Soil Sci. Soc. Am. J.54:1385-1392.
    USDA-Agricultural Research Service,2008. Revised Universal Soil Loss Equation, Version2(RUSLE2).WWW Page, http://fargo.nserl.purdue.edu/rusle2_dataweb/
    USDA-Agricultural Research Service, National Sediment Laboratory (USDA-ARS-NSL),2003. RUSLE1.06c and RUSLE2. WWW Page, http,//www. sedlab.olemiss.edu/rusle.
    USDA-Agricultural Research Service, National Soil Erosion Research Laboratory (USDA-ARS-NSERL),2010. WEPP Windows interface, model and data. WWW Page, http//www.ars.usda.gov/Research/docs.htm?docid=10621
    Van Vliet L.J.P., Wall B.J.1981. Soil erosion losses from winter runoff in Southern Ontario. Can. J. SoilSci.61,451-454
    Veenstra J.J.2010. Fifty years of agricultural soil change in Iowa [Ph.D. thesis]. Ames, Iowa, Iowa StateUniversity.
    Voznesensky A.S., Artsruui A.B.1940. A laboratory method for determining the anti-erosion resistance ofsoils. Soils and Fertilizers.10,289
    Wairiu M., and Lal R.2003. Soil organic carbon in relation to cultivation and topsoil removal on slopinglands of Kolombangara, Solomon Islands. Soil and Tillage Research,70(1):19-27.
    Wang B., Zheng F.L., R mkens M.J.M., Darboux F.2013a. Soil erodibility for water erosion: A perspectiveand Chinese experiences. Geomorphology,187:1-10.
    Wang B., Zheng F.L., R mkens M.J.M.2013b. Comparison of soil erodibility factors in USLE, RUSLE2,EPIC and Dg models based on a Chinese soil erodibility database. Acta Agriculturae Scandinavica,Section B-Soil&Plant Science,63(1):69-79.
    Wischmeier W.H.1959. A rainfall erosion index for a universal soil-loss equation. Soil Sci. Soc. Amer.Proc.23,246-249.
    Wischmeier W.H.1960. Cropping management factor evaluations for a universal soil-loss equation. SoilSci. Soc. Proc.23,322-326.
    Wischmeier W.H., and Smith D.D.1965. Predicting rainfall erosion losses from cropland east of the RockyMountains. USDA Agr. Handbook282,47pp.
    Wischmeier W.H., Johnson C.B., and Cross B.V.1971. A soil erodibility nomograph for farmland andconstruction sites. Journal of Soil and Water Conservation.26(5),189-193.
    Wischmeier W.H., Mannering J.V.1969. Relation of soil properties to its erodibility. Soil Sci. Sco. Am.Proc.33(1),131-137
    Wischmeier W.H., Smith D.D.1978. Predicting rainfall erosion losses-a guide to conservation planning.United States Department of Agriculture Agricultural Handbook537. U.S. Government PrintingOffice, Washington D.C, USA.
    Wischmeier W.H., Smith D.D., and Uhland R.E.1958. Evaluation of factors in the soil-loss equation. Agric.Engineering39,458-462.
    Woodburn R., Kozachyn J.1956. A study of relative erodibility of a group of Mississippi gully soils. Trans.Am. Geophys. Union.37,749-753.
    Wynn T. M., Henderson M. B., Vaughan D.H..2008. Changes in streambank erodibility and critical shearstress due to subaerial processes along a headwater stream, southwestern Virginia, USA.Geomorphology97(3-4):260-273.
    Yan F.L., Shi Z.H., Cai C.F., Li Z.X.2010. Wetting Rate and Clay Content Effects on Interrill Erosion inUltisols of Southeastern China. Pedosphere,20(1):129-136.
    Yoder R.E.1936. A direct method of aggregate analysis of soils and a study of the physical nature oferosion losses. Journal of American Society of Agronomy,28:337-351.
    Young R.A., Mutchler C.K.1977. Erodibility of some Minnesota soils. Journal of Soil and WaterConservation.32(3),180-182.
    Zhang B., and Horn R.2001. Mechanisms of aggregate stabilization in Ultisols from subtropical China.Geoderma,99(1-2):123-145.
    Zhang K.L., Li S., Peng W., Yu B.2004. Erodibility of agricultural soils on the Loess Plateau of China.Soil and Tillage Research.76(2),157-165.
    Zhang K.L., Shu A.P., Xu X.L., Yang Q.K., Yu B.2008. Soil erodibility and its estimation for agriculturalsoils in China. Journal of Arid Environments.72(6),1002-1011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700