用户名: 密码: 验证码:
上海滩涂盐沼植被的分布格局和时空动态研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
上海地处长江口,长江携带的丰富泥沙资源造就了上海的淤泥质潮滩,孕育了极其丰富的滩涂湿地资源。滩涂湿地不仅是上海经济发展的重要后备土地资源,也为上海地区提供了强大的生态服务功能和资源环境价值。然而,近年来由于自然过程和高强度的人类活动,长江流域及其河口的环境发生了一系列重大变化,上海地区的滩涂湿地面临着滩涂资源开发与保护的严峻挑战。大尺度的上海市滩涂湿地盐沼植被的空间分布现状及其时空动态研究可以为上海市滩涂资源的合理规划、生物多样性保护和可持续开发利用提供科学依据。
     本研究以多时相遥感影像为数据源,在几何精校正基础上,进行缨帽变换和归一化植被指数等光谱增强处理后,结合多年的滩涂盐沼植被的光谱信息,对遥感影像进行监督分类。依据多次野外实地调查的数据,对解译的结果进行修正和精度评价。在GIS平台下进行数据合成,分析近20年来上海滩涂盐沼植被空间分布和时空动态。此外,在分析上海地区滩涂盐沼植被分布格局的基础上,结合细胞自动机(Cellular automata,CA)模型,研究了上海滩涂盐沼植被种群的扩散过程。本项研究的主要结果如下:
     (1)上海滩涂植被资源的空间分布
     上海滩涂植被资源比较丰富,1990年滩涂盐沼植被组成为本地种芦苇(Phragmites australis)和海三棱藨草(Scirpus mariqueter)群落。互花米草(Spartina alterniflora)在上世纪九十年代后期被引入长江口滩涂,面积逐年扩大,目前已成为上海滩涂上分布面积最大的植被群落。
     从滩涂盐沼植被总面积的变化来看,上世纪九十年代大规模的滩涂围垦,使上海地区盐沼植被从1990年的17881.95 hm~2下降到2000年的13822.2 hm~2。2000年之后,滩涂盐沼植被面积保持增加的趋势,到2003年,盐沼植被的面积增加到21953.45 hm~2。2003年至2005年间,由于高强度的围垦活动,滩涂盐沼植被的面积又有较大程度的减少,至2005年总面积下降为18314.84 hm~2。
     从滩涂盐沼植被构成的变化来看,外来物种互花米草群落在上海地区滩涂从无到有,并逐渐增加。到2008年,互花米草群落的分布面积已达到5697.94 hm~2,占上海滩涂植被面积的31%,超过土著种芦苇和海三棱藨草。芦苇群落从1990年的14100.44 hm~2,到2000年面积几乎减少了一半,随后到2003年,面积恢复到10075.43 hm~2,但之后又由于大规模的围垦,芦苇的面积到2008年统计,又下降为5717.51 hm~2。从1990年开始,海三棱藨草的面积一直处于增加的趋势,从1990年的3781.51 hm~2增加到2003的7602.24hm~2。但随后,由于中低滩围垦和互花米草的快速扩散,海三棱藨草的面积有所下降,至2008年,其面积仅为4234.7 hm~2。
     (2)崇明东滩自然保护区滩涂盐沼植被的时空动态
     受1992,1998年和2001年三次中高滩围垦和互花米草入侵的影响,崇明东滩芦苇群落的面积大大减少,虽然随着滩涂的淤涨,芦苇群落的面积在围垦后逐年有所增加,但增加速度缓慢。崇明东滩的高滩围垦对海三棱藨草群落的面积影响不大,海三棱藨草的面积从1990年开始一直保持增加的趋势,但2005年之后,随着芦苇和互花米草的扩散,海三棱藨草的面积有所下降,但总面积一直保持在2000 hm~2以上。互花米草自引种后面积一直持续增加,在滩涂植被中所占的比重也越来越大,至2008年,面积也接近崇明东滩滩涂植被总面积的三分之一。
     (3)上海九段沙自然保护区盐沼植被的时空动态
     九段沙为长江口河口心滩型沙洲,长江携带的大量泥沙使沙洲处于不断淤涨之中。九段沙沙洲的发育和盐沼植被的演替受人为影响相对较小,植被的演替发育基本上处于自然状态。从1997年到2008年,九段沙盐沼植被的总面积从1094.6hm~2增加到了3600.6 hm~2,以平均每年约230 hm~2的速度增长。从1997年到2003年,九段沙的海三棱藨草群落面积从966.56 hm~2增加到了1 850.22 hm~2。但随后,随着互花米草和芦苇逐渐在中沙和下沙定居扩散,海三棱藨草群落的面积在2003年后有减少的趋势,尤其是互花米草的快速扩散,对海三棱藨草的负面影响较大。随着九段沙滩涂的淤涨,芦苇群落的面积也一直在增加,增长速率约为70 hm~2/a,低于盐沼植被增加的平均速度。互花米草在九段沙沙洲上具有良好的适应性,从1997年引种种植的55hm~2,到2008年已增加到1708.57 hm~2,目前已成为九段沙新生沙洲上分布面积最大的植被,占九段沙滩涂盐沼植被总面积的47.5%。
     (4)外来种互花米草种群动态CA模型
     互花米草被人为引种到长江口后,在长江口滩涂湿地表现了良好的适应性,逐渐成为上海滩涂上重要的盐沼植被群落。互花米草在新环境的扩散分为三个不同的典型阶段,即定居期,滞缓期和快速扩散期。在长江口,由于淤泥质潮滩的自然环境极其适合其生长,再加上没有自然天敌,互花米草一般经历了1-2年的定居期和1-3年的滞缓期,随后进入快速扩展期。互花米草是滩涂中扩散最快的植被,扩散速度也远远超过光滩演替为先锋植被的平均速度。
     景观生态学的核心问题是研究空间格局与生态学过程之间的相互关系,而空间模型是景观生态学研究的有效手段之一,能够把一些重要生态学过程融合到模型的规则和参数中。互花米草种群扩散细胞自动机(CA)模型分析显示,互花米草的扩散能力是芦苇的3-5倍,具有比土著种芦苇更广的生态幅,所以互花米草具有比本地种芦苇更强的竞争能力和竞争优势。从而能够抢先占据更多的有利生境,间接影响芦苇群落的分布。
     种群动态遥感分析和CA模型研究还表明,在生态位有限的空间,即淤涨很慢或侵蚀性的岸段,如九段沙的中沙,互花米草的增长符合逻辑斯蒂增长模型,尽管经历几年的增长,互花米草的扩散速度会慢下来,但对滩涂湿地的结构和功能的改变却很大,会直接导致本地种海三棱藨草群落的退化甚至消失。而在淤涨型的潮滩上,互花米草扩散符合指数增长模型,随着滩涂的淤涨,不断有适合互花米草的空生态位形成,互花米草的快速增长会持续很长时间。在淤涨型滩涂上,互花米草的扩散会形成大片的单优植被群落,占据大面积的滩涂湿地,从而改变滩涂湿地的生物多样性,影响滩涂湿地的生态服务功能。
Shanghai,with the huge amount of silt brought by the Yangtze River,is blessedwith plentiful coastal intertidal wetlands,which are also the potential land resourcesfor economical development.Intertidal wetlands could also provide ecological serviceand environmental value as well.The salt marsh communities colonized on thewetlands also have various functions such as improving water quality,mitigatingclimate change and conserving biodiversity.The results of this research on theintertidal vegetation populations dynamics in Shanghai will provide a sound basis forresource management and planning,preservation of biodiversity,sustainabledevelopment and utility of wetlands in the region.
     This study investigated spatial and temporal dynamics of salt marsh populationsof Yangtze River Estuary wetlands during the 1990 and 2008.A set of multi-temporalLandsat thematic mapper (TM) images were used,which basically covered the stateof the low tide at the time the images were taken and the areas of different stagesunder the impacts of human activities.These satellite images were geometricallycorrected by a series of nautical charts,using ERDAS software.Two spectralenhancement methods,Tasseled Cap (K-T) Transform and Normal DifferenceVegetation Index (NDVI),were used to interpret satellite images more efficiently.Moreover,several in situ field surveys were carried out to revise the imageclassifications and for the classification accuracy assessment.The main results of thisstudy were summarized as follows:
     1.The spatial distribution of salt marsh in Shanghai region
     Before the introduction of exotic plant Spartina alterniflora,the salt marshcommunities in intertidal zone of Shanghai region were mainly Phragmites australisand Scirpus mariqueter communities.S.alterniflora,as an ecological engineeringvegetation,was introduced to Shanghai intertidal zone during 1990s,and over the past10 years this species has gradually invaded large areas which could have been coveredby P.australis and S.mariqueter.
     P.australis was the dominant species by 1990 on the Yangtze River Estuarywetlands,it covered about 14100 hm~2,accounting for 80% of the total salt marsh area. However,half of the P.australis had been lost during 1990 and 2000.The mainreason was the1990s' reclamations,which happened in the high tidal mudflat,wheremainly colonized by P.australis communities.At the same time,S.alterniflora beganto establish on the Yangtze River Estuary wetlands.During 2000 and 2003,the areasof all the salt marsh vegetations kept increasing.To the August of 2003,the total areaof all the salt marsh vegetation had reached 21953 hm~2,including 7602 hm~2 of S.mariqueter,10075 hm~2 of P.australis and 4276 hm~2 ofS.alterniflora.After 2003,thetotal salt marsh began to decline mainly due to intense reclamation.Both S.mariqueter and P.australis communities shrunk by half.On the other hand,the exoticspecies S.alterniflora was still keeping increasing.To 2008,S.alterniflora haddominated 5698 hm~2 of the intertidal wetlands in Shanghai,accounting for the largestarea among all the salt marsh species.
     2.The spatial-temporal dynamics of salt marsh vegetation for ChongmingDongdan National Reserve
     In Chongming Dontan,P.australis communities experienced serious degradationsince 1990 mainly because of the high altitude reclamation happen in 1992,1998 and2001.Afterwards,the P australis community began to increase slowly.There waslittle impact on S.mariqueter community from high altitude reclamation.From 1990the area of P.australis community had kept increasing for more than 15 years.Withthe rapid range population expansion of S.alterniflora,the area of P.australis beganto decrease since 2005,but the area of this species always maintained more than 2000hm~2.For exotic vegetation S.alterniflora,it had kept expanding from its initialintroduction,and had accounted for almost one third of the total intertidal salt marshat Chongming Dongtan Natural Reserve by 2008.
     3.Salt marsh population dynamics at Jiuduansha Shoals
     Jiuduansha Shoals are new formed neonatal islands,and they grow very fast dueto their unique location at Yangtze Estuary.The Jiuduansha shoals have never beencolonized by humans and have been in a natural condition since they were formed.From 1997 to 2008,the total salt marsh area had increased from 1094.6 hm~2 to 3600.6hm~2,with a mean increasing rate of 230 hm~2/a.S.mariqueter increased from 966.56hm~2 in 1997 to 1850.22 hm~2 in 2003,whereas the area of S.mariqueter began to decrease afterwards with the rapid range expansion of S.alterniflora population inMiddle Shoal and Lower Shoal.The mean increasing speed for P.australiscommunity was 70 hm~2/a,and the area increased from 168 hm~2 in 1997 to 924 hm~2 in2008.S.alterniflora had showed strong competitive capacity at Jiuduansha Shoals.Itsexpanding rate exceeded any of the indigenous species.The area of S.alterniflora hadincreased to 1708.57 hm~2 by 2008,accounting for 47.5% of the total salt marshvegetation,and had dominated the largest area on Jiuduansha Shoals.
     4.A CA model for population expansion of Spartina alterniflora
     After the initial introduction to Yangtze Estuarine wetlands,S.alterniflora hadshowed well adaptability in this region.It had become the dominant species in theintertidal zone of this area.The population expansion pattern of S.alterniflora wascompatible with the common feature of invasion,i.e.the initial colonization,a lagtime and the rapid range expansion.The intertidal environment was very suitable for S.alterniflora to grow and reproduct.In addition,there were little natural predators,sojust after 1-2 years of colonization and less than 3 years of lag time,S.alterniflorabegan its rapid population growth and range expansion.S.alterniflora had strongercapacity of competition and broader niche,which made it possible to invadesuccessfully in the intertidal zone.
     CA model of S.alterniflora population also indicated that in the region withlimited niche,such as Middle Shoal of Jiuduansha Shoals,the expansion of S.alterniflora was conformed with Logistic Growth model,whereas in the area withunlimited niche,such as Lower Shoal of Jiuduansha Shoals,the expansion of S.alterniflora was consistent with Exponential Growth model.So with the developmentof intertidal flat,more and more niches that suit for S.alterniflora would be formed,the range expansion ofS.alterniflora will be expected to continue well into the future,which means large area of intertidal wetlands will be dominated by S.alterniflora,putting seriously threaten to local ecosystem.
引文
1. Ayres D R, Klohr S, Smith DLet al., 2004. Spread of exotic cordgrass and hybrids (Spartina sp.) in the tidal marshes of San Francisco Bay, California, USA.Biological Invasions, 6: 221-231.
    
    2. Balzter H, Braun P W, Koehler W, 1998. Cellular automata models for vegetation dynamics. Ecological Modelling, 107: 113-125.
    
    3. Bertness M D, 1991. Zonation of Spartina patens and Spartina alterniflora in a New England salt marsh. Ecology, 72: 138-148.
    
    4. Blodget H W, Taylor P T, Roark J H, 1991. Shoreline changes along the Rosetta-Nile Promontory: Monitoring with satellite observations. Marine Geology,99: 67-77.
    
    5. Bronge L B, Naslund L B, 2002. Wetland Classification for Swedish CORING land cover adopting a semi-automatic interactive approach. Canadian Journal of Remote Sensing, 28(2): 139-155.
    
    6. Callaway J C, Josselyn M N, 1992. The introduction and spread of smooth cordgrass (Spartina alterniflora) in south San Francisco Bay. Estuaries, 15(2):218-226.
    
    7. Callaway J C, Josselyn M N, 1992. The introduction and spread of smooth cordgrass (Spartina alterniflora) in South San Francisco Bay. Estuaries, 15:218-226.
    
    8. Cannas S A, Paez S A, Marco D E, 1999. Modeling plant spread in forest ecology using cellular automata. Computer Physics Communications, 121: 131-135.
    
    9. Chen Z Y, Li B, Chen J K, 2004. Local competitive effects of introduced Spartina alterniflora on Scirpus mariqueter at Dongtan of Chongming Island, the Yangtze River Estuary and their potential ecological consequences.Hydrobiologia, 528: 99-106.
    
    10. Chung C, 1993. Thirty years of ecological engineering with Spartina plantations in China. Ecological Engineering, 2: 261-289.
    
    11. Chung C, 2006. Forty years of ecological engineering with Spartina Plantations in China. Ecological Engineering, 27:49-57.
    12. Costanza R, d'Arge R, R. de Groot et al, 1997. The Value of the world's ecosystem services and natural capital. 15(387): 253-260.
    
    13. Crist E P, Cicone R C, 1984. A physically-based transformation of thematic mapper data-the TM Tasseled Cap. Ieee transaction on Geoscience and Remote Sensing, 22(3): 256-263.
    
    14. Crist E P, Kauth R J, 1986. The Tasseled Cap de-mystified. Photogrammetric Engineering & Remote Sensing, 25(1): 81-86.
    
    15. Daehler C C, Stong D R, 1996. Status, prediction and prevention of introduced cordgrass Spartina spp. Invasions in Pacific estuaries, USA. Biological Conservation, 78: 51-58.
    
    16. Davis H G, Taylor C M, Civille J C et al, 2004. An Allee effct at the front of a plant invasion: Spartina in a Pacific estuary. Journal of Ecology, 92(2): 321-327.
    
    17. Davis M A, Thompson K, 2000. Eight ways to be a colonizer, two ways to be an invader: a proposed nomenclature scheme for invasion ecology. ESA Bull, 81:229-230.
    
    18. Dela S, Ruben U, Vesecky J F, et al., 1995. Preliminary approach to the examination of population-environment dynamics in the United States/Mexico border region using integrated remote sensing and field data. International Geoscience and Remote Sensing Symposium (IGARSS), (2): 1545-1547
    
    19. Dechka J A, Franklin S E, Watmough M D, 2002. Classification of wetland habitat and vegetation communities using multi-temporal Ikonos Imagery in southern Saskatchewan. Canadian Journal of Remote Sensing, 28(5): 679-685.
    
    20. Ehrenfeld J G, 2003. Effects of exotic plant invasions on soil nutrient cycling processes. Ecosystems, 6(6): 503-523.
    
    21. Feist B, Simenstad C A, 2000. Expansion rates and recruitment frequency of exotic smooth cordgrass, Spartina alterniflora (Loisel), colonizing unvegetated littoral flats in Willapa Bay, Washington. Estuaries, 23(2): 267-274.
    
    22. Foody G M, 2002. Status of land cover classification accuracy assessment.Remote Sensing of Environment, 80: 185-201.
    
    23. Gan X, Zhang K, Ma Z, et al, 2006. The effect of invasions of the grass Spartina alterniflora on wintering birds on Chongming Island, Dongtan Reserve, China.Journal of Ornithology, 147(5): 169-169.
    
    24. Gewin V, 2005. Industry lured by the gains of going green. Nature, 436: 173.
    25. GoetzA F H, 1995. Imaging spectrometry for remote sensing: vision to reality in 15 years. In: M. R. Descour, J.M. Mooney, D.L. Perry & L. Illing. Imaging spectrometry. Bellingham, WA: The International Society for Optical Engineering.
    
    26. Guan Y, Zhang L, 2006. The salt marsh vegetation spread dynamics simulating and prediction based on conditions optimized CA. Geoinformatics Proceedings of SPIE, 6420: 1-10.
    
    27. He C, Li Y, L X., et al., 2004. Zoning grassland protection area by using remote sensing and cellular automata model - With a case study in Xilingol typical steppe grassland in northern China. 2004 IEEE International Geoscience and Remote Sensing Symposium Proceedings: Science for Society: Exploring and Managing a Changing Planet, 3629-3632.
    
    28. He C, Pan Y, Shi P, et al., 2004. Developing land use scenario dynamics model by the integration of system dynamics model and cellular automata model. 2004 IEEE International Geoscience and Remote Sensing (IEEE Cat. No.04CH37612),(4): 2647-50
    
    29. He W, Feagin R, Lu J, et al, 2007. Impacts of introduced Spartina alterniflora along an elevation gradient at the Jiuduansha Shoals in the Yangtze Estuary,suburban Shanghai, China. Ecological Engineering, 29: 245-248.
    
    30. Huang C, Wylie B, Homer C, et al., 2001. A tasseled cap transformation for Landsat 7 ETM+ at-satellite reflectance, International Journal of Remote Sensing,1-10.
    
    31. Huang H, Zhang L, 2007. A study of the population dynamics of Spartina alterniflora at Jiuduansha Shoals, Shanghai, China. Ecological Engineering, 29:164-172.
    
    32. Huang H, Zhang L, Guan Y, et al., 2008. A cellular automata model for population expansion of Spartina alterniflora at Jiuduansha Shoals, Shanghai,China. Estuarine, Coastal and Shelf Science, 77: 47-55.
    
    33. Jenerette G D, Wu J, 2001. Analysis and simulation of land-use change in the central Arizona- Phoenix region, USA. Landscape Ecology, 16: 611-626.
    
    34. Kaiser M F, 2009. Environmental changes, remote sensing, and infrastructure development: The case of Egypt's East Port Said harbour. Applied Geography, 29:280-288.
    35. Ledous L, Cornell S, O'Riordan T et al., 2005. Towards sustainable flood and coastal management: identifying drivers of, and obstacles to, managed realignment. Land Use Policy, 22:129-144.
    
    36. Lett C, Siber C, Barret N, 1999. Comparison of a cellular automata net work and an individual-based model for the simulation of forest dynamics. Ecol. Model,121:277-293.
    
    37. Li H, Zhang L, 2008.An experimental study on physical controls of an exotic plant spartina alterniflora in Shanhai, China. Ecological Engineering, 32:11-21.
    
    38. Lyon J, Yuan D, Lunetta R, et al., 1998. A change detection experiment using vegetation indices. Photogrammetric Engineering and Remote Sensing,64:143-150.
    
    39. Ma Z, Li B, Jing K, et al, 2004. Are artificial wetlands good alternatives to natural wetland for waterbirds ? - A case study on Chongming Island, China.Biodiversity and Conservation, 13(2): 333-350.
    
    40. Marco D E, Paez S A, Cannas S A. 2002. Species invasiveness in biological invasions: A modeling approach. Biological Invasions, 2002, 4: 193-205.
    
    41. Milligan J, O'Riordan T, Nicholson-Cole S A, et al., 2009. Nature conservation for future sustainable shorelines : Lessons from seeking to imvolve the public.Land Use Policy, 26:203-213.
    
    42. Mitsch W J, Gosselink J W, 2007. Wetlands. 4th edition. New York: John Wiley &Sons.
    
    43. Moller I, 2006. Quantifying saltmarsh vegetation and its effect on wave height dissipation: Results from a UK East Coast saltmarsh. Estuarine, Coastal and Shelf Science, 69: 337-351.
    
    44. Mu F, 2005. Zhang Z. Cellular automata model based on GIS and urban sprawl dynamics simulation. Proceedings of SPIE - The International Society for Optical Engineering, 6045 II, MIPPR: Geospatial Information, Data Mining, and Applications.
    
    45. Munyati C, 2000. Wetland change detection on the Kafue Flats, Zambia, by classification of a multi-temporal remote sensing image dataset. International Journal of Remote Sensing, 21(9): 1781-1806.
    
    46. Odum E P, 2000. Tidal mashes as outwelling/pulsing systems. In: Weinstein M. P.and kreeger D. A. (Eds). Concepts and controversies in tidal marsh ecology. Kluwer Academic Publishers. New York, Boston, Dordrecht, London, Moscow.
    
    47. Philipp K R, 2005. History of Delaware and New Jersey salt marsh restoration sites. Ecological Engineering, 25: 214-230.
    
    48. Phillips R L, Beeri O, DeKeyser E S, 2005. Remote wetland assessment for Missouri coteau prairie glacial basins. Wetlands, 25(2): 335-349.
    
    49. Ransom K J, Smith J A, Hall F G, 1988. Characterising forest ecosystem dynamics through modelling and remote sensing observations. Digest -International Geoscience and Remote Sensing Symposium (IGARSS), 3:1347-1350
    
    50. Sakai A K, Allendorf F W, Holt J S, et al, 2001. The population biology of invasive species. Annual Review of Ecology and Systematics, 32: 305-332.
    
    51. Sala F, Chapin J, Armesto et al, 2000. Biodiversity-global biodiversity scenarios for the year 2100. Science, 287: 1770-1774.
    
    52. Salovaara K J, Thessler S, Malik R N et al., 2005. Classification of Amazonian primary rain forest vegetation using Landsat ETM plus satellite imagery. Remote Sensing of Environment, 97(1): 39-51.
    
    53. Schmidt K S, Skidmore A K, 2003. Spectral discrimination of vegetation types in coastal wetland. Remote Sensing of Environment, 85:92-108.
    
    54. Scott J W, Moore L R, Harris W M, et al, 2003. Using the Landsat 7 Enhanced Thematic Mapper Tasseled Cap Transformation to extract shoreline. U.S.Geological Survey Open-File Report of 03-272.
    
    55. Shi C, Hutchinson S M, Yu L, 2001. Towards a sustainable coast: an integrated coastal zone management framework for Shanghai, People, Republic of China.Ocean & Coastal Management, 44:411-427.
    
    56. Simenstad C A, Thom R M, 1995. Spartina alterniflora (smooth cordgrass) as an invasive halophyte in Pacific Northwest estuaries. Hortus Northwest, 6: 9-12,38-40.
    
    57. Sirakoulis G C H, Karafyllidis I, Thanaikakis A, 2000. A cellular automaton model the effects of population movement and vaccination on epidemic propagation. Ecol. Model, 133: 209-229.
    
    58. Syphard A D, Clarke K C, Franklin J, 2005. Using a cellular automaton model to forecast the effects of urban growth on habitat pattern in southern California.Ecological Complexity, 2(2): 185-203.
    59.Tappan G D,Tyler W M,Moore D,1992.Monitoring rangeland dynamics in Senegal with Advanced Very High Resolution Radiometer data.Geocarto International,1:87-98.
    60.Teal J M,Peterson S B,2005.Introduction to the Delaware Bay salt marsh restoration.Ecological Engineering,25: 199-203.
    61.Thomson A G,Fuller R M,Yates M G,et al.,2003.The use of airborne remote sensing for extensive mapping of intertidal sediments and salt marshes in eastern England.International Journal of Remote Sensing,24: 2717-2737.
    62.Townsend P A,2002.Estimating forest structure in wetlands using multemporal SAR.Remote Sensing of Environment,79(2): 288-304.
    63.Wallinga J,1995.The role of space in plant population dynamics: annual weeds as an example.Oikos,74: 377-383.
    64.Watt A S,1947.Pattern and process in the plant community.Ecology,35: 1-22.
    65.Williamson M,1996.Biological Invasions.London:Chapman and Hall.
    66.Wolfram S,1984.Universality and complexity in cellular automata.Physica D.10:1-35.
    67.Wu J,Hobbs R J,2007.Key topics in landscape ecology.In: Jianguo Wu and Richard J Hobbs(Eds).Cambridge: Cambridge University Press.
    68.Yakokozawa M,Kubota Y,Hara T,1999.Effects of competition mode on the spatial pattern dynamics of wave regeneration in subalpine tree stands.Ecol.Model,118(1): 73-86.
    69.Zhang R S,Shen Y M,Lu L Y,et al.,2004.Formation of Spartina alterniflora salt marshes on the coast of Jiangsu Province,China.Ecological Engineering.23: 95-105.
    70.陈基炜,梅安新,袁江红,2005.从海岸滩涂变迁看上海滩涂土地资源的利用.上海地质,93(l):18-21.
    71.陈吉余,2000.开发浅海滩涂资源,拓展我国的生存空间.见:陈吉余主编,从事河口海岸研究五十五年论文集.上海:华东师范大学出版社.
    72.陈吉余,程和琴,戴志军,2007.滩涂湿地利用与保护的协调发展探讨.中国工程科学,9(6): 11-17.
    73.陈吉余,程和琴,戴志军,2008.河口过程中第三驱动力的作用和响应-以长江河口为例.自然科学进展,18(9): 994-1000.
    74.陈吉余,李道季,金文华,2001.浦东国际机场东移和九段沙生态工程.中国工程科学,3(4):1-8.
    75.陈吉余,沈焕庭,恽才兴等,1988.长江河口动力过程和动力地貌演变.上海:上海科学技术出版社.
    76.陈家宽等,2003.上海九段沙湿地自然保护区科学考察集.上海,科学出版社.
    77.陈中义,2004.互花米草入侵东滩后的生态后果,博士论文,上海:复旦大学.
    78.陈中义,李博,陈家宽,2004.米草属植物入侵的生态后果及管理对策.生物多样性,12(2): 280-289.
    79.陈中义,李博,陈家宽,2005.长江口崇明东滩土壤盐度和潮间带高程对外来种互花米草生长的影响.长江大学学报(自科版),2(2): 6-9.
    80.承继承,郭东华,吏文中,2004.植被波谱固有的不确定性.见:承继成,郭东华,吏文中主编,遥感数据的不确定性问题.北京:科学出版社.
    81.邓自发,安树青,智颖飙等,2006.外来种互花米草入侵模式与爆发机制.生态学报,26(8): 2678-2686.
    82.高宇,赵斌,2006.人类围垦活动对上海崇明东滩滩涂发育的影响.中国农学通报,22(8): 475-479.
    83.高占国,张利权,2006.上海盐沼植被多季相光谱特征识别.生态学报,26(3):793-800.
    84.高占国,张利权,2006.应用间接排序识别湿地植被的光谱特征:以崇明东滩为例.植物生态学报.30(2): 252-260.
    85.管玉娟,2008.基于COCA的海岸带盐沼植被动态扩散模型设计与运用.华东师范大学2008届博士学位论文.
    86.何文珊,2002.河口湿地生态演替及干扰研究:以长江口九段沙湿地为例.博士论文,华东师范大学河口海岸国家重点实验室.
    87.华东师范大学河口海岸国家重点实验室,2006.上海市滩涂资源可持续利用研究(中期报告).
    88.贺宝根,左宝荣,2000.九段沙微地貌演变与芦苇的生长.上海师范大学学报(自然科学版),29(4): 86-90.
    89.黄华梅,张利权,2007.上海九段沙互花米草种群动态遥感研究.植物生态学报.31(1): 75-82.
    90.金忠贤,2005.滩涂围垦速率与自然淤积规律的关系研究,《上海市滩涂开发利用与湿地生态保护协调发展的示范研究》专题之二,上海市科委科研计划 项目(032312012)科研报告.
    91.李贺鹏,张利权,王东辉,2006.上海地区外来种互花米草的分布现状.生物多样性,14(2): 114-120.
    92.李九发,万新宁,陈小华等,2003.上海滩涂后备土地资源及其可持续开发途径.长江流域资源与环境,12(1): 17-22.
    93.刘昊,2006.人工湿地生境在水鸟保护中的作用.上海:华东师范大学博士论文.
    94.刘纪远,庄大方,凌扬荣,1998.基于GIS的中国东北植被的分类研究,遥感学报,2(4): 285-291.
    95.刘振国,李镇清,董鸣,2005.植物群落动态的模型分析.生物多样性,13:269-277.
    96.欧善华,宋国元,1992.海三棱藨草的形态分布和资源.上海师范大学学报(自然科学版),增刊,21: 5-9.
    97.彭建,王仰麟,2000.我国沿海滩涂景观生态初步研究.地理研究,19(3):249-256.
    98.上海市海岛资源综合调查办公室,1996.上海市海岛资源综合调查报告.上海:上海科学技术出版社,121-127.
    99.上海市科学技术委员会海岸带与海涂资源综合调查办公室,1988.上海市海岸带和海涂资源综合调查报告.上海:上海科学技术出版社,4-7.
    100.施文彧,葛振鸣,王天厚等,2007.九段沙湿地植被群落演替与格局变化趋势.生态学杂志,26(2): 165-170.
    101.孙振华,赵仁泉,1996.崇明东滩候鸟自然保护区的动态变化.上海环境科学,15(10): 41-44.
    102.唐承佳,陆健健,2002.长江口九段沙湿地原生植被的保护及开发利用.上海环境科学,21(4): 210-212.
    103.唐承佳,陆健健,2003.长江口九段沙植物群落研究.生态学报,23(2):399-404.
    104.唐廷贵,张万钧,2003.论中国海岸带大米草生态工程效益与生态入侵.中国工程科学,5(3): 15-20.
    105.童春富,2004.河口湿地生态系统结构,功能与服务——以长江口为例.华东师范大学2004届博士学位论文.
    106.王东辉,张利权,管玉娟,2007.上海九段沙互花米草和芦苇种群扩散动态的 CA模型对比研究.应用生态学报,18(12): 2807-2813.
    107.王亮,张彤,2005.崇明东滩15年动态发展变化研究.上海地质,94: 8-12.
    108.王卿,安树青,马志军等,2006.入侵植物互花米草——生物学、生态学及管理植物分类学报,44(5): 559-588.
    109.邬建国,2000.景观生态学——格局、过程、尺度与等级.北京:高等教育出版社.
    110.邬建国,2004.景观生态学中的十大研究问题.生态学报,24(9): 2074-2076.
    111.武文波,刘正纲,2007.一种基于地物波谱特征的最佳波段组合选取方法.测绘工程,16(6): 22-26.
    112.王东辉,2007.基于CA模型的上海九段沙互花米草和芦苇种群扩散动态.应用生态学报,18(12): 2807-2813.
    113.杨存建,刘纪远,骆剑承,2004.不同龄组的热带森林植被生物量与遥感地学数据之间的相关性分析.植物生态学报,28(6): 862-867.
    114.杨世伦,杜景龙,郜昂等,2006.近半个世纪长江口九段沙湿地的冲淤演变.地理科学,26(3): 335-340.
    115.杨世伦,朱骏,李鹏,2005.长江口前沿潮滩对来沙锐减和海面上升的响应.海洋科学进展,23(2): 152-158.
    116.姚丽萍,徐丽华,李先华,2005.基于RS的崇明东滩空间动态变化研究.资源调查与环境,26(1): 65-70.
    117.叶庆华,田国良,刘高焕等,2004.黄河三角洲新生湿地土地覆被图谱.地理研究,23(2): 257-265.
    118.张东,杨明明,李俊祥等,2006.崇明东滩互花米草的无性扩散能力.华东师范大学学报(自然科学版),2: 130-135.
    119.张利权,2005.河口滩涂的自然演替规律及其生境分布研究,《上海市滩涂开发利用与湿地生态保护协调发展的示范研究(上海市科委科研计划项目032312012)》分报告.
    120.张利权,雍学葵,1992.海三棱藨草的物候与分布格局研究.植物生态学与地植物学学报,16(1): 43-51.
    121.张利权,雍学葵,1992.海三棱藨草种群的密度和生物量动态.植物生态学与地植物学学报,16(4): 317-325.
    122.张爽,郭成久,苏芳莉等,2008.不同盐度水灌溉对芦苇生长的影响.沈阳农业大学学报,39(1): 65-68.
    123.浙江省林业勘察设计院,上海市农林局,2002.上海市崇明东滩鸟类自然保护区总体规划.
    124.郑宗生,周云轩,刘志国等,2008.基于水动力模型及遥感水边线方法的潮滩高程反演.长江流域资源与环境,17(5): 756-760.
    125.中国环保总局,中科院,2003.中国第一批外来入侵种名单.国务院公报,23:41-46.
    126.车越,杨凯,吴阿娜等,2005.上海城市水源战略与水源地保护:格局,问题与展望.自然资源学报,20(5): 651-659.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700