用户名: 密码: 验证码:
平原河网地区城市集水区非点源污染过程模拟与系统调控管理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着工业和生活污染源等点污染源逐步得到控制,非点源污染已成为影响城市水环境质量的最主要因素,得到各国政府和学者的重视。在这一背景下,非点源污染过程模拟以及其系统调控管理已经成为当前环境领域的热点问题和前沿领域,引起学界的广泛关注。独特的水文地貌特性使得城市化对平原河网地区城市非点源污染过程的影响深刻。论文以中国东部平原河网地区的上海市临港新城为例,从环境科学、生态学、水文学及管理学的交叉视角,运用理论研究与案例分析相结合、室内模拟与室外试验相结合、数学模型与计算机仿真相结合的方法,以平原河网地区集水区特征与划分为切入点,围绕非点源污染的“源-过程-汇”和“试验-模拟-调控”两条主线,阐释了平原河网地区城市集水区非点源污染的过程与特征,构建了平原河网地区城市集水区非点源污染调控模型,尝试提出了平原河网地区城市集水区非点源污染的系统调控方法、原则与核心策略。论文主要研究结论可概括为如下几个方面:
     1.基于平原河网地区所特有的且取得共识的水利分区/片管理体系,分析了平原河网地区城市集水区的特征,从空间尺度、汇流途径和调控强度三个维度,初步探讨了面向非点源污染调控的平原河网地区城市集水区四级划分体系:一级集水区从大尺度、高强度调控来体现研究区域与水利片的关系,重点关注重要外河;二级集水区从中尺度、中强度调控来体现功能分区和排水系统分布的关系,重点关注内河:三级集水区从小尺度、低强度调控来体现小区域地形与集水区出口的关系,重点关注小区域河流;四级集水区主要用于数据支持和微观机理阐释。以临港新城集水区为例,划分了1个一级集水区,13个二级集水区,137个三级集水区;二级集水区与现有规划的功能分区基本一致,可保证后续调控策略的落实。
     2.论文从理论上探讨了平原河网地区城市集水区非点源类型划分与过程概化方法;在此基础上,运行了大量室外试验和室内模拟的第一手数据,阐释了平原河网地区城市集水区非点源污染的过程与特征。
     (1)与国际上经典的“有效不透水面(Effective Impervious Areas, EIA)”相对应,从非点源调控角度提出“有效透水面(Effective Pervious Areas, EPA)'概念,即可接纳客地径流的透水面;进而引申出有效绿地(Effective Green Area)的概念。
     (2)分析探讨了城市不透水面的初始冲刷效应。临港新城集水区非点源污染总体输出水平较上海中心城区低;不透水面地表径流污染物中,溶解态污染物浓度低且初始冲刷效应不显著,可能与研究区域为新建区域有关;而颗粒态污染物浓度高且初始冲刷强度较大,与国内外相关研究结果基本一致。土地利用类型、降雨强度等因素对初期冲刷强度有显著影响。
     (3)重点阐释了城市透水面的源汇效应。理论上讲,城市透水面既是“源”也是“汇”,而现有研究主要聚焦于其汇效应,对其源效应探讨较少。
     a)就“源”而言:论文中的市区既有绿地地表径流污染物浓度总体较低,均低于国家地表水环境质量标准的Ⅴ类标准限值,而其初期效应不显著;而论文中的郊区新建绿地地表径流污染物浓度总体较高,大多劣于Ⅴ类标准限值,甚至部分点位COD浓度为上海市污水综合排放标准的二类标准限值的3.56倍,而其初期效应处于中度水平。因此,可以认为包括城市绿地在内的城市透水面是一种潜在的污染源,污染强度与绿地所处区域、绿地兴建时间、绿地土壤来源等因素有关。
     b)就“汇”而言:论文试验表明城市绿地对地表径流污染物具有显著的削减效果。COD的总体削减率(71.01±1.75%)略高于TP(69.00±1.78%),而显著高于氨氮(64.39±1.84%);市区既有绿地显著高于郊区新建绿地(p<0.05);不同覆被对地表径流污染物的削减效果显著(p<0.05),且总体削减率依次为麦冬>结缕草>无覆被;绿地对污染物的削减效应主要发生在深度60-80 cm的土层之上,并且以物理过程为主导。此外,污染负荷、水力负荷、停留时间、落干时间等因素对削减效应有一定影响。
     c)源汇转化条件:理论上讲,城市透水面既是“源”也是“汇”,非有效透水面以源效应为主,而有效透水面以汇效应为主;具体而言,设置路牙且客地径流难以汇入的绿地为源,而有客地径流汇入且对其起到削减作用的绿地为汇,路牙的设置与否是源汇转化的关键节点;减少路牙等因素的限制,促进客地径流的汇入是城市透水面由源向汇转变的关键途径;通过合理配置透水面的覆被植物、土壤类型和土层深度,合理引导径流汇入流量、流速和浓度,合理设置径流停留时间和落干时间,可以有效提升城市透水面对污染物的削减效应。
     d)以土壤盐度为例,分析探讨了降雨对城市透水面关键胁迫因子的淋溶效应。城市透水面土壤盐度在小尺度上具有时空异质性,其淋溶效应具有显著的城郊差异。本案例中的上海市区既有绿地盐化程度较低,704个表层土壤样点全部处于中度盐化以下水平;郊区滨海新建绿地盐化程度高,240个样点中,40.0%为盐土,且微域空间变异特性和斑块状盐渍化显著。市区和郊区绿地表层土壤平均变异系数分别约37.7%和67.9%。绿地土壤表层盐度季节分异显著(p<0.05),均值表现为春>冬>秋>夏,且季节间相关关系显著(p<0.01)表明存在季节协同变化趋势。中心城区既有绿地淋溶效应不显著,出水盐度处于淡水级别;而郊区新建绿地淋溶效应显著,处于混盐水级别;降雨强度和降雨量等因素对淋溶效果影响显著。
     e)临港新城集水区3类主要的非点源包括地表径流(又称土地利用污染源)、降雨以及分散排放的农村生活污水,地表径流是其最主要的非点源。近几十年来,集水区地表径流污染的产生负荷和输移通量均呈现显著增加态势,可初步划分为三个变化阶段。第一阶段为1965-1994年,非点源污染的产生负荷和输移通量总量较小,且变化较小;第二阶段为1995-2003年,非点源污染问题逐步显现;第三阶段为2004-2008年,非点源污染问题凸显。究其原因:一方面区域大规模、快速开发使得土地利用结构变化从而导致“源”产出负荷显著增加,另一方面城市汇的生态功能尚未有效发挥,绿地等“汇”对非点源的缓冲和去除效应平均仅为2.07%。
     3.论文整合系统动力学、多目标优化、情景规划、利益相关方调查、GIS等5种模型和方法,尝试构建了平原河网地区城市集水区非点源污染调控模型,并以上海市临港新城为典型案例进行实证研究。
     (1)指出平原河网地区城市集水区非点源污染调控具有五方面的不确定性:非点源产生的时空不确定性导致“源”调控的不确定性、非点源污染输移过程的不确定性导致“过程”调控的不确定性、非点源污染“汇”的不确定性导致“汇”调控的不确定性、城市集水区非点源污染的调控涉及的决策者偏好和利益相关方意愿的不确定性、城市集水区非点源污染的调控手段和途径本身具有较大的不确定性。
     (2)对于新开发区域而言,试图从土地利用结构方面对现有土地利用规划进行较大调整来实现非点源调控,可能难度极大。论文提出了从提升城市透水面“汇”的生态功能并辅以初期径流纳管措施的角度来进行非点源调控的思路。
     (3)初步探讨了系统动力学、多目标优化、情景规划、利益相关方调查、GIS等5种模型和方法的耦合机制,构建平原河网地区城市集水区非点源污染调控模型的4步耦合方法:子集水区划分和子系统分析、子集水区未来发展情景设定、集水区非点源时空模拟和预测、集水区非点源调控优化方案确定。
     (4)设定现状情景S1、功能提升情景S2-S3(考虑有效绿地和有效湿地)以及综合削减情景S4-S5(有效绿地、有效湿地和初期径流纳管的组合)等5种典型情景方案,并将上述调控模型应用于临港新城集水区,模拟结果表明:
     a)仅通过有限的功能提升措施,不辅以初期径流纳管措施,对非点源的调控效果并不显著。以2020年为例,相对于现状情景S1的COD输移通量15564 t/a和径流系数0.42,情景S2和S3分别削减了7.5%、7.8%的输移通量和1.3%、2.6%的径流系数。
     b)通过功能提升措施并辅以初期径流纳管措施,不仅实现非点源污染物输移通量的大幅度削减,还使得径流系数“零增长”。以2020年为例,相对于现状情景S1,情景S4和S5分别削减了33.3%、80.3%的输移通量和26.2%、50.6%的径流系数。
     c)土地利用结构微调优化。模型模拟不同情景方案下的2020年临港新城各子集水区用地结构与既有规划的平均相对误差较小,总体差异不显著(p>0.05),仅需对既有规划土地利用结构进行微调,从而在土地利用规划上具有可操作性。
     (4)基于系统论,从“高-中-低”三个调控等级、“源-过程-汇”三个调控程序、核心调控内容等三方面构建平原河网地区城市集水区非点源污染调控体系。针对不同区域提出差异性的平原河网地区城市集水区非点源污染的核心调控策略:以上海全市为例提出基于雨水利用的大型城市非点源污染总体调控策略,以上海城区为例提出基于增加有效绿地的老城区非点源污染调控策略;以上海临港新城为例探讨基于径流零增长的新城镇非点源污染调控策略。
As point pollution sources like industry pollution and domestic pollution have been under control, non-point sources pollution (NPS) has become the main factor on urban water quality, and received great attention from governments and researchers. In this context, process simulation and management and management of NPS have turned into a hotspot issue. Urbanization remarkably makes a great impact on the process of NPS in tidal plain with dense river network because of its special hydro-geomorphologic characteristics. Therefore, Lingang New City (LGNC) of Shanghai was taken as an example in this dissertation. From an intersection point of environment, ecology, hydrology and management science, combining theoretical research and empirical study, laboratory simulation and site monitoring, mathematical model and computer simulation, the dissertation takes the sub-watershed division as the breakthrough point, focuses on two main lines of non-point pollution, namely "source-process-sink" and "experiment-simulation-management". The dissertation illuminates the feature of NPS process, constructs a watershed-based management model and proposes methods, principles and key strategies for management of NPS in urban watershed. The main results are as follows,
     1. Based on typical water conservation zone management system in tidal plain with dense river network, the dissertation analyses characteristics of urban watershed in this area, and discusses the NPS-control-oriented zoning system from three dimensions of spatial scale, runoff path and controlling intensity. Zoning system is formed by four hierarchies:first-level watershed management is to balance relationship between study area and water conservation zones from large-scale and high-intensity by paying attention to main rivers:second-level watershed management is to regulate drainage system and function division from median scale and intensity by focusing on median rivers; third-levelwatershed management is to adjust the relation between small topographic area and watershed outlets from small-scale and low-intensity by concerning regional rivers; forth-level watershed management is for data support and mechanism exposition of NPS progress. As for LGNC, there are 1 first-level watershed,13 second-level sub-watersheds and 137 third-level sub-watersheds. Second-level watersheds are mainly in accord with the existing function zones, which may guarantee implement of management strategies.
     2. The dissertation discusses division method and process simplification method. On this basis, the dissertation represents process and features of NPS of urban watershed in tidal plain with dense river network using data by laboratory simulation and site monitoring.
     (1) The dissertation proposed the concept of Effective Pervious Areas (EPA) from aspect of NPS management compared to classical concept of Effective Impervious Area (EIA). EPA indicates the pervious area that receives and stores runoff from other areas. On this basis, the dissertation brings up the concept of Effective Green Area (EGA).
     (2) The dissertation analyses first flush effect of urban impervious area. Total level of NPS output of LGNC is lower than that of inner city of Shanghai. First flush effect of particulate pollutants is significant, but not dissolved pollutants. The concentration of particulate pollutants is much high than dissolved pollutants. It may because that LGNC is a newly-developed area. Land use type and rainfall intensity have great affect on first flush effect.
     (3) The dissertation illuminates the "source-sink" effect of urban pervious area. In theory, urban pervious area is the source as well as the sink of NPS. However, existing studies mainly focus on its sink effect.
     a) In terms of"source":surface runoff pollutant concentrations from existing green spaces in downtown are low, better than Grade V of national standard; however, surface runoff pollutant concentrations from newly-developed green spaces in suburban area are higher, inferior to national standard of Grade V, even reach up to 3.56 times of Shanghai Sewage Discharge Standard. Thus, pervious surface areas including urban green spaces can be regarded as potential pollution source, and pollution intensity is related to the location, completion time and soil origin.
     b) In terms of'sink'":urban green spaces are efficient for surface runoff pollution removal. Removal rate of COD(71.01±1.75%) is higher than TP(69.00±1.78%) and NH4+-N(64.39±1.84%). Removal effect of urban existing green spaces is more significant than suburban newly-developed green spaces (p<0.05). For different covers, effect of Ophiopogon japonicas is best, then Zoysia japonica, and exposed soil. Removal of pollutants happens mainly in soil horizon of 60cm to 80cm underground, and physical process is predominant. Moreover, pollution load, hydraulic load, detention time and timing of drainage have affect on pollution removal rate.
     c) Transformation of source and sink:In theory, urban pervious area acts as both source and sink. Non-effective pervious area functions as source, while effective pervious area functions as sink. Concretely, green spaces which have curbstones and cannot take in external runoff are sources, and green spaces which absorb and reduce pollution of external runoff are sinks. In summary, setting of curbstones is key point to change source to sink. By constructing curbstones at proper sites, disposing appropriate plant cover, soil type and soil depth, leading external runoff into green spaces in a proper velocity and volume, installing enough detention time can improve the reduction efficiency of urban pervious area.
     d) The dissertation takes soil salinity as an example to analyze leaching effect of precipitation to key element of urban pervious area. Soil salinity of urban pervious area has spatial and temporal variation in small scale, and the leaching effect differs from urban to suburban. In this study, salinity of existing urban green spaces is low. and salinity values of all 704 samples are under moderate salinity. In contrast, newly-developed green spaces are in highly salinization. Of all 240 samples, forty percent samples are saline soil, and plaque salinization is notable. Average variation coefficients of urban green spaces and suburban green spaces are 37.7%and 67.9%. Result of variance analysis shows that seasonal variance of four green-spaces is significant (p<0.05), the average value of topsoil salinity is spring>winter>fall>summer, and there is significant correlation between seasons of topsoil (p<0.01). Leaching effect of existing green spaces in center city is not significant, but situation of newly-devolped green spaces in suburban area is significant. Effluent of the former is plain water, while effluent of the latter is mixohaline. Rainfall intensity and precipitation are main factors.
     e) Three main non-point pollution sources are surface runoff (pollution from land use), rainfall and disperse rural domestic sewage. In recent decades, pollution load and transform flux are in significant increase. Change of pollution load and transform flux can be divided into three phases:the first phase (from 1965 to 1994) when load produced was not many and grew at low speed, the second phase (from 1995 to 2003) when problem of non-point pollution appeared, and the third phase (from 2004 to 2008) when the problem of non-point pollution emerged as a major issue. Rapid and large-scale development in LGNC results in change of land use structure and more pollution to be produced. On the other side, function of green space as sink should be promoted (average removal rate of 2.07%).
     3. The dissertation builds a management model combining systematic dynamics, multi-objective optimization, scenario planning, stakeholder survey and GIS, and takes LGNC as a case.
     (1) The dissertation points out that there are five aspects of uncertainty in management of NPS in urban watershed:Spatial and temporal uncertainty, source management uncertainty, process management uncertainty, sink management uncertainty, uncertainty of stakeholders and decision maker's preference and uncertainty of models themselves.
     (2) For newly-developed zone, to manage NPS by changing land use structure is really difficult. In consequence, the dissertation proposes a thought of management by raising ecological function of urban pervious area as "sink" and using sewer net to receive first flush.
     (3) The dissertation investigates coupling mechanism of systematic dynamics, multi-objective optimization, scenario planning, stakeholder survey and GIS, and proproses the four steps coupling process:sub-watershed and sub-system analysis, sub-watershed development scenarios setting, spatial and temporal simulation and prediction of watershed non-point pollution, and optimal proposal determination.
     (4) The dissertation sets five typical scenarios and applies them into simulation of LGNC. The five scenarios are current situation SI, function promotion situation S2 and S3 (considering effective green space and effective wetland), and comprehensive reduction situation S4 and S5 (considering combination of effective green space, effective wetland and sewer construction). The main results are as follows,
     a) Through limited function promotion without sewer construction, management effect is not satisfied. For example, compared to current COD transform flux of 15564t/a and runoff coefficient of 0.42, in 2020, COD transform flux and runoff coefficient decrease by 7.5% and 7.8% by S2 and 1.3% and 2.6% by S3.
     b) Through function promotion and sewer construction, NPS transform flux is drastically cut, and runoff coefficient realizes "zero growth". Compared to SI, in 2020, COD transform flux and runoff coefficient decrease by 33.3% and 80.3% by S4 and 26.2% and 50.6% by S3.
     c) Relative error between land use structure of LGNC simulated in 2020 and current planning is tiny (p>0.05). Thus, to adjust land use structure planning fractionally is operable for NPS management.
     (5) The dissertation constructs a system for NPS management of urban watershed from'high-median-low" management levels, "source-process-sink" management procedures, and key strategies based on system theory. In accordance with different urban scales, the dissertation raises differentiated non-point pollution management strategies:take Shanghai as a case to show rainfall utilization is essential at at the city or regional level, take inner-city of Shanghai as a case to show effective green area is essential for the developed area, take LGNC of Shanghai as a case to show zero-growth of runoff is essential for the newly-developed area.
引文
[1]Abdulla F.A., Al-Shareef A.W. Roof rainwater harvesting systems for household water supply in Jordan[J]. Desalination.2009,243(1-3):195-207.
    [2]Addiscott T.M., Mirza N.A. Modelling contaminant transport at catchment or regional scale[J]. Agriculture, Ecosystems & Environment.1998,67(2-3):211-221.
    [3]Aguirre A.H., Riondal S.B., Coello C., et al. Handling constraints using multiobjective optimization concepts[J]. International Journal for Numerical Methods in Engineering.2004,59(15):1989-2017.
    [4]Akhavan S., Abedi-Koupai J., Mousavi S., et al. Application of SWAT model to investigate nitrate leaching in Hamadan-Bahar Watershed, Iran[J]. Agriculture, Ecosystems & Environment.2010,139(4): 675-688.
    [5]Allen C.R., Fontaine J.J., Pope K.L., et al. Adaptive management for a turbulent future. Journal of Environmental Management[J].2010. doi:10.1016/j.jenvman.2010.11.019.
    [6]Alley W.M., Veenhuis J.E. Effective Impervious Area in Urban Runoff Modeling[J]. Journal of Hydraulic Engineering-ASCE.1983,109(2):313-319.
    [7]Amy G., Wilson L.G., Conroy A., et al. Fate of Chlorination Byproducts and Nitrogen Species during Effluent Recharge and Soil Aquifer Treatment (SAT)[J]. Water Environment Research.1993, 65(6):726-734.
    [8]Avgelis A., Papadopoulos A.M. Application of multicriteria analysis in designing HVAC systems[J]. ENERGY AND BUILDINGS.2009,41(7):774-780.
    [9]Baigorria G.A., Romero C.C. Assessment of erosion hotspots in a watershed:Integrating the WEPP model and GIS in a case study in the Peruvian Andes[J]. Environmental Modelling & SoftwareBayesian networks in water resource modelling and management.2007,22(8):1175-1183.
    [10]Barco J., Papiri S., Stenstrom M.K. First flush in a combined sewer system[J]. Chemosphere.2008, 71(5):827-833.
    [II]Barredo J.I., Kasanko M., McCormick N., et al. Modelling dynamic spatial processes:simulation of urban future scenarios through cellular automata[J]. Landscape and Urban Planning.2003,64(3): 145-160.
    [12]Beaulac M.N., Reckhow K.H. An examination of land use-nutrient export relationships[J]. Water Resources Bulletin.1982,18(6):1013-1024.
    [13]Beighley R.E., Kargar M., He Y.P. Effects of Impervious Area Estimation Methods on Simulated Peak Discharges [J]. Journal of Hydrologic Engineering.2009,14(4):388-398.
    [14]Bell N., Schuurman N., Hayes M.V. Using GIS-based methods of multicriteria analysis to construct socio-economic deprivation indices. International Journal of Health Geographics[J].2007. doi:10.1186/1476-072X-6-17.
    [15]Benetto E., Dujet C, Rousseaux P. Integrating fuzzy multicriteria analysis and uncertainty evaluation in life cycle assessment[J]. Environmental Modelling & Software.2008,23(12):1461-1467.
    [16]Bertrand-Krajewski J., Chebbo G., Saget A. Distribution of pollutant mass vs volume in stormwater discharges and the first flush phenomenon [J]. Water Research.1998,32(8):2341-2356.
    [17]Beyers C. Mobilising "community" for justice in District Six:Stakeholder politics early in the land restitution process[J]. South African Historical Journal.2007,58(1):253-276.
    [18]Bill Hicks P.E. A Cost-Benefit Analysis of Rainwater Harvesting at Commercial Facilities in Arlington County, Virginia [D]. Duke University,2008.
    [19]Booth D.B., Hartley D., Jackson R. Forest cover, impervious-surface area, and the mitigation of stormwater impacts[J]. Journal of The American Water Resources Association.2002,38(3):835-845.
    [20]Boucher A.B., Tremwel T.K., Campbell K.L. Best management practices for water quality improvement in the Lake Okeechobee watershed[J]. Ecological EngineeringPhosphorus dynamics in the Lake Okeechobee Watershed, Florida.1995,5(2-3):341-356.
    [21]Bouwer H., Lance J.C., Riggs M.S. High-Rate Land Treatment II:Water Quality and Economic Aspects of the Flushing Meadows Project[J]. Water Pollution Control Federation.1974,46(5): 844-859.
    [22]Braune M.J. Best management practices applied to urban runoff quantity and quality control[J]. Water Science and Technology.1999,39(12):117-121.
    [23]Braune M.J., Wood A. Best management practices applied to urban runoff quantity and quality control[J]. Water Science and Technology.1999,39(12):117-121.
    [24]Brezonik P.L., Stadelmann T.H. Analysis and predictive models of stormwater runoff volumes, loads, and pollutant concentrations from watersheds in the Twin Cities metropolitan area, Minnesota, USA[J]. Water Research.2002,36(7):1743-1757.
    [25]Bui T., Loebbecke C. Supporting cognitive feedback using system dynamics:A demand model of the global system of mobile telecommunication[J]. Decision Support Systems.1996,17(2):83-98.
    [26]Bystrom O. The nitrogen abatement cost in wetlands [J]. Ecological Economics.1998,26(3): 321-331.
    [27]Bystrom O., Anderssona H., Gren I. Economic criteria for usingwetlands as nitrogen sinks under uncertainty [J]. Ecological Economics.2000,35(1):35-45.
    [28]Cai A.X., Chen Z.Y., Jiang Z.Q., et al. Relationship between salinity and electrical conductivity in different saline areas of China(in Chinese)[J]. Soil.1997,29(1):54-57.
    [29]Centner T.J., Houston J.E., Keeler A.G., et al. The adoption of best management practices to reduce agricultural water contamination [J]. Limnologica-Ecology and Management of Inland Waters. 1999,29(3):366-373.
    [30]Chang Y.P., Wu C.J. Optimal multiobjective planning of large-scale passive harmonic filters using hybrid differential evolution method considering parameter and loading uncertainty [J]. IEEE Transactions on Power Delivery.2005,20(1):408-416.
    [31]Characklis G.W., Wiesner M.R. Particles, Metals, and Water Quality in Runoff from Large Urban Watershed[J]. Journal of Environmental Engineering.1997,123(8):753-759.
    [32]Che Y., Yang K., Lu Y.P., et al. Watershed management for water supply in developing world city[J]. Journal of Central South University of Technology.2009,16(S1):313-321.
    [33]Cheng C.L. Evaluating water conservation measures for Green Building in Taiwan[J]. Building and Environment.2003,38(2):369-379.
    [34]Cheng H.F., Hu Y.A., Zhao J.F. Meeting China's water shortage crisis:current practices and challenges [J]. Environmental Science & Technology.2009,43(2):240-244.
    [35]Chiles J.P., Delfiner P. Geostatistics:modeling spatial uncertainty[M]New York, USA.:John Wiley and Sons Inc.,1999.
    [36]Chilton J.C., Maidment G.G., Marriott D., et al. Case study of a rainwater recovery system in a commercial building with a large roof[J]. Urban Water.2000,1(4):345-354.
    [37]Cho J., Park S., Im S. Evaluation of Agricultural Nonpoint Source (AGNPS) model for small watersheds in Korea applying irregular cell delineation[J]. Agricultural Water Management.2008, 95(4):400-408.
    [38]CERIA. Sustainable Urban Drainage Systems:Design Manual for Scotland and Northern Ireland.[M]London, UK.:Cromwell Press,2000.
    [39]Clark I. Regularization of a semivariogram[J]. Computers & Geosciences.1977,3(2):341-346.
    [40]Clark I, Harper W.V. Practical Geostatistics 2000[M]Columbus, Ohio, USA.:Ecosse North America LLC,2000.
    [41]Clark M.J. Dealing with uncertainty:adaptive approaches to sustainable river management[J]. Aquatic Conservation:Marine and Freshwater Ecosystems.2002,12(4):347-363.
    [42]Corwin D.L., Vaughan P.J., Loague K. Modeling nonpoint source pollutants in the vadose zone with GIS[J]. Environmental Science & Technology.1997,31(8):2157-2175.
    [43]Cowden J.R., Watkins Jr D.W., Mihelcic J.R. Stochastic rainfall modeling in West Africa: Parsimonious approaches for domestic rainwater harvesting assessment[J]. Journal of Hydrology.2008, 361(1-2):64-77.
    [44]Cryer S.A., Havens P.L. Regional sensitivity analysis using a fractional factorial method for the USDA model GLEAMS[J]. Environmental Modelling and Software.1999,14(6):613-624.
    [45]Cvetkovic D., Parmee I.C. Preferences and their application in evolutionary multiobjective optimization[J]. IEEE Transactions on Evolutionary Computation.2002,6(1):42-57.
    [46]Dantus M.M., High K.A. Evaluation of waste minimization alternatives under uncertainty:a multiobjective optimization approach[J]. Computers & Chemical Engineering.1999,23(10): 1493-1508.
    [47]Dayaratne S.T., Perera B. Regionalisation of impervious area parameters of urban drainage models[J]. Urban Water Journal.2008,5(3):231-246.
    [48]De Jong Van Lier Q., Sparovek G., Flanagan D.C., et al. Runoff mapping using WEPP erosion model and GIS tools[J]. Computers & Geosciences.2005,31(10):1270-1276.
    [49]De Paz J.M., Ramos C. Simulation of nitrate leaching for different nitrogen fertilization rates in a region of Valencia (Spain) using a GIS-GLEAMS system[J]. Agriculture, Ecosystems & Environment. 2004,103(1):59-73.
    [50]Dehaan R.L., Taylor G.R. Field-derived spectra of salinized soils and vegetation as indicators of irrigation-induced soil salinization[J]. Remote Sensing of Environment.2002,80(3):406-417.
    [51]Demirel M.C., Venancio A., Kahya E. Flow forecast by SWAT model and ANN in Pracana basin, Portugal[J]. Advances in Engineering Software.2009,40(7):467-473.
    [52]Deng S.M. Energy and water uses and their performance explanatory indicators in hotels in Hong Kong[J]. Energy and Buildings.2003,35(8):775-784.
    [53]Di H.J., Trangmar B.B., Kemp R.A. Use of geostatistics in designing sampling strategies for soil survey[J]. Soil Science Society of America Journal.1989,53(4):1163-1167.
    [54]Dowd J. SWRRB a basin scale simulation model for soil and water resources management[J]. Agricultural and Forest Meteorology.1992,61(1-2):160-162.
    [55]Drewes J.E., Fox P. Fate of natural organic matter (NOM) during ground water recharge using reclaimed water[J]. Water Science and Technology.1999,40(9):241-248.
    [56]Duda A.M. Addressing Nonpoint Sources of Water Pollution Must Become an International Priority[J]. Water Science & Technology.1993,28(3):1-11.
    [57]Duke J.M., Aull-Hyde R. Identifying public preferences for land preservation using the analytic hierarchy process[J]. Ecological Economics.2002,42(1-2):131-145.
    [58]Dukes M.D., Ritter W.F. Validation of GLEAMS nutrient component for wastewater application in the Mid-Atlantic region[J]. Bioresource Technology.2000,74(2):89-102.
    [59]Dunphy A., Beecham S., Jones C., et al. "Confined water sensitive urban design (WSUD) stormwater filtration/infiltration systems for Australian conditions." Paper presented at the 10th International Conference on Urban Drainage, Copenhagen, Denmark 2005.
    [60]Ekel P.Y., Martini J., Palhares R.M. Multicriteria analysis in decision making under information uncertainty[J]. Applied Mathematics and Computation.2008,200(2):501-516.
    [61]Elshorbagy A. Learner-centred approach to teaching watershed hydrology using system dynamics[J]. International Journal of Engineering Education.2005,21(6):1203-1213.
    [62]Engstrom A.M. Characterizing water quality of urban stormwater runoff:Interactions of heavy metals and solids in Seattle residential catchments. M.S.C.E.[D]. University of Washington,2004.
    [63]Farina M., Deb K., Amato P. Dynamic multiobjective optimization problems:Test cases, approximations, and applications [J]. IEEE Transactions on Evolutionary Computation.2004,8(5): 425-442.
    [64]Fewkes A. Modelling the performance of rainwater collection systems:towards a generalised approach[J]. Urban Water.2000,1(4):323-333.
    [65]Figueira J., Greco S., Ehrogott M. Multiple Criteria Decision Analysis:State of the Art Surveys [M]New York:Springer,2005.
    [66]Frink C.R. Estimating nutrient exports to estuaries[J]. Journal of Environmental Quality.1991, 20(4):717-724.
    [67]Furumai H. Rainwater and reclaimed wastewater for sustainable urban water use[J]. Physics and Chemistry of the Earth, Parts A/B/CIntegrated Water Resources Management in a Changing World. 2008,33(5):340-346.
    [68]Ghisi E., Montibeller A., Schmidt R.W. Potential for potable water savings by using rainwater:An analysis over 62 cities in southern Brazil[J]. Building and Environment.2006a,41(2):204-210.
    [69]Ghisi E. Potential for potable water savings by using rainwater in the residential sector of Brazil[J]. Building and Environment.2006b,41(11):1544-1550.
    [70]Ghisi E., Ferreira D.F. Potential for potable water savings by using rainwater and greywater in a multi-storey residential building in southern Brazil[J]. Building and Environment.2007,42(7): 2512-2522.
    [71]Ghisi E., Tavares D.D.F., Rocha V.L. Rainwater harvesting in petrol stations in Brasilia:Potential for potable water savings and investment feasibility analysis [J]. Resources, Conservation and Recycling.2009,54(2):79-85.
    [72]Gobel P., Dierkes C., Coldewey W.G. Storm water runoff concentration matrix for urban areas[J]. Journal of Contaminant Hydro logylssues in urban hydrology:The emerging field of urban contaminant hydrology.2007,91(1-2):26-42.
    [73]Goncalves Gomes E., Pereira Estellita Lins M. Integrating geographical information systems and multi-criteria methods:a case study[J]. Annals of Operations Research.2002,116(1-4):243-269.
    [74]Gongalves J.M., Pereira L.S., Fang S.X., et al. Modelling and multicriteria analysis of water saving scenarios for an irrigation district in the upper Yellow River basin[J]. Agricultural Water Management.2007,94(1-3):93-108.
    [75]Goonetilleke A., Thomas E., Ginn S., et al. Understanding the role of land use in urban stormwater quality management[J]. Journal of Environmental Management.2005,74(1):31-42.
    [76]Goovaerts P. Geostatistical tools for characterizing the spatial variability of microbiological and physico-chemical soil properties[J]. Biology and Fertility of Soils.1998,27(315-334.
    [77]Goovaerts P. Geostatistics in soil science:state-of-the-art and perspectives[J]. Geoderma.1999, 89(1-2):1-45.
    [78]Goovaerts P. Estimation or simulation of soil properties? An optimization problem with conflicting criteria[J]. Geoderma.2000,97(3-4):165-186.
    [79]Gren I. Costs and benefits of restoring wetlands:two Swedish case studies[J]. Ecological Engineering.1995,4(2):153-162.
    [80]Gromaire-Mertz M.C., Garnaud S., Gonzalez A., et al. Characterisation of urban runoff pollution in Paris[J]. Water Science and Technology.1999,39(2):1-8.
    [81]Guo H.C., Liu L., Huang G.H., et al. A system dynamics approach for regional environmental planning and management:A study for the Lake Erhai Basin[J]. Journal of Environmental Management.2001,61(1):93-111.
    [82]Haining R.P., Kerry R., Oliver M.A. Geography, spatial data analysis, and geostatistics:an overview[J]. Geographical Analysis.2010,42(1):7-31.
    [83]Han W.S., Burian S.J. Determining Effective Impervious Area for Urban Hydrologic Modeling[J]. Journal of Hydrologic Engineering.2009,14(2):111-120.
    [84]Han Y., Lau S., Kayhanian M., et al. Correlation analysis among highway stormwater pollutants and characteristics[J]. Water Science and Technology.2006,53(2):235-243.
    [85]Hancock D. "Low impact design—a critical evaluation of long term benefits versus short term impact." Paper presented at the Proceedings of the Fourth South Pacific Conference on Stormwater and Aquatic Resource Protection, Auckland, New Zealand 2005.
    [86]Haregeweyn N., Yohannes F. Testing and evaluation of the agricultural non-point source pollution model (AGNPS) on Augucho catchment, western Hararghe, Ethiopia[J]. Agriculture, Ecosystems & Environment.2003,99(1-3):201-212.
    [87]He C., Okada N., Zhang Q., et al. Modeling urban expansion scenarios by coupling cellular automata model and system dynamic model in Beijing, China[J]. Applied Geography.2006,26(3-4): 323-345.
    [88]He M., SAKURAI K., WANG G., et al. Physico-Chemical Characteristics of the Soils Developed from Alluvial Deposits on Chongming Island in Shanghai, China[J]. Soil Science and Plant Nutrition. 2003,49(2):223-229.
    [89]Holvoet K., van Griensven A., Gevaert V., et al. Modifications to the SWAT code for modelling direct pesticide losses[J]. Environmental Modelling & Software.2008,23(1):72-81.
    [90]Jang S., Cho M., Yoon J., et al. Using SWMM as a tool for hydrologic impact assessment[J]. Desalination.2007,212(1-3):344-356.
    [91]Jenson S.K. Applications of hydrologic information automatically extracted from digital elevation models[J]. Hydrological Processes.1991,5(1):31-44.
    [92]Jeon J., Yoon C.G., Donigian J.A.S., et al. Development of the HSPF-Paddy model to estimate watershed pollutant loads in paddy farming regions[J]. Agricultural Water Management.2007,90(1-2): 75-86.
    [93]Jessel B., Jacobs J. Land use scenario development and stakeholder involvement as tools for watershed management within the Havel River Basin[J]. Limnologica.2005,35(3):220-233.
    [94]Johnes P.J. Evaluation and management of the impact of land use change on the nitrogen and phosphorus load delivered to surface waters:the export coefficient modelling approach[J]. Journal of hydrology.1996,183(3-4):323-349.
    [95]Johnes P.J., Heathwaite A.L. Modelling the impact of land use change on water quality in agricultural catchments[J]. Hydrological Processes.1997,11(3):269-286.
    [96]Johnson M.S., Coon W.F., Mehta V.K., et al. Application of two hydrologic models with different runoff mechanisms to a hillslope dominated watershed in the northeastern US:a comparison of HSPF and SMR[J]. Journal of Hydrology.2003,284(1-4):57-76.
    [97]Jones J.E., Earles T.A., Fassman E.A., et al. Urban storm-water regulations-Are impervious area limits a good idea?[J]. Journal of Environmental Engineering-ASCE.2005,131(2):176-179.
    [98]Kang J., Kayhanian M., Stenstrom M.K. Implications of a kinematic wave model for first flush treatment design[J]. Water Research.2006,40(20):3820-3830.
    [99]Kannan N., White S.M., Worrall F., et al. Hydrological modelling of a small catchment using SWAT-2000-Ensuring correct flow partitioning for contaminant modelling[J]. Journal of Hydrology. 2007,334(1-2):64-72.
    [100]Kaplan J.D., Howitt R.E., Farzinb Y.H. An information-theoretical analysis of budget-constrained nonpoint source pollution control[J]. Journal of Environmental Economics and Management.2003, 46(1):106-130.
    [101]Kim G., Yur J., Kim J. Diffuse pollution loading from urban stormwater runoff in Daejeon city, Korea[J]. Journal of Environmental Management.2007,85(1):9-16.
    [102]Kim J., Pachepsky Y.A., Shelton D.R., et al. Effect of streambed bacteria release on E. coli concentrations:Monitoring and modeling with the modified SWAT[J]. Ecological Modelling.2010, 221(12):1592-1604.
    [103]Kiss G., Varga-Puchony Z., Tolnai B., et al. The seasonal changes in the concentration of polycyclic aromatic hydrocarbons in precipitation and aerosol near Lake Balaton, Hungary[J]. Environmental Pollution.2001,114(1):55-61.
    [104]Kline J., Wichelns D. Measuring heterogeneous preferences for preserving farmland and open space[J]. Ecological Economics.1998,26(2):211-224.
    [105]Koontz T.M. We finished the plan, so now what? Impacts of collaborative stakeholder participation on land use policy[J]. POLICY STUDIES JOURNAL.2005,33(3):459-481.
    [106]Leal A.D., Legey L., Gonzalez-Araya M.C., et al. A system dynamics model for the environmental management of the Sepetiba Bay watershed, Brazil[J]. Environmental Management. 2006,38(5):879-888.
    [107]Lee J.H., Bang K.W. Characterization of urban stormwater runoff[J]. Water Research.2000, 34(6):1773-1780.
    [108]Lee J.H., Bang K.W., Ketchum L.H., et al. First flush analysis of urban storm runoff[J]. The Science of the Total Environment.2002,293(1-3):163-175.
    [109]Lee J.Y., Yang J.S., Han M.Y., et al. Comparison of the microbiological and chemical characterization of harvested rainwater and reservoir water as alternative water resources [J]. Science of The Total Environment.2010,408(4):896-905.
    [110]Leegflang M., Monster N., Van De Ven F. Design graphs for stormwater infiltration facilities[J]. Hydrological Sciences.1998,43(2):173-180.
    [111]Lenzi M.A., Di Luzio M. Surface runoff, soil erosion and water quality modelling in the Alpone watershed using AGNPS integrated with a Geographic Information System[J]. European Journal of Agronomy.1997,6(1-2):1-14.
    [112]Leone A., Ripa M.N., Uricchio V., et al. Vulnerability and risk evaluation of agricultural nitrogen pollution for Hungary's main aquifer using DRASTIC and GLEAMS models[J]. Journal of Environmental Management.2009,90(10):2969-2978.
    [113]Li H.M., Barrett M.E. Relationship between antecedent dry period and highway pollutant: conceptual models of buildup and removal processes[J]. Water Environment Research.2008,28(8): 740-747.
    [114]LI Y., SHI Z., LI F. Delineation of Site-Specific Management Zones Based on Temporal and Spatial Variability of Soil Electrical Conductivity[J]. Pedosphere.2007,17(2):156-164.
    [115]Li Z., Shao Q., Xu Z., et al. Analysis of parameter uncertainty in semi-distributed hydrological models using bootstrap method:A case study of SWAT model applied to Yingluoxia watershed in northwest China[J]. Journal of Hydrology.2010,385(1-4):76-83.
    [116]Liu J., Zhang L., Zhang Y., et al. Validation of an agricultural non-point source (AGNPS) pollution model for a catchment in the Jiulong River watershed, China[J]. Journal of Environmental Sciences.2008,20(5):599-606.
    [117]Liu Y., Guo H.C., Wang L.J., et al. Dynamic phosphorus budget for lake-watershed ecosystems[J]. Journal of Environmental Sciences-China.2006,18(3):596-603.
    [118]Liu Y., Guo H.C., Zhang Z.X., et al. An optimization method based on scenario analysis for watershed management under uncertainty [J]. Environmental Management.2007a,39(5):678-690.
    [119]Liu Y., Lv X.J., Qin X.S., et al. An integrated GIS-based analysis system for land-use management of lake areas in urban fringe[J]. LANDSCAPE AND URBAN PLANNING.2007b, 82(233-246.
    [120]Ma Q.L., Hook J.E., Wauchope R.D. Evapotranspiration predictions:a comparison among GLEAMS, Opus, PRZM-2, and RZWQM models in a humid and thermic climate[J]. Agricultural Systems.1999,59(1):41-55.
    [121]Malmqvist P.A. Strategic planning of sustainable urban waster management[M]London:IWA Publishing,2006.
    [122]Martin C., Ruperd Y., Legret M. Urban stormwater drainage management:The development of a multicriteria decision aid approach for best management practices[J]. European Journal of Operational Research.2007,181(1):338-349.
    [123]Matheron G. Principles of geostatistics[J]. Economic Geology.1963,58(8):1246-1266.
    [124]Mays L.W. Stormwater collection systems design handbook[M]New York, USA:McGraw-Hill, 2001.
    [125]Mbilinyi B.P., Tumbo S.D., Mahoo H.F., et al. Indigenous knowledge as decision support tool in rainwater harvesting[J]. Physics and Chemistry of the Earth, Parts A/B/CIntegrated Water Resources Management (IWRM) and the Millennium Development Goals:Managing Water for Peace and Prosperity.2005,30(11-16):792-798.
    [126]McAlister T. National Guidelines for Evaluating Water Sensitive Urban Design(WSUD)[R].BMT WBM Pty Ltd,2007.
    [127]McFadden J.E., Hiller T.L., Tyre A.J. Evaluating the efficacy of adaptive management approaches:Is there a formula for success? Journal of Environmental Management [J].2010. doi: 10.1016/j.jenvman.2010.10.038.
    [128]Melbourne Water. WSUD engineering procedures:stormwater[M]Melboume, Australia:CSIRO publishing,2005.
    [129]Miettinen K., Makela M.M. Synchronous approach in interactive multiobjective optimization[J]. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH.2006,170(3):909-922.
    [130]Mohammed H., Yohannes F., Zeleke G. Validation of agricultural non-point source (AGNPS) pollution model in Kori watershed, South Wollo, Ethiopia[J]. International Journal of Applied Earth Observation and Geoinformation.2004,6(2):97-109.
    [131]Morari F., Lugato E., Borin M. An integrated non-point source model-GIS system for selecting criteria of best management practices in the Po Valley, North Italy[J]. Agriculture, Ecosystems& Environment.2004,102(3):247-262.
    [132]Mullem J.A.V. Application of the CREAMS model at a contaminated industrial site[J]. Journal of Soil and Water Conservation.1990,45(5):577-580.
    [133]Nasr A., Bruen M., Jordan P., et al. A comparison of SWAT, HSPF and SHETRAN/GOPC for modelling phosphorus export from three catchments in Ireland[J]. Water Research.2007,41(5): 1065-1073.
    [134]Nidumolu U.B., van Keulen H., Lubbers M., et al. Combining Interactive Multiple Goal Linear Programming with an inter-stakeholder communication matrix to generate land use options[J]. ENVIRONMENTAL MODELLING & SOFTWARE.2007,22(1):73-83.
    [135]NRC (The National Research Council of USA). Urban stormwater management in the United States[R]. Washington, D.C.:The National Academies Press,2008.
    [136]Nyhan J.W. Calibration of the CREAMS model for landfill cover designs limiting infiltration of precipitation at waste repositories[J]. Hazardous waste and hazardous materials.1990,7(2):169-184.
    [137]O'Callaghan J.F., Mark D.M. The extraction of drainage networks from digital elevation data[J]. Computer Vision Graphics and Image Processing.1984,28(3):323-344.
    [138]O'Connell I.J., Keller C.P. Design of decision support for stakeholder-driven collaborative land valuation[J]. Environment and Planning B-Planning & Design.2002,29(4):607-628.
    [139]Omerinik J.M. The influence of land use on stream nutrient level. USEPA Ecological Research Series EPA-60013-76-014[R]. Corvallis, Oregon:USEPA,1976.
    [140]Pandey A., Chowdary V.M., Mal B.C., et al. Runoff and sediment yield modeling from a small agricultural watershed in India using the WEPP model[J]. Journal of Hydrology.2008,348(3-4): 305-319.
    [141]Park S.Y., Lee K.W., Park I.H., et al. Effect of the aggregation level of surface runoff fields and sewer network for a SWMM simulation[J]. Desalination 10th IWA International Specialized Conference on Diffuse Pollution and Sustainable Basin Management-18-22 September 2006, Istanbul, Turkey,10th IWA International Specialized Conference on Diffuse Pollution and Sustainable Basin Management.2008,226(1-3):328-337.
    [142]Patela M., Kok K., Rothman D.S. Participatory scenario construction in land use analysis:An insight into the experiences created by stakeholder involvement in the Northern Mediterranean[J]. LAND USE POLICY.2007,24(3):546-561.
    [143]Pekarova P., Konicek A., Miklanek P. Testing of AGNPS model application in Slovak microbasins[J]. Physics and Chemistry of the Earth, Part B:Hydrology, Oceans and Atmosphere.1999, 24(4):303-305.
    [144]Peterson E.W., Wicks C.M. Assessing the importance of conduit geometry and physical parameters in karst systems using the storm water management model (SWMM)[J]. Journal of Hydrology.2006,329(1-2):294-305.
    [145]PGC PrinceGeorge's County, Maryland. Low Impact Development Design Manual[R].1997.
    [146]PGC PrinceGeorge's County, Maryland. Low Impact Development Design Strategies:An Integrated Design Approach.[R].1999.
    [147]Picard R.R., Cook R.D. Cross-Validation of Regression Models[J]. Journal of the American Statistical Association.1984,79(387):575-583.
    [148]Powell S.L., Cohen W.B., Yang Z., et al. Quantification of impervious surface in the Snohomish Water Resources Inventory Area of Western Washington from 1972-2006[J]. Remote Sensing of Environment.2008,112(4):1895-1908.
    [149]Pozdnyakova L., Zhang R. Geostatistical Analyses of Soil Salinity in a Large Field[J]. Precision Agriculture.1999,1(2):153-165.
    [150]Qi C, Chang N. System dynamics modeling for municipal water demand estimation in an urban region under uncertain economic impacts[J]. Journal of Environmental Management.2011,92(6): 1628-1641.
    [151]Rao N.S., Easton Z.M., Schneiderman E.M., et al. Modeling watershed-scale effectiveness of agricultural best management practices to reduce phosphorus loading[J]. Journal of Environmental Management.2009,90(3):1385-1395.
    [152]Reckhow K.H., Simpson J.T. A procedure using modeling and error analysis for the prediction of lake phosphorus concentration from land use information [J]. Canadian Journal of Fisheries and Aquatic Sciences.1980,37(9):1439-1448.
    [153]Ribarova I., Ninov P., Cooper D. Modeling nutrient pollution during a first flood event using HSPF software:Iskar River case study, Bulgaria[J]. Ecological Modelling.2008,211(1-2):241-246.
    [154]Rode M., Frede H.G. Testing AGNPS for soil erosion and water quality model ling in agricultural catchments in Hesse (Germany)[J]. Physics and Chemistry of the Earth, Part B:Hydrology, Oceans and Atmosphere.1999,24(4):297-301.
    [155]RUTH B., LENNARTZ B. Spatial Variability of Soil Properties and Rice Yield Along Two Catenas in Southeast China[J]. Pedosphere.2008,18(4):409-420.
    [156]Ryan A.M., Spash C.L., Measham T.G. Socio-economic and psychological predictors of domestic greywater and rainwater collection:Evidence from Australia[J]. Journal of Hydrology.2009, 379(1-2):164-171.
    [157]Sadeghi S.H., Jalili K., Nikkami D. Land use optimization in watershed scale[J]. Land Use Policy.2009,26(2):186-193.
    [158]Saleh M., Oliva R., Kampmann C.E., et al. A comprehensive analytical approach for policy analysis of system dynamics models[J]. European Journal of Operational Research.2010,203(3): 673-683.
    [159]Sauer T.J., Cambardella C.A., Meek D.W. Spatial variation of soil properties relating to vegetation changes[J]. Plant and Soil.2006,280(1-2):1-5.
    [160]Schwilch G., Bachmann F., Liniger H.P. Appraising and selecting conservation measures to mitigate desertification and land degradation based on stakeholder participation and global best practices[J]. LAND DEGRADATION & DEVELOPMENT.2009,20(3):308-326.
    [161]Sharifan R.A., Roshan A., Aflatoni M., et al. Uncertainty and Sensitivity Analysis of SWMM Model in Computation of Manhole Water Depth and Subcatchment Peak Flood[J]. Procedia-Social and Behavioral SciencesSixth International Conference on Sensitivity Analysis of Model Output.2010, 2(6):7739-7740.
    [162]Shaver E. Low Impact Design Manual for the Auckland Region[R].Auckland Regional Council, New Zealand,2000.
    [163]Shen Z.Y., Gong Y.W., Li Y.H., et al. A comparison of WEPP and SWAT for modeling soil erosion of the Zhangjiachong Watershed in the Three Gorges Reservoir Area[J]. Agricultural Water Management.2009,96(10):1435-1442.
    [164]Shi G., Chen Z., Xu S., et al. Salinity and Persistent Toxic Substances in Soils from Shanghai, China[J]. Pedosphere.2009,19(6):779-789.
    [165]Sieker F. On-site Stormwater Management as an Alternative to Conventional Sewer Systems:A New Concept Spreading in Germany[J]. Water Science and Technology.1998,38(10):65-71.
    [166]Sieker H., Klein M. Best management practices for stormwater-runoff with alternative methods in a large urban catchment in Berlin, Germany[J]. Water Science and Technology.1998,38(10):91-97.
    [167]Smith D., Li J., Banting D. A PCSWMM/GIS-based water balance model for the Reesor Creek watershed[J]. Atmospheric Research.2005,77(1-4):388-406.
    [168]Solecki W.D., Oliveri C. Downscaling climate change scenarios in an urban land use change model[J]. Journal of Environmental Management.2004,72(1-2):105-115.
    [169]Soranno P.A., Hubler S.L., Carpenter S.R., et al. Phosphorus Loads to Surface Waters:A Simple Model to Account for Spatial Pattern of Land Use[J]. Ecological Applications.1996,6(3):865-878.
    [170]SPSS Inc. PASW statistics 18 user manuals. Available at: http://support.spss.com/ProductsExt/Statistics/Documentation/18/clientindex.html#UManuals [accessed September,2010]
    [171]Stave K.A. A system dynamics model to facilitate public understanding of water management options in Las Vegas, Nevada[J]. Journal of Environmental Management.2003,67(4):303-313.
    [172]Stephen R.C., David L., Arun S.M. Feasibility of point-nonpoint source trading formanaging agricultural pollutant loadings to coastal waters[J]. Water Resources Research.1994,30(10): 2825-2836.
    [173]Strager M.P., Rosenberger R.S. Incorporating stakeholder preferences for land conservation: Weights and measures in spatial MCA[J]. Ecological Economics.2006,58(1):79-92.
    [174]Sturm M., Zimmermann M., Schutz K., et al. Rainwater harvesting as an alternative water resource in rural sites in central northern Namibia[J], Physics and Chemistry of the Earth, Parts A/B/C9th WaterNet/WARFSA/GWP-SA Symposium:Water and Sustainable Development for Improved Livelihoods.2009,34(13-16):776-785.
    [175]Suryani E., Chou S., Chen C. Air passenger demand forecasting and passenger terminal capacity expansion:A system dynamics framework[J]. Expert Systems with Applications.2010,37(3): 2324-2339.
    [176]Taebi A., Droste R.L. Pollution loads in urban runoff and sanitary wastewater[J]. Science of The Total Environment.2004,327(1-3):175-184.
    [177]Tarn V.W.Y., Tam L., Zeng S.X. Cost effectiveness and tradeoff on the use of rainwater tank:An empirical study in Australian residential decision-making[J]. Resources, Conservation and Recycling. 2010,54(3):178-186.
    [178]Tao K., Haozhong C., Zechun H., et al. Multiobjective planning of open-loop MV distribution networks using ComGIS network analysis and MOGA[J]. Electric Power Systems Research.2009, 390-398.
    [179]Tao Z. Scenarios of China's oil consumption per capita (OCPC) using a hybrid Factor Decomposition-System Dynamics (SD) simulation[J]. Energy.2010,35(1):168-180.
    [180]Taylor G.D., Fletcher T.D., Wong T.H.F., et al. Nitrogen composition in urban runoff implications for stormwater management[J]. Water Research.2005,39(10):1982-1989.
    [181]Teemusk A., Mander U. Rainwater runoff quantity and quality performance from a greenroof: The effects of short-term events[J]. Ecological Engineering.2007,30(3):271-277.
    [182]Thompson B.P., Bank L.C. Use of system dynamics as a decision-making tool in building design and operation[J]. Building and Environment.2010,45(4):1006-1015.
    [183]Thurston K.A. Lead and petroleum hydrocarbon changes in an urban wetland receiving stormwaterrunoff[J]. Ecological Engineering.1999,12(3-4):387-399.
    [184]Tidwell V.C., Passell H.D., Conrad S.H., et al. System dynamics modeling for community-based water planning:Application to the Middle Rio Grande[J]. Aquatic Sciences.2004,66(4):357-372.
    [185]Ullrich A., Volk M. Application of the Soil and Water Assessment Tool (SWAT) to predict the impact of alternative management practices on water quality and quantity[J]. Agricultural Water Management.2009,96(8):1207-1217.
    [186]USEPA Low Impact Development (LID):A Literature Review. EPA-841-B-00-005[R].2000.
    [187]USEPA National management measures to control nonpoint source pollution from urban area[R].2005.
    [188]Van Roon M. Emerging approaches to urban ecosystem management:The potential of low impact urban design and development principles[J]. Journal of Environmental Assessment Policy and Management.2005,7(1):125-148.
    [189]Van Roon M. Water localisation and reclamation:Steps towards low impact urban design and development[J]. Journal of Environmental Management.2007,83(4):437-447.
    [190]Van Roon M., Van Roon H. Low impact urban design and development:the big picture[M]Lincoln, New Zealand:Manaaki Whenua Press,2009.
    [191]Vernon B., Tiwari R. Place-Making through Water Sensitive Urban Design[J]. Sustainability. 2009,29(1):789-814.
    [192]Walling D.E., He Q., Whelan P.A. Using 137Cs measurements to validate the application of the AGNPS and ANSWERS erosion and sediment yield models in two small Devon catchments[J]. Soil and Tillage Research.2003,69(1-2):27-43.
    [193]WANG J., LU H., PENG H. System Dynamics Model of Urban Transportation System and Its Application[J]. Journal of Transportation Systems Engineering and Information Technology.2008, 8(3):83-89.
    [194]Wang P., Linker L.C. A correction of DIN uptake simulation by Michaelis-Menton saturation kinetics in HSPF watershed model to improve DIN export simulation[J]. Environmental Modelling & Software.2006,21(1):45-60.
    [195]Wattage P., Mardle S. Stakeholder preferences towards conservation versus development for a wetland in Sri Lanka[J]. Journal of Environmental Management.2005,77(2):122-132.
    [196]Webster R., Oliver M.A. Geostatistics for Environmental Scientists (Statistics in Practice)[M]Hoboken, NJ, USA:Wiley,2007.
    [197]WEINDORF D.C., ZHU Y. Spatial Variability of Soil Properties at Capulin Volcano, New Mexico, USA:Implications for Sampling Strategy[J]. Pedosphere.2010,20(2):185-197.
    [198]Weng Y., Gong P., Zhu Z. A Spectral Index for Estimating Soil Salinity in the Yellow River Delta Region of China Using EO-1 Hyperion Data[J]. Pedosphere.2010,20(3):378-388.
    [199]Williams B.K. Adaptive management of natural resources--framework and issues. Journal of Environmental Management[J].2010. doi:10.1016/j.jenvman.2010.10.041.
    [200]Wilson I., William K. Ralston J.R. The Scenario Planning Handbook:Developing Strategies in Uncertain Times[M]Stamford, Connecticut, USA:CENGAGE Learning,2006.
    [201]Wilson S., Bray R., Cooper P. Sustainable Drainage Systems[R]. London, UK.:Hydraulic, Structural and Water Quality Advice. Construction Industry Research and Information Association (CIRIA),2004.
    [202]WSDE Washington State Department of Ecology. Standard Operating Procedure for Calculating Pollutant Loads for Stormwater Discharges (ECY004),2009.
    [203]Wu S.M., Huang G.H., Guo H.C. An interactive inexact-fuzzy approach for multiobjective planning of water resource systems[J]. Water Science and Technology.1997,36(5):235-242.
    [204]Xiang W.N., Clarke K.C. The use of scenarios in land-use planning[J]. Environment and Planning B:Planning and Design.2003,30(6):885-909.
    [205]Yang J.S., Artigas F.J. Estimating Impervious Surfaces Area of Urban Watersheds Using ASTER Data[J]. Journal of Environmental Informatics.2008,12(1):1-8.
    [206]Yang Q., Meng F., Zhao Z., et al. Assessing the impacts of flow diversion terraces on stream water and sediment yields at a watershed level using SWAT model[J]. Agriculture, Ecosystems & Environment.2009,132(1-2):23-31.
    [207]Yeh S.C., Wang C.A., Yu H.C. Simulation of soil erosion and nutrient impact using an integrated system dynamics model in a watershed in Taiwan[J]. Environmental Modelling & Software.2006, 21(7):937-948.
    [208]Yin X., Saha U.K., Ma L.Q. Effectiveness of best management practices in reducing Pb-bullet weathering in a shooting range in Florida[J]. Journal of Hazardous Materials.2010,179(1-3):895-900.
    [209]Zaghloul N.A., Abu Kiefa M.A. Neural network solution of inverse parameters used in the sensitivity-calibration analyses of the SWMM model simulations[J]. Advances in Engineering Software.2001,32(7):587-595.
    [210]Zhang J., Ross M., Trout K., et al. Calibration of the HSPF model with a new coupled FT ABLE generation method[J]. Progress in Natural Science.2009b,19(12):1747-1755.
    [211]Zhang X., Srinivasan R., Bosch D. Calibration and uncertainty analysis of the SWAT model using Genetic Algorithms and Bayesian Model Averaging[J]. Journal of Hydrology.2009a,374(3-4): 307-317.
    [212]Zhengquan W. Geostatistics and its application in Ecology (in Chinese)[M]Beijing, China: Science Press,1999.
    [213]Zhou Y.Y., Wang Y.Q., Gold A.J., et al. Modeling watershed rainfall-runoff relations using impervious surface-area data with high spatial resolution[J]. Hydrogeology Journal.2010,18(6): 1413-1423.
    [214]白义琴,阮关心,张宏伟,等.平原河网地区土地利用生态适宜性评价——以上海市张江功能区域为例[J].环境科学与技术.2010,33(5):173-178.
    [215]包雄伟.上海临港新城:21世纪新城规划实施模式的有益探索[J].上海城市规划.2010,1):19-23.
    [216]毕华松,崔心红,陈国霞,等.上海临港新城滨海盐渍土壤年内盐水动态及其分析[J].安徽农业科学.2007,35(34):11149-11151.
    [217]蔡明,李怀恩,庄咏涛,等.改进的输出系数法在流域非点源污染负荷估算中的应用[J].水利学报.2004,7):40-45.
    [218]常静,刘敏,许世远,等.上海城市降雨径流污染时空分布与初始冲刷效应[J].地理研究.2006,26(6):994-1002.
    [219]常静.城市地表灰尘-降雨径流系统污染物迁移过程与环境效应[D].华东师范大学,2007.
    [220]车越.中国东部平原河网地区水源地的环境管理:理论、方法与实践[D].华东师范大学,2005.
    [221]车越,张明成,杨凯.基于SD模型的崇明岛水资源承载力评价与预测[J].华东师范大学学报:自然科学版.2006,6):67-74.
    [222]车越,吴阿娜,杨凯.中国东部平原河网地区水源地环境管理的理论框架[J].华东师范大学学报:自然科学版.2007,2):111-121.
    [223]陈丁江.流域非点源污染物输移通量与总量控制研究[D].浙江大学,2007.
    [224]陈国湖.农业非点源污染模型AGNPS及GIS的应用[J].人民长江.1998,29(4):20-22.
    [225]陈怀生,许振成.概念性非点源污染动态模型(CNPDM)及其应用研究[J].环境科学研究.1990,3(6):29-35.
    [226]陈巍,陈邦本.滨海盐土脱盐过程中pH变化及碱化问题研究[J].土壤学报.2000,37(4):521-528.
    [227]陈蔚镇,朱俊,樊正球,等.上海临港新城总体规划的生态学思考[J].城市规划.2007,31(6):32-38.
    [228]陈宗慧,胡萍,邵燕萍,等.上海嘉定区几种主要农业土壤的理化特征[J].上海交通大学学报:农业科学版.2003,21(4):313-319.
    [229]程红光,郝芳华,任希岩,等.不同降雨条件下非点源污染氮负荷入河系数研究[J].环境科学学报.2006,26(3):392-397.
    [230]程江,吴阿娜,车越,等.平原河网地区水体黑臭预测评价关键指标研究[J].中国给水排水.2006,22(9):18-22.
    [231]程江.上海中心城区土地利用/土地覆被变化的环境水文效应研究[D].2007a.
    [232]程江,徐启新,杨凯,等.国外城市雨水资源利用管理体系的比较及启示[J].中国给水排水.2007b,23(12):68-72.
    [233]程江,杨凯,吕永鹏,等.城市绿地削减降雨地表径流污染效应的试验研究[J].环境科学.2009a,30(11):3236-3242.
    [234]程江,杨凯,黄民生,等.下凹式绿地对城市降雨径流污染的削减效应[J].中国环境科学.2009b,29(6):611-616.
    [235]程江,吕永鹏,黄小芳,等.上海中心城区合流制排水系统调蓄池环境效应研究[J].环境科学.2009c,30(08):2234-2240.
    [236]程江,杨凯,黄小芳,等.上海中心城区苏州河沿岸排水系统降雨径流水文水质特性研究[J].环境科学.2009d,30(07):1893-1900.
    [237]程文辉,王船海,朱琰.太湖流域模型[M].南京:河海大学出版社,2006.
    [238]崔和瑞,赵黎明,王伟.基于系统动力学机制的县域土地资源利用系统研究[J].河北农业大学学报.2004,27(1):96-99.
    [239]崔祥民,梅强.基于系统动力学的产业集群演进研究[J].科技管理研究.2010,8):213-215.
    [240]戴斌,徐国勋.上海住宅小区雨水利用的特征分析[J].中国给水排水.2007,23(2):75-77.
    [241]戴全裕.暴雨径流对河、湖沉积物中重金属影响的初步探讨[J].海洋湖沼通报.1988,1):39-43.
    [242]单保庆,白颖.小流域磷污染物非点源输出的人工降雨模拟研究[J].环境科学学报.2000,20(1):33-37.
    [243]单保庆,陈庆锋,尹澄清.塘-湿地组合系统对城市旅游区降雨径流污染的在线截控作用研究[J].环境科学学报.2006,26(7):1068-1075.
    [244]单媛媛,李瑞,张骏芳,等.平原河网地区河流健康评价指标体系构建[J].水科学与工程技术.2010,4):17-19.
    [245]丁晓雯,刘瑞民,沈珍瑶.基于水文水质资料的非点源输出系数模型参数确定方法及其应用[J].北京师范大学学报:自然科学版.2006,42(5):534-538.
    [246]范丽丽,沈珍瑶,刘瑞民,等.基于SWAT模型的大宁河流域非点源污染空间特性研究[J].水土保持通报.2008,28(4):133-137.
    [247]方海兰,陈玲,黄懿珍,等.上海新建绿地的土壤质量现状和对策[J].林业科学.2007,43(A01):89-94.
    [248]高成康,包存宽,蒋大和,等.基于SD的水质型缺水区水系统的模拟分析——以上海杨浦区为例[J].地理研究.2007,26(5):967-974.
    [249]高扬,朱波,汪涛,等.估算紫色土流域地下水非点源污染负荷的降雨量参数法[J].农业环境科学学报.2010,29(2):352-356.
    [250]葛怀凤,秦大庸,周祖吴,等.天津市非点源污染物空间分布规律研究[J].人民黄河.2010,32(3):41-42.
    [251]耿玉琴.平原河网地区地表水资源量估算方法探讨[J].海河水利.2003a,5):33-34.
    [252]耿玉琴.平原河网地区设计暴雨方法探讨[J].山东师范大学学报:自然科学版.2003b,18(3):56-58.
    [253]古一帆,何明,李进玲,等.上海奉贤区土壤理化性质与重金属含量的关系[J].上海交通大学学报:农业科学版.2009,6):601-605.
    [254]国家环境保护总局.水和废水监测分析方法(第四版)[M].北京:中国环境科学出版社,2006.
    [255]韩冰,王效科,欧阳志云.城市面源污染特征的分析[J].水资源保护.2005a,21(2):1-4.
    [256]韩冰,王效科,欧阳志云.北京市城市非点源污染特征的研究[J].中国环境监测.2005b,21(6):63-65.
    [257]何春阳,史培军,陈晋,等.基于系统动力学模型和元胞自动机模型的土地利用情景模型研究[J].中国科学:D辑.2005,35(5):464-473.
    [258]贺瑞敏,张建云,陆桂华.我国非点源污染研究进展与发展趋势[J].水文.2005,25(4):10-13.
    [259]洪华生,黄金良,张珞平,等AnnAGNPS模型在九龙江流域农业非点源污染模拟应用[J].环境科学.2005,26(4):63-69.
    [260]洪克险.论面源污染控制在城市水污染治理中的重要性——上海面源污染现状及思考[J].中国勘察设计.2008,10):55-58.
    [261]洪小康,李怀恩.水质水量相关法在非点源污染负荷估算中的应用[J].西安理工大学学报.2000,16(4):384-386.
    [262]胡雪涛,陈吉宁,张天柱.非点源污染模型研究[J].环境科学.2002,23(03):124-128.
    [263]胡远安,程声通,贾海峰.芦溪流域非点源污染物流失的一般规律[J].环境科学.2004,25(6):108-112.
    [264]华楠,江景波.城市土地利用系统动态分析模型[J].同济大学学报:自然科学版.1997,25(1):92-97.
    [265]黄国勇,陈兴鹏.甘南藏族自治州土地承载力的系统动力学分析[J].兰州大学学报:自然科学版.2003,39(4):75-79.
    [266]黄强,殷志刚,等.两种覆盖方式下的土壤溶液盐分含量变化[J].干旱区地理.2001,24(1):52-56.
    [267]黄沈发,王敏,车越,等.平原河网地区水源地水质对土地利用变化的响应——以黄浦江上游水源地为例[J].生态与农村环境学报.2006,22(4):14-19.
    [268]黄锡荃.水文学[M].北京:高等教育出版社,2004.
    [269]姜听,马鸣超,李俊,等.用DGGE技术分析污水人工快速渗滤系统中微生物种群分布[J].微生物学通报.2007,34(06):1179-1183.
    [270]蒋颖,王学军,胡连伍,等.流域总量控制下的农业非点源污染控制方案及其风险分析——以杭埠-丰乐河流域为例[J].农业环境科学学报.2007,(03)):807-812.
    [271]焦荔USLE模型及营养物流失方程在西湖非点源污染…[J].环境污染与防治.1991,13(6):5-8.
    [272]金蕾,华蕾,荆红卫,等.非点源污染负荷估算方法研究进展及对北京市的应用[J].环境污染与防治.2010,4):72-77.
    [273]金相灿.中国湖泊环境[M].北京:海洋出版社,1995.
    [274]康瑛,陈志刚.平原河网地区水资源配置仿真模拟模型研究[J].水资源保护.2007,23(5):31-34.
    [275]柯强,赵静,王少平,等.最大日负荷总量(TMDL)技术在农业面源污染控制与管理中的应用与发展趋势[J].生态与农村环境学报.2009,25(1):85-91.
    [276]赖格英.太湖流域1960s-1990s营养物质输移的评估研究——基于分布式环境水文模型SWAT的数值模拟[D].中国科学院南京地理与湖泊研究所,2005.
    [277]郎海鸥,王文杰,王维,等.基于土地利用变化的小江流域非点源污染特征[J].环境科学研究.2010,9):1158-1166.
    [278]李昌峰,冯学智,赵锐.流域水系自动提取的方法和应用[J].湖泊科学.2003,15(3):205-212.
    [279]李贵宝,尹澄清,等.中国非点源污染的现状、问题与解决对策[J].中国水土保持.2002,7):15.
    [280]李国斌,王焰新,等.基于暴雨径流过程监测的非点源污染负荷定量研究[J].环境保护.2002,5):46-48.
    [281]李贺,石峻青,沈刚,等.高速公路雨水径流重金属污染特性研究[J].环境科学.2009,6):1621-1625.
    [282]李家科,李怀恩,李亚娇,等.基于AnnAGNPS模型的陕西黑河流域非点源污染模拟[J].水土保持学报.2008a,22(6):81-88.
    [283]李家科,刘健,秦耀民,等.基于SWAT模型的渭河流域非点源氮污染分布式模拟[J].西安理工大学学报.2008b,24(3):278-285.
    [284]李俊奇,邝诺,刘洋,等.北京城市雨水利用政策剖析与启示[J].中国给水排水.2008,24(12):75-78.
    [285]李俊然,陈利顶.土地利用结构对非点源污染的影响[J].中国环境科学.2000,20(6):506-510.
    [286]李清河,李昌哲,齐实,等.流域降雨径流路径的数字模拟技术[J].地理研究.2000,19(2):209-216.
    [287]李耀初,吴淮,罗伟华.惠阳城区降雨径流重金属污染特征研究:Ⅰ.地表堆积物重金属含量分析[J].环境科学研究.2008a,03):51-56.
    [288]李耀初,吴淮,罗伟华.惠阳城区降雨径流重金属污染特征研究:Ⅱ.重金属污染负荷估算[J].环境科学研究.2008b,03):57-60.
    [289]梁博,王晓燕,曹利平.最大日负荷总量计划在非点源污染控制管理中的应用[J].水资源保护.2004,4):37-41.
    [290]林积泉,马俊杰,王伯铎,等.城市非点源污染及其防治研究[J].环境科学与技术.2004,27(B08):63-65.
    [291]刘克强,李敏.平原河网地区圩区建设与规划的几点思考[J].水利规划与设计.2009,5):20-21.
    [292]刘瑞民,杨志峰,丁晓雯,等.土地利用/覆盖变化对长江上游非点源污染影响研究[J].环境科学.2006,27(12):2407-2414.
    [293]刘瑞民,沈珍瑶,丁晓雯,等.应用输出系数模型估算长江上游非点源污染负荷[J].农业环 境科学学报.2008,27(2):677-682.
    [294]刘瑞民,何孟常,王秀娟.大辽河流域上游非点源污染输出风险分析[J].环境科学.2009,3):663-667.
    [295]刘维德,蔡世忠.系统动力学在河南省黄淮海平原土地利用总体规划中的应用研究[J].地域研究与开发.1989,8(4):59-60.
    [296]龙怀玉,张万钧.天津滨海园林绿化中土壤盐分的演变规律[J].北京林业大学学报.2000,22(5):45-48.
    [297]龙天渝,梁常德,李继承,等.基于SLURP模型和输出系数法的三峡库区非点源氮磷负荷预测[J].环境科学学报.2008,28(3):574-581.
    [298]吕永鹏,车越,赵军,等.贵州省黔东南苗族侗族自治州水资源可持续利用策略[J].自然资源学报.2009,24(06):1004-1013.
    [299]骆惊,许菁芸,胡莉莉.临港新城的规划实施评估与发展建议[J].上海城市规划.2009a,4):39-42.
    [300]骆惊.临港新城:城市规划技术探索的最佳实践区[J].上海城市规划.2009b,4):56-60.
    [301]马蔚纯,陈立民,李建忠,等.水环境非点源污染数学模型研究进展[J].地球科学进展.2003,18(3).
    [302]毛新伟,石亚东,高琦.太湖流域平原河网地区水土流失及治理措施[J].东北水利水电.2007,25(6):55-56.
    [303]梅立永,赵智杰,黄钱,等.小流域非点源污染模拟与仿真研究——以HSPF模型在西丽水库流域应用为例[J].农业环境科学学报.2007,26(1):64-70.
    [304]孟春红,赵冰AGNPS模型在小流域农业非点源污染中的应用[J].长江科学院院报.2008,25(4):24-27.
    [305]孟李美.上海临港新城产业发展模式研究[J].科技和产业.2010,10(6):6-9.
    [306]聂发辉,李田,王朔.上海市公路雨水径流中重金属的形态及分布特征[J].湖南大学学报(自然科学版).2009,03):76-80.
    [307]宁静,李田.上海市降雨特性统计与雨水存储池容积计算[J].中国给水排水.2006,22(4):48-51.
    [308]潘沛,刘凌,梁威.非点源污染模型ANSWERS-2000的水文子模型研究[J].水土保持研究.2008,15(1):103-106.
    [309]庞靖鹏,徐宗学,刘昌明,等.基于GIS和USLE的非点源污染关键区识别[J].水土保持学报.2007,21(2):170-174.
    [310]秦承志,朱阿兴,李宝林,等.基于栅格DEM的多流向算法述评[J].地学前缘.2006,13(3):91-98.
    [311]阮仁良.上海市水环境研究[M].北京:科学出版社,2000.
    [312]沈涛,刘良云,马金峰,等.基于L—THIA模型的密云水库地区非点源污染空间分布特征[J].农业工程学报.2007,23(5):62-68.
    [313]沈雪娇,杨侃,常蒲婷,等.改进的径流—水质非点源污染预测模型研究[J].水电能源科学.2009,27(5):34-36.
    [314]盛丽敏,邹伟国,张辰,等.城市雨水浅层地下蓄渗技术及其应用研究[J].城市道桥与防洪.2008,6(6):44-47.
    [315]孙浩,达庆利.电子类产品回收再制造能力与二手市场需求相协调的研究——以电视机为例[J].管理工程学报.2010,3):90-97.
    [316]孙坚,戴斌.上海居住小区雨水利用现状的分析[J].住宅科技.2006,9):29-32.
    [317]覃永良,袁雯.平原河网地区环境流量计算特征及评价方法研究[J].华东师范大学学报:自 然科学版.2009,6):71-78.
    [318]汤发树,陈曦,罗格平,等.新疆三工河绿洲土地利用变化系统动力学仿真[J].中国沙漠.2007,27(4):593-599.
    [319]唐从国,刘丛强.基于DEM提取流域河网研究[J].辽宁工程技术大学学报.2006,25(S1):313-315.
    [320]田永静,李田,何绍明,等.苏州市枫桥工业园区非点源污染特性研究[J].中国给水排水.2009,13):89-91.
    [321]涂安国,尹炜,陈德强,等.多水塘系统调控农业非点源污染研究综述[J].人民长江.2009,21):71-73.
    [322]万亚辉,周文斌,章茹.基于USLE模型的南昌大学非点源污染负荷预测[J].中国水土保持.2009,7):28-30.
    [323]汪朝辉,陈蓓青,程学军,等.土地利用变化对长阳县非点源污染负荷的影响研究[J].长江科学院院报.2010,1):17-21.
    [324]汪冬冬,杨凯,车越,等.河段尺度的上海苏州河河岸带综合评价[J].生态学报.2010,30(13):3501-3510.
    [325]汪海英,周敏杰.临港新城——滴水湖富营养化现状评价及调控对策[J].上海水务.2006,22(4):24-26.
    [326]汪松年,阮仁良.上海市水资源普查报告[M].上海:上海市科学技术出版社,2001.
    [327]王船海,王娟,程文辉,等.平原区产汇流模拟[J].河海大学学报(自然科学版).2007,35(6):627-632.
    [328]王和意.上海城市降雨径流污染过程及管理措施研究 [D].华东师范大学,2005.
    [329]王科,姜大立,万玉成.基于联合库存管理的军事供应链系统动力学研究[J].物流技术.2010,29(15):146-148.
    [330]王鹏.基于数字流域系统的平原河网区非点源污染模型研究与应用[D].河海大学,2006.
    [331]王其藩.系统动力学[M].上海:上海财经大学出版社,2009.
    [332]王少平,俞立中,许世远,等.基于GIS的苏州河非点源污染的总量控制[J].中国环境科学.2002,22(6):520-524.
    [333]王寿兵,柏红霞,王祥荣,等.上海临港新城产业生态建设对策[J].复旦学报:自然科学版.2008,47(4):467-472.
    [334]王思思.国外城市雨水利用的进展[J].城市问题.2009,171(10):79-84.
    [335]王晓燕,秦福来,欧洋,等.基于SWAT模型的流域非点源污染模拟——以密云水库北部流域为例[J].农业环境科学学报.2008,27(3):1098-1105.
    [336]王晓燕,张雅帆,欧洋.北京密云水库上游太师屯镇非点源污染损失估算[J].生态与农村环境学报.2009,25(4):37-41.
    [337]王秀娟,刘瑞民,何孟常.土地利用及其变化对松辽流域非点源污染影响研究[J].地理科学.2009,4):555-560.
    [338]王亚平.总量控制中的面源问题及其解决[J].环境保护.2005,6):51-53.
    [339]王子洋,刘小霞,赵忠信,等.基于系统动力学模型的地铁车站客流预测分析[J].物流技术.2010,29(12):90-92.
    [340]魏凤巢,夏瑞妹,沈哲东.上海市滨海盐渍土改良技术的研究与实践[J].中国园林.2008,2):85-89.
    [341]魏现杰,刘德刚,张彦朴,等.基于系统动力学方法的战时通用装备保障仿真研究[J].火力与指挥控制.2009,6):86-89.
    [342]文雅,宋桂琴,等.系统动力学仿真方法在土地生态设计中的应用—以渭北高原沟壑区长 武县为例[J].土壤侵蚀与水土保持学报.1996,2(3):48-55.
    [343]项建光,方海兰,杨意,等.上海典型新建绿地的土壤质量评价[J].土壤.2004,36(4):424-429.
    [344]肖咸忠.临港新城主城区水系规划评估[J].上海建设科技.2010,4):1-2.
    [345]谢华,黄介生.平原河网地区城市两级排涝标准匹配关系[J].武汉大学学报:工学版.2007,40(5):39-42.
    [346]邢可霞,郭怀成,孙延枫,等.基于HSPF模型的滇池流域非点源污染模拟[J].中国环境科学.2004,24(2):229-232.
    [347]胥彦玲,李怀恩,倪永明,等.基于USLE的黑河流域非点源污染定量研究[J].西北农林科技大学学报:自然科学版.2006,34(3):138-142.
    [348]徐建初,林建海,黄渝.雨水回用在上海浦东国际机场的应用研究[J].给水排水.2007,33(5):90-93.
    [349]徐磊,汪文峰,杨建军.基于系统动力学的防空装备战时维修保障系统仿真[J].空军工程大学学报:自然科学版.2009,10(4):43-47.
    [350]徐敏,李云生,曾光明,等.贝叶斯规整化BPNN定量流域非点源污染负荷研究[J].环境科学与技术.2009,32(11):171-176.
    [351]徐祖信,黄沈发,鄢忠纯.上海市非点源污染负荷研究[J].上海环境科学.2003,22(S):112-116.
    [352]杨洁.新城模式的管理效益与可操作性启示——以上海临港新城为例[J].现代管理科学.2006,1):80-81.
    [353]杨凯.平原河网地区水系结构特征及城市化响应研究[D].华东师范大学,2006.
    [354]杨晰峰,陈爱荣,包雄伟,等.七年磨一剑——临港新城规划管理实践(2002—2009)[J].上海城市规划.2009,4):51-55.
    [355]杨晓鹏,张志良.青海省土地承载力的系统动力学研究[J].地理学与国土研究.1992,8(4):16-22.
    [356]姚春霞,陈振楼,许世远.上海市郊保护地土壤盐分研究[J].环境科学.2007,28(6):1372-1376.
    [357]袁雯,杨凯,唐敏,等.平原河网地区河流结构特征及其对调蓄能力的影响[J].地理研究.2005,24(5):717-723.
    [358]袁雯,杨凯,吴建平.城市化进程中平原河网地区河流结构特征及其分类方法探讨[J].地理科学.2007,27(3):401-407.
    [359]张辰.生态卫生(排水)系统在上海世博园区应用初探[J].上海建设科技.2005,3(3):30-32.
    [360]张辰,邹伟国.世博园区雨水收集利用技术[J].建设科技.2010,11(11):34-36.
    [361]张大弟,章家骐.上海市郊区非点源污染综合调查评价[J].上海农业学报.1997,13(1):31-36.
    [362]张大伟,赵冬泉,陈吉宁,等.城市暴雨径流控制技术综述与应用探讨[J].给水排水.2009,35(S1):25-29.
    [363]张国琴,于金莲.黄浦江上游水源保护区非点源污染分析[J].上海师范大学学报(自然科学版).2008,37(6):632-636.
    [364]张惠,吴从林,周玮,等.雨水在上海海港新城中的综合利用[J].人民长江.2005,36(10):23-25.
    [365]张蕾,卢文喜,安永磊,等SWAT模型在国内外非点源污染研究中的应用进展[J].生态环境学报.2009,18(6):2387-2392.
    [366]张娜,赵乐军,李铁龙,等.天津城区道路雨水径流水质监测及污染特征分析[J].生态环境 学报.2009,6):2127-2131.
    [367]张楠,张占庞,周祖昊,等.基于SWAT的天津市非点源污染分布特性分析[J].人民黄河.2008,30(4):60-61.
    [368]张琪,方海兰,杨意,等.上海公路绿地土壤肥力质量评价与管理对策[J].园林科技.2008,1):24-27.
    [369]张群崔心红夏檑朱义张庆费.上海临港新城近60a筑堤区域植被与土壤特征[J].浙江林学院学报.2008,06).
    [370]张巍,王学军,李莹.在总量控制体系下实施点源与非点源排污交易的理论研究[J].环境科学学报.2001,21(6):748-753.
    [371]张文俭,王磊,颜一青,等.不同农业耕作模式下崇明盐碱土壤低碳化改良效应的模型评价[J].农业环境科学学报.2010,29(5):1006-1014.
    [372]张晓玲,关欣,吴宇哲,等.基于系统动力学的县域土地利用变化模型——以浙江省缙云县为例[J].安徽农业科学.2007,35(34):11154-11156.
    [373]张雪花,郭怀成SD—MOP整合模型在秦皇岛市生态环境规划中的应用研究[J].环境科学学报.2002,22(1):94-97.
    [374]张雪花,郭怀成,张宝安.系统动力学——多目标规划整合模型在秦皇岛市水资源规划中的应用[J].水科学进展.2002,13(3):351-357.
    [375]张亚丽,李怀恩.土地利用关系法在非点源污染负荷预测中的应用[J].中国农学通报.2009,17):270-273.
    [376]张燕,张志强,张俊卿,等.密云水库土门西沟流域非点源污染负荷估算[J].农业工程学报.2009,5):183-191.
    [377]赵军.平原河网地区景观格局变化与多尺度环境响应研究——以上海地区为例[D].华东师范大学,2008.
    [378]赵倩,马建,问青春,等.应用AnnAGNPS模型模拟柴河上游农业非点源污染[J].农业环境科学学报.2010,29(2):344-351.
    [379]赵涛,郑新奇,邓祥征.城市土地利用优化配置分析应用——以济南市为例[J].地球信息科学.2004,6(2):53-57.
    [380]赵小敏,王人潮.土地利用规划的系统动力学仿真:以杭州城市土地利用总体…[J].浙江农业大学学报.1996,22(2):143-148.
    [381]赵小敏,沈兵明.系统动力学仿真模型在土地利用总体规划中的应用[J].江西农业大学学报.1996,18(1):67-72.
    [382]赵玉林,李文超.基于系统动力学的产业结构演变规律仿真模拟实验研究[J].系统科学学报.2008,16(4):51-58.
    [383]职锦,郭太龙,廖义善,等.非点源污染对人类健康影响的研究进展[J].生态环境学报.2010,19(6):1459-1464.
    [384]钟春节,吕永鹏,杨凯,等.国内外城市雨水资源利用对上海的启示[J].给水排水.2009,35(S2):154-158.
    [385]周玉刚,臧淑英.系统动力学模型在土地资源研究中的应用——以大庆市地区为例[J].国土与自然资源研究.2008,2):35-37.
    [386]朱明福.上海南汇临港新城建设的总体思路[J].中国社会发展战略.2008,2):58-64.
    [387]邹桂红,崔建勇.基于AnnAGNPS模型的农业非点源污染模拟[J].农业工程学报.2007,23(12):11-17.
    [388]邹桂红,崔建勇,孙林.农业非点源污染模型AnnAGNPS适用性检验[J].第四纪研究.2008,28(2):371-378.
    [389]邹桂梅,黄明勇,苏德荣,等.滨海盐碱地城市绿地土壤肥力的时空变化特征[J].中国农学通报.2010,5):110-115.
    [390]邹锐,郭怀成,等.基于目标偏离容忍水平的多目标交互式决策方法[J].系统工程学报.1998,13(3):41-47.
    [391]左建兵,刘昌明,郑红星,等.北京市城区雨水利用及对策[J].资源科学.2008,30(7):991-998.
    [392]左晓俊,傅大放,李贺.高速公路路面径流沉降过程中重金属去除特性[J].环境科学学报.2009,12):2525-2531.
    [393]左倬,蒋跃,薄芳芳,等.平原河网地区滨岸带外来植物入侵现状及影响研究——以上海青浦区为例[J].生态环境学报.2010,19(3):665-671.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700