用户名: 密码: 验证码:
松嫩平原西部油田区湿地土壤微生物特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
石油是当今世界重要的能源,但在开采、运输和消费过程中易造成严重的环境污染,现阶段石油污染对环境的影响已成为研究热点。松嫩平原分布着广阔的湿地,对环境、生态和经济有重要意义,其中松嫩平原西部地区是我国内陆盐碱湿地集中分布区,随着松嫩平原西部开发等人为活动的影响,湿地面积不断缩小、退化,盐碱化程度加剧。石油污染是引起该地区湿地退化的重要因素之一。微生物在生态系统中有重要意义,在污染物的降解、维持土壤肥力和恢复生态环境中具有重要作用。近些年来,石油污染对湿地土壤微生物的影响研究已有许多报导,但是对于盐碱化程度较高的湿地土壤微生物特征研究报导甚少。
     本论文对松嫩平原西部吉林油田区沼泽湿地和湿草甸土壤微生物特征进行研究,采用常规平板培养法与Biolog微平板法结合的方法,分析石油污染湿地土壤微生物数量和代谢功能的生态变化,揭示石油污染对微生物群落结构及代谢多样性的影响。通过测定石油污染湿地土壤的理化性质,比较不同污染程度的土壤理化性质间的差异,研究石油污染对土壤质量产生的影响。此外,通过研究不同程度的石油污染对盐碱草甸土壤微生物的影响,比较盐碱草甸土壤微生物对不同程度的石油污染适应性。
     野外采样分析结果表明,松嫩平原西部油田区湿地土壤受到不同程度的石油污染,土壤有机质含量与石油烃含量呈正相关,而石油污染物对土壤总磷、土壤pH、电导率和含水量无显著的影响。
     通过对微生物群落结构的分析表明,松嫩平原西部油田区湿地土壤主要以细菌为主,放线菌次之,真菌最少;湿草甸土壤微生物数量高于沼泽湿地。不同湿地类型条件下,石油污染对细菌数量有不同影响:沼泽湿地土壤细菌数量随着石油烃含量的增加而减少,而湿草甸土壤则相反;微生物数量与湿地土壤理化性质存在一定的相关关系。
     从揭示油田区土壤理化因子对微生物代谢功能特征的影响出发,发现松嫩平原西部油田区湿地土壤微生物代谢强度总体上10月份高于5月份,石油烃改变了湿地土壤微生物对碳源利用类型,随着石油烃含量的升高,微生物对聚合物的利用能力增强。湿地土壤有机质含量与代谢强度和代谢多样性呈显著正相关(p<0.05);湿地土壤pH与微生物的代谢多样性呈显著负相关(p<0.05);石油烃含量对湿草甸土壤微生物代谢强度有促进作用。
     松嫩平原西部草甸盐碱土壤微生物主要以细菌为主,一定浓度的石油污染物促进细菌的生长,提高了细菌数量;污染时间越长,盐碱土壤细菌对石油污染物的适应性越强。
Petroleum is the important energy around the world, however, itseriously pollutes the environment during the process of being exploited,transported and consumed. Studies on the impacts of petroleumcontamination on environment have been a research hotspot. Wetlands,which extend over vast areas in Songnen Plain, have great significancefor environment, ecology and economy. Among that, the western regionof Songnen Plain is the major rejoin of saline wetlands in our country,and with the improvement of oil development and other human activities,the area of wetlands is gradually shrinking and the salinization degree ismore and more serious. Therefore, the ecological destruction caused bypetroleum pollution in Songnen Plain needs to be urgently addressed.Microorganism has important significance for ecosystem, and it plays animportant role in degradation of pollutants, maintaining soil fertility andrestoring the ecological environment. In recent years, there have beenmany reports on the impacts of petroleum contamination onmicroorganism of wetland; however, there are few studies on themicrobial characteristics of higher salinity degree soil contaminated bypetroleum in wetlands.
     This study was aimed to analyse the characteristics of soilmicroorganism in marsh wetlands and wet meadow contaminated bypetroleum in the west Songnen Plain. The conventional plate culturemethod and Biolog Ecoplate were applied to investigate the changes inmicrobial quantity and metabolic function and reveal the influence ofpetroleum contamination on microbial community structure andmetabolic diversity. And by measuring the soil abiotic factors, wecompared the differences of soil physical and chemical propertiesbetween different degree petroleum pollution and studied the effects ofpetroleum on the physical and chemical properties of wetland soils. Inaddition, we compared the characteristics of microorganism insalina-alkalina meadow contaminated by different degree of oil pollutionto reveal the microbial adaptability to petroleum pollution.
     It was proved by field survey and sampling investigation that thewetland soils were polluted by petroleum to different degree in the westSongnen Plain. Soil organic matter content was positively related with thetotal petroleum hydrocarbons. The oil pollution had no significantinfluence on total phosphorus, pH, conductivity and water content ofwetland soils.
     The analysis of microbial community structure showed that thenumber of the bacteria was dominant, actinomycetes followed, andfungus was least in soil microorganism community structure of wetland soils in the west Songnen Plain. Microbial quantity of wet meadows washigher than marsh wetlands. There were different effects of petroleumcontamination on microbial quantity between the two types of wetlands.With the increase of total petroleum hydrocarbons, the number ofmicroorganism decreased in marsh wetlands, while increased in wetmeadows. There was certain correlation between the physical andchemical properties of wetland soils and microbial quantity.
     To reveal the impacts of the physical and chemical soil properties onmicrobial metabolic function, we found that microbial metabolic intensityof wetland soils in October was higher than that in May, and the types ofmicrobial carbon source utilization was changed by petroleum. With theincrease of total petroleum hydrocarbons, the ability of using polymerwas enhanced. The microbial metabolic intensity and diversity waspositively correlated with the soil organic matter content, and negativelycorrelated with soil pH. The total petroleum hydrocarbons enhanced themicrobial metabolic intensity in wet meadow soils.
     The bacteria were dominant in salina-alkalina meadow soils in westSongnen Plain, and a certain concentration of oil pollutants acceleratedthe growth of bacteria and improved the bacteria population. The longerthe soils were polluted, the stronger the adaptability of bacteria was topetroleum.
引文
1李华艳,张立凡.石油安全与石油企业国际竞争力[J].油气田地面工程,2005,24(7):59.
    2何一鸣,马丽娟.世界石油资源格局及中国的应对策略[J].经济论坛,2006,22:9~16.3Leblond D. Total world oil output to reach95million b/d by2020[J]. Oil and Gas Journal,2008,106:32-33.
    4曹刚,王华.沿海企业与科技,2005,(3):92~94.
    5Liu Xiaojuan, Liu Jing, Zhang Ningsheng. Discussion on innocent treatment of oil sludge inoil-gas field[J]. Environmental Protection of Oil and Gas Fields,2004,14(2):32-35(Ch).
    6Rulkens W. An Overview of Soil and Sediment Treatment Research in the Netherlands[M].Berlin: Springer,2001:21-36.
    7Philp J. Environmental Pollution and Restoration: A Role for Bioremediation[M]. WashingtonDC: ASMPress,2005:1-48.
    8Gildeeva I. Environmental protection during exploration and exploitation of oil and gas fields[J].Environmental Geosciences,1999,6(3):153-154.
    9杨翠云,郭淑政,刘琪,等.石油污染土壤微生物多样性的研究技术及进展[J].安徽农业科学,2009,37(33):16479-16482,16553.
    10詹研.中国土壤石油污染的危害及防治对策[J].环境污染与防治,2008,30(3):91-96.
    11刘五星,骆永明,滕应,等.我国部分油田土壤及油泥的石油污染初步研究[J].土壤,2007(2):247-251.
    12高拯民.土壤:植物系统污染生态研究[M].北京:中国科学技术出版社,1986.
    13杨亚妮.湿地生态系统研究及防治退化对策[J].自然杂志,2002,24(2):95.
    14Constanza R, d’Arge R, de Groot R, et al. The value of the world’s ecosystem services andnatural capital [J]. Nature,1997,(387):253-260.
    15Mitsch W J,Gosselink J G. The values of wetlands importance of scale and landscape setting[J].Ecological Economics,2000,35:25-33.
    16Barbie E B. Valuing the environmental as input: review of applications to mangrove fisherylinkages[J]. Ecological Economics,2000,35:47-61.
    17Suilvius M J. Oneka M. Verhagen A. Wetlands: life for people at the Edge[J]. Phys ChemEarth(B),2000,25(7/8):645-652.
    18张明祥,严承高.中国湿地效益研究.林业资源管理,1999,(3):43-47.
    19蔡晓明.生态系统生态学[M].北京:科学出版社,2001.
    20俞孔坚,李迪华,孟亚凡.湿地及其在高科技园区中营造[J].中国园林,2001,(2):26-28.
    21李炳玺,谢应忠,吴韶寰.湿地研究的现状与展望[J].宁夏农学院学报,2002,23(3):61-67.
    22李青山,张华鹏,崔勇等.湿地功能研究进展[J].科学技术与工程,2004,4(11):972-975.
    23潘红磊,张士权.油气田开发对湿地的影响及保护措施[J].油气田环境保护,1997,4:36-39.
    24修长军,王晓慧.胜利油田开发对黄河三角洲湿地的环境影响及环境管理[J].中国环境管理,2003,3:59-60.
    25方曦,杨文.海洋石油污染研究现状及防治[J].环境科学与管理,2007,32(9):78-80.
    26任磊,黄廷林.黄土高原的石油类物质坡面径流污染研究[J].中国给水排水,2000,16(11):1-5.
    27薛玲,秦梅枝,曹江营等.阿尔善油田草地植被恢复方法探讨[J].内蒙古草业,1994, NO.1,2:39-42.
    28李小利,刘国彬,党小虎.落地石油量对黄土丘陵区撂荒草地植物群落的影响[J].草地学报,2008,16(2):164-169.
    29易绍金,马文臣.利用本源微生物修复技术处理含油土壤试验研究[J].石油与天然气化工,2006,35(4):326-328.
    30徐惠风,刘兴土,白军红.长白山沟谷湿地乌拉苔草沼泽湿地土壤微生物动态及环境效应研究[J].水土保持学报,2004,18(3):115-118.
    31尹宁宁.辽河口湿地微生物生态分布及影响因素研究[硕士学位论文].青岛:中国海洋大学,2011.
    32余萃,廖先清,刘子国,等.石油污染土壤的微生物修复研究进展[J].湖北农业科学,2009,48(5):1260-1263.
    33孙东平,胡凌燕,周伶俐等.高效石油降解微生物堆制法处理油污土壤[J].环境科学与技术,2007,30(6):86-89.
    34Duarte J C, David S D, Eusebio A. Degradation of polycyclic Aromatic Hydrocarbons byMicroorganisms from Contaminated Soil[C]. NATO ASI Ser,1997,34(Biotechnology for WasteManagement and Site Restoration):187-192.
    35Marcon R, Bestetti G, Frati F, et al. Naphthalene and biphenyl oxidation by two marinePseudomonas strains isolated from Venice Lagoon sediment[J]. Biodeterioration Biodegrad,2007,59(1):25-31.
    36张艳红,邓伟.洪流洪泛湿地的功能特征及综合开发利用—以向海湿地为例[J].国土与自然资源研究,2002,(1):51-53.
    37翟金良,何岩,邓伟.向海国家级自然保护区湿地功能研究[J].水土保持通报,2002,22(3):5-9.
    38罗新正,朱坦,孙广友.松嫩平原湿地生态环境退化机制探讨[J].干旱区资源与环境,2002,16(4):39-43.
    39韩勤,赵岭,刘新宇等.松嫩平原湿地退化特征及平原内陆盐碱类型湿地的恢复[J].防护林科技,2010,6:80-82.
    40卞建民,祖燎原,董志颖.松嫩平原湿地资源开发对湿地生态环境的影响[J].地域研究与开发,2003,22(3):68-70.
    41郭跃东,何燕芬.松嫩平原湿地变化及其驱动力研究[J].湿地科学,2005,3(1):54-59.
    42何岩,宋玉祥.东北区域农业综合开发研究[C].北京:科学出版社,2(X)1:62~68.
    43罗新正,朱坦,孙广友,等.松嫩平原湿地荒漠化现状、成因和对策[J].中国沙漠,2003,2233(4):372~378.
    44王晶,肖延华,朱平.松嫩平原盐渍土的发展演化与影响因素[J].吉林农业科学,1995,(2):66~71.
    45廉毅,高枞亭,任红玲.吉林省西部荒漠化发展的陆地卫星遥感监测分析[J].气象学报,1999,5577(6):662~667.
    46吉林省地方志编纂委员会.吉林省志卷十六农业志畜牧[M].长春:吉林人民出版社,1996:39~89.
    47田迅,卜兆君,杨允菲,等.松嫩平原湿地植被对生境干—湿交替的响应[J].湿地科学,2004,22(2):122~127.
    48关法春,梁正伟,黄立华.松嫩平原西部盐碱地农业生物治理原理与开发对策[J].农业现代化研究,2009,3300(1):85~89.
    49王国平,刘景双,汤洁,等.洪泛作用下沼泽湿地化学元素空间分布结构研究[J].沉积学报,2003,2211(4):688~694.
    50白红军,邓伟,张玉霞.莫莫格湿地土壤氮磷空间分布规律研究[J].水土保持学报,2001,1155(4):79~81.
    51翟金良,何岩,邓伟.向海洪乏湿地土壤对氮和磷的滤过截留作用及影响因素分析[J].土壤,2003,3355(4):314~319.
    52裴希超,许艳丽,魏巍.湿地生态系统土壤微生物研究进展[J].湿地科学,2009,7(2):181-186.
    53Bossio D A, Fleck J A, Scow KM, et al. Alteration of soil microbial communities andwater quality in restored wetlands [J]. Soil Biology&Biochemistry,2006,(38):1223-1233.
    54Wendy L G. Community Patterns of potential substrate utilization: a comparison of salt marsh,sand dune, and seawater-irrigated agronomic systems[J]. Soil Biology&Biochemistry,1998,30(8):1169~1176
    55马玲,丁新华,顾伟,等.扎龙季节性湿草甸土壤养分和土壤微生物特性[J].应用生态学报,2011,22(7):1717-1724.
    56Lloyd J R, Klessa D A, Parry D L, et al. Stimulation of microbial sulphate reduction in aconstructed wetland microbiological and geochemical analysis[J]. Water Research,2004,38:1822~1830
    57丁新华.扎龙湿地湿草甸土壤微生物特性研究[硕士学位论文].哈尔滨:东北林业大学,2011.
    58刘芳,叶思源,汤岳琴,等.黄河三角洲湿地土壤微生物群落结构分析[J].应用与环境生物学报,2007,13(5):691-696.
    59赵先丽,周广胜,周莉,等.盘锦芦苇湿地土壤微生物数量研究[J].土壤通报,2008,39(6):1376-1379.
    60Corstanje R, Reddy K R, Prenger J P, et al. Soil microbial ecophysiological response to nutrientenrichment in sub-tropical wetland[J]. Ecological Indicators,2007,7(2):277-289.
    61CARD S M, QUIDEAU S A. Microbial Community Structure in Restored Riparian Soils of theCanadian Prairie Pothole Region[J]. Soil Biology&Biochemistry,2010,42:1463-1471.
    62IBEKWE A, GRVE C M, LYON S R. Characterization of Microbial Communities andComposition in Constructed Dairy Wetland Wastewater Effluent[J]. Applied EnvironmentalMicrobiology,2010,69(9):5060-5069.
    63邓欢欢,杨长明,李建华,等.人工湿地基质微生物群落的碳源代谢特征[J].中国环境科学,2009,27(5):698-702.
    64凌云,林静,徐亚同.景观人工湿地微生物群落结构的季节变化[J].城市环境与城市生态,2009,22(4):8-10.
    65黄靖宇,宋长春,宋艳宇,等.湿地垦殖对土壤微生物量及土壤溶解有机碳、氮的影响[J].环境科学,2008,29(5):1380-1387.
    66辛颖,刘常宏,安树青.海岸盐沼湿地土壤硫循环中的微生物及其作用[J].生态学杂志,2007,26(4):577-581.
    67叶淑红,王艳,万惠萍.辽东湾湿地微生物量与土壤酶的研究[J].土壤通报,2006,37(5):897-900.
    68周启星,宋玉芳.污染土壤修复原理与方法[M].北京:科学出版社,2004:206-212.
    69Brito, E.M., Guyoneand, R., Goni-Urriza, M., Ranchou-Peyruse, A., Verbaere, A., CraPez,M.A.C., Wasserman, J.C.A., Duran, R., Charaeterization of hydrocarbonoclastic bacterialcommunities from mangrove sediments in Guanabara Bay, Brazil[J]. Research inMicrobiology2006,157:752-762.
    70Hernandez-Raquet, G., Budzinski, H., Caumette, P., et al. Molecular diversity studies ofbacterial communities of oil polluted microbial mats from the Etang de Berre (France)[J]. FEMSMicrobiology Ecology,2006,58,550-562.
    71Deni, J., Pennickx, M.J. Nitrification and autotrophic nitrifying bacteria in ahydrocarbon-polluted soil[J]. Applied and Environmental Microbiology,1999,65,4008-4013.
    72Kleikemper, J., Schroth, M.H., Sigler, W.V., et al. Activity and diversity of sulfate-reducingbacteria in a petroleum hydrocarbon-contaminated aquifer[J]. Applied and EnvironmentalMicrobiology,2002,68:1516-1523.
    73何晶晶,李慧,张颖.沈抚灌区石油污染土壤微生物多样性的研究[J].新疆农业大学学报,2008,31(4):33-37.
    74岳冰冰,李鑫,任芳菲,等.石油污染地土壤微生物群落的碳源利用特性[J].应用生态学报,2011,22(12):3259-3264.
    75项雅玲,李峰,邵志慧.油田高矿化度废水对土壤微生物影响的研究[J].中国生态农业学报,2002,10(1):47-49.
    76赵吉,廖仰南,张桂枝,等.草原生态系统的土壤微生物生态[J].中国草地,1999,(3):57-67.
    77UJJ Ijah. Studies on relative capabilities of bacterial and yeast isolates from tropical soil indegrading crude oil[J].WasteManagement,1998,18:293-299.
    78李丽,张利平,张元亮.石油烃类化合物降解菌的研究概况[J].微生物学通报,2001,28(5):89-92.
    79张子间,刘勇弟,孟庆梅.微生物降解石油烃污染物的研究进展[J].化工环保,2009,29(3):193-198.
    80J P Del’Arco, F P de Franca. Influence of oil contamination levels on hydrocarbonbiodegradation in sandy sediment[J]. Environmental Pollution,2001,110:515-519.
    81Frederique Haus, Jean German, Guy-Alain Junter. Primary biodegradability of mineral base oilsin relation to their chemical and physical characteristics[J]. Chemosphere,2001,45:983-990.
    82K.S.M.Rahman,J. Thahira-Rahman, R. Lakshmanaperumalsamy, et al. Towards efficient crudeoil degradation by a mixed bacterial consortium[J]. Bioresouce technology,2002,85:257-261.
    83金文标,宋莉辉,董晓利等.油污土壤微生物治理的影响因素[J].环境保护,1998,(10):27-28.
    84苏荣国,牟伯中,王修林等.微生物对石油烃的降解机理及影响因素[J].化工环保,2001,21(4):205-208.
    85Salmon C, Crabos J L, Sambueo J P., et al. Anificial wetland performances in the Purificationeffciency of hydrocarbon wastewater[J]. Water, Air, and Soil Pollution,1998,104(3):313-29.
    86顾传辉,陈桂珠.石油污染土壤生物降解生态条件研究[J].生态科学,2000,19(4):67-72.
    87Brito, E.M., Guyoneand, R., Goni-Urriza, M., et al. Charaeterization of hydrocarbonoclasticbacterial communities from mangrove sediments in Guanabara Bay, Brazil[J]. Research inMicrobiology,2006,157:752-762.
    88周乐,盛下放.芘降解菌株的筛选及降解条件的研究[J].农业环境科学学报,2006,25(6):1504-1507.
    89李莉,施春雨,李景新等.石油污染物生物降解试验研究[J].油气田环境保护,2004,14(1):42-45.
    90贾燕.石油降解菌和表面活性剂在水体石油污染生物修复中的应用及机理研究[D].暨南大学,2007:10-13.
    91Atlas, RM. Microbial degradation of petroleum hydrocarbons: an environmental perspective [J].Microbiological Review,1981,45:181-209.
    92Margesin R, Franz Schinner. Laboratory bioremediation experiments with soil from a diesel-oilcontaminated site-significant role of cold-adapted microorganisms and fertilizers. J Chem TechBiotechno,1997,70(4):92-98.
    93Atlas RM, Bartha R. Degradation and mineralization of petroleum in seawater: limitation bynitrogen and phosphorus[J]. Biotech. Bioeng.,1972,14:309-317.
    94Madsen EL. Determining in situ biodegradation: Facts and Challenges[J]. Envrion. Sci. Technol,1991,25(10):1663-1672.
    95Hicks B. N., Caplan J.A. Bioremediation: A natural solution [J]. Pollution Engineering,1993,25(2):30-33.
    96程国玲,李培军.石油污染土壤的植物与微生物修复技术[J].环境工程学报,2007,6(1):91-94.
    97余萃,廖先清,刘子国,等.石油污染土壤的微生物修复研究进展[J].湖北农业科学,2009,48(5):1260-1263.
    98黄艺,礼晓,蔡佳亮.石油污染生物修复研究进展[J].生态环境学报,2009,18(1):361-367.
    99宋志文,夏文香,曹军.海洋石油污染物的微生物降解与生物修复[J].生态学杂志,2004,23(3):99-102.
    100沈德中.污染环境的生物修复[M].北京:化学工业出版社,2002.
    101Prichard PH, Costa CF.1992.Oil spill bioremediation: Experiences, lessons and results fromthe Exxon Valdex in Alaska[J]. Biodegradation,2(2-3):315-335.
    102Bragg JR. Effectiveness of biodegradation for the exxon valdez oil spill[J]. Nature,1994,368:413-418.
    103Oh YS. Effects of nutrients on crude oil biodegradation in the upper intertidal zone[J]. Mar.Pollut. Bull.2001,42(12):1367-1372.
    104Prichard PH, Costa CF..EPA’s Alaska oil spill bioremediation project [J]. Environ. Sci.Technol.,1991,25(3):372-379.
    105Thomassin-Lacroix, E. J. M., Z. Yu, et al. DNA-based and culture-based characterization of ahydrocarbon-degrading consortium enriched from Arctic soil[J]. Can. J. Microbial.2001.47:1107-1115.
    106Chaineau C, Morel J, Oudot J. Microbial Degradation in Soil Microcosms of Fuel oilHydrocarbons from Drilling Cuttings[J]. Environ.Sci.Technol,1995,29:1615-1621.
    107张旭,李广贺,黄巍.石油烃污染土层生物修复模拟实验研究[J].清华大学学报(自然科学版),2000,40(11):106-108.
    108林力,杨惠芳,贾省芬.石油污染土壤的生物整治研究[J].上海环境科学,2000,19(7):325-329.
    109何诩,吴海,魏薇.石油污染土壤菌剂修复技术研究[J].土壤,2005,7(3):338~340.110Burns R. G. Enzyme activity in soil: location and a possible role in microbial ecology [J]. SoilBiol. Biochem,1982,12:423~427.
    111尹萃耘.农业微生物学[M].北京:中国青年出版社会,1979:1-234.
    112陈国相.微生物及其在农业中的应用[M].石家庄:河北人民出版社,1980:1-184.
    113胡正嘉.农业微生物学[M].北京:农业出版社,1982:1-94.
    114杨官品,男兰,贾海波,等.土壤细菌遗传多样性及其与植被类型相关性研究[J].遗传学报,2000,27(3):278-282.
    115White D, Crosbie J D, Atkinson D, et al. Effect of an introduced inoculum on soil microbialdiversity. EMS Microbiology Ecology.1994,14(2):169-178.
    116Duarte J C, David S D, Eusebio A. Degradation of polycyclic Aromatic Hydrocarbons byMicroorganisms from Contaminated Soil[C]. NATO ASI Ser,(Biotechnology for WasteManagement and Site Restoration),1997,34:187-192.
    117Marcon R, Bestetti G, Frati F, et al. Naphthalene and biphenyl oxidation by two marinePseudomonas strains isolated from Venice Lagoon sediment[J]. Biodeterioration Biodegrad,2007,59(1):25-31.
    118Zelles L. Fatty acid patterns of phospholipids and lipopolysaccharides in the characterizationof microbial communities in soil: A review[J]. Biol. Fertil. Soils,1999,29:111-129.
    119Pankhurst C E, Ophel-KellerK, Doube BM, etal. Biodiversity of soil microbial communities inagricultural systems. Biodiversity and Conservation,1996,5:197-209.
    120Lemke M J, Brown B J, Leff L G. The response of three bacteria populations in a stream[J].Microbial Ecology,1997,34:224-231.
    121张薇,魏海雷,高洪文,等.土壤微生物多样性及其环境影响因子研究进展[J].生态学杂志,2005,24(1):48-52.
    122Knight B P, McGrath S P, Chaudri A M.. Biomass carbon measurements and substrateutilization patterns of microbial populations from soil amended wish cadmium, copper, or zinc[J].Applied and Environmental Microbiology,1997,63:39-43.
    123黎宁,李华兴,朱凤娇,等.菜园土壤微生物生态特征与土壤理化性质的关系[J].应用生态学报,2006,17(2):285-290.
    124席劲瑛,胡洪营,钱易. Biolog方法在环境微生物群落研究中的应用[J].微生物学报,2003,43(1):138-141.
    125周启星,宋玉芳.污染土壤修复原理与方法[M].北京:科学出版社,2004:206-212.
    126Garland J L, Mills A L. Classification and characterization of heterotrophic microbialcommunities on base of patterns of community level sole-carbon-source utilization [J]. Appliedand Environmental Microbiology,1991,57:2351-2359.
    127SINGH B,GAUTAM S K,VERMA V, et al. Metagenomics in animal gastrointestinalecosystem: potential biotechnological prospects[J]. Anaerobe,2008,14(3):138-144.
    128PAOLIS M R D, LIPPI D. Use of metabolic and molecular methods for the identification of aBacillusstrain isolated from paper affected by foxing[J]. Microbiological Research,2008,163(2):121-131.
    129SINGH M P. Application of Biolog FF MicroPlate for substrate utilization and metaboliteprofiling of closely related fungi[J]. Journal of Microbiological Methods,2009,77(1):102-108.
    130OSEM Y, CHEN Y,LEVINSON D, et al. The effects of plant roots on microbial communitystructure in aerated wastewater-treatment reactors [J]. Ecological Engineering,2007,29(2):133-142.
    131CARRERA L M,BUYER J S,VINYARD B, et al. Effects of cover crops, compost, and manureamendments on soil microbial community structure in tomato production systems[J]. Applied SoilEcology,2007,37(3):247-255.
    132Haack S K, Garchow H, Klug M J, et al. Analysis of factors affecting the accuracy,reproducibility, and interpretation of microbial community carbon source utilization patterns[J].Applied and Environmental Microbiology,1995.61:1458-1468.
    133Garland J L, Mills A L. Classification and characterization of heterotrophic microbialcommunities on the basis of patterns of community-level sole-carbon-source utilization[J].Applied and Environment Microbiology,1991,57(5):2351-2359.
    134Tiquia S. M., Lloyd J., Herms D. A., et al. Effects of Mulching and Fertilization on SoilNutrients, Microbial Activity and Rhizosphere Bacterial Community Structure Determined byAnalysis of T-RFLPs of PCR-amplified16SrRNA Genes[J].Applied Soil Ecology,2002,21:31-48.
    135初金美,李秀军,刘兴土,等.非生物因子对松嫩平原西部石油污染湿草甸土壤微生物的影响[J].湿地科学,2012,10(4):492-499.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700