用户名: 密码: 验证码:
利用角蛋白制备功能材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
角蛋白是蛋白质的一种,广泛存在于人和动物的表皮、毛发以及动物的蹄、壳、爪、角等中。角蛋白具有生物可降解性、生物兼容性、无毒、价格低廉等优点,可以用作伤口敷料,起到抵抗细菌活性和加速伤口愈合的作用。因而具有很大的回收利用价值。目前,世界上大量的角蛋白原材料被废弃,如没有纺织价值的羊毛、废弃鸡羽毛和头发等,没能得到广泛有效的利用,造成了资源的严重浪费和环境污染。
     为了回收资源和保护环境,文中以羊毛和人发为原料开发了一种质子导电膜材料和新型角蛋白载体缓释尿素肥料,并对其性能进行了考察。并在前人研究还原角蛋白膜的基础上,考察了还原角蛋白膜的性能和氧化条件对膜性能的影响。
     首次系统研究了角蛋白质子导电膜,考察了直接氧化法、溶胀后氧化法、还原后氧化法和溶胀后还原氧化法中的氧化条件对电导率的影响。实验结果表明电导率随氧化条件的变化通常呈先升高后降低的趋势,并且四种氧化法中溶胀后还原氧化法的最大电导率值最高,羊毛和头发的最大电导率分别能达到3.19×10~(-3)S·cm~(-1)和8.35×10~(-3)S·cm~(-1)。我们还考察了模压工艺对电导率的影响,结果表明,模压压强、模压温度、粉料质量、粉料尺度等对电导率均有影响。我们还测试了与电导率相关的角蛋白膜的甲醇透过系数,结果表明头发和羊毛质子导电膜的甲醇透过系数均能达到10-6cm2.S-1以下,适当的制备条件可使其低于Nafion膜的甲醇透过系数。我们还考察了膜的力学性能、氢气透过率、含水率和膜密度,结果表明模压条件对以上性能均有影响。
     其次为了更清楚的认识还原角蛋白溶液的成膜过程及膜的性能,我们考察了三种氧化条件下的还原角蛋白膜的巯基交联情况。结果表明氧化条件越强烈,膜的交联程度越好,膜的含水率越低,力学性能越强,阻氢性能越好。
     我们还首次制备了以角蛋白作为载体的新型尿素缓释肥料,并考察了变性处理后角蛋白粉料对土壤性质的影响及缓释肥料的淋溶速率。结果表明,变性后角蛋白粉料比未经处理的角蛋白原料易于降解。角蛋白在降解过程中可提高土壤内生物活性,使土壤中矿质氮增加、呼吸作用增强,同时还可以调节土壤pH值,提高土壤中的阳离子交换容量。角蛋白载体缓释尿素肥料的淋溶速率可用模压压强、模压温度、角蛋白氧化时间、尿素含量和尿素粒度等条件来调节。角蛋白载体缓释尿素的累积淋出分率可控制在22%-62%之间,接近商品缓释肥Luxecote和SCU的累积淋出分率41.28%和18.01%。
Keratin, a kind of protein, exists widely in human and animal organs including epidermis, hair, wool, feather, hoof and horn. Keratin is a biodegradable, biocompatible, nontoxic and low-cost polymer, which shows potential of wide application. Therefore keratin is a highly useful material and worth being recovered. However at present a majority of keratin are discarded, such as wool unable to be spun, chicken feather and hair which resulting in waste of the natural resource and pollution of the environment.
     To recover keratin and protect environment, a proton conducting membrane and a novel slow-release fertilizer from hair and wool is studied in this thesis. The conductivity of the membrane and the release rate of the fertilizer are tested. On the basis of former research, the property of reduced keratin membrane and the effect of oxidation condition on reduced keratin membrane are discussed also.
     Firstly the conductivity of keratin proton conducting membrane is studied, the effect of oxidation condition of direct oxidation method, oxidation method after swelled, oxidation method after reduced and oxidation method after swelled and reduced on the conductivity is investigated. The experimental result indicates that the conductivity of the membranes change considerately with the oxidation condition usually. Of the four oxidation methods, the conductivity of the keratin membrane prepared by the oxidation method after swelled and reduced is the highest one. The highest conductivity of wool and hair can reach 3.19×10~(-3)S·cm~(-1)and 8.35×10~(-3)S·cm~(-1) respectively. The effects of moulding conditions on membrane conductivity are also tested. The results show that the moulding pressure, moulding temperature, powder mass, powder scale all have effect on the conductivity. Other properties related with conductivity are also measured. The methanol permeability of keratin membrane can reach under 10-6cm2.S-1 and appropriate preparation condition leads to lower methanol permeability. The mechanical property, H2 permeability, water content and density of the membrane are also determined. All these properties are affected by the moulding condition.
     Secondly to clearly understand the membrane forming mechanism and membrane properties, mercapto cross linkages of reduced keratin membrane under three oxidation conditions are studied. The results show that stronger oxidation condition results in denser cross-linked structure, which makes lower water adsorption, higher maximal tensile strength and longer elongation at break, less H2 permeability.
     At last a novel slow-release urea fertilizer with keratin carrier is prepared. Effects of keratin powder on soil and leaching ratio of slow-release fertilizer are tested. The denatured keratin powder is more biodegradable than keratin material. Keratin in degradation improves microbe activity, mineral nitrogen and soil respiration. However the pH of soil can be adjusted and the IEC can be improved. The column eluviation experiments show that the release rate could be controlled by moulding pressure, moulding temperature, oxidation time, urea content and urea scale. The cumulative release rate may be controlled between 22%-62% which is very close to that of Luxecote and SCU the two merchandized slow-release fertilizer.
引文
[1] 成令忠, 组织学, 北京: 人民卫生出版社, 1993, 988-1021
    [2] 邵象清, 人体测量手册, 上海: 上海辞书出版社, 1985, 266-273
    [3] 冯宗榴, 黄家琛,李增禧, 现代微量元素研究, 北京: 中国环境科学出版社, 1987, 397-340
    [4] Lamand M, Favier A, Pinean A, Determination of trace elements in the hair: significance and limitations, Annuales De Biologie Clinique, 1990, 48(7): 433-442
    [5] Haddy T B, Czajka-Narins D M, Sky-peck H H, White S L, Minerals in hair, serum and urine of healthy and anernic black children, Public Health Reports, 1991, 106(5): 557-563
    [6] Shenal V A, Dalvi M C, Wool fibres-a review, Text. Dyer Printer, 1989, 25-30
    [7] Hartwig H, Hierarchy of α-keratin fibers with a glance at skin, Pure Appl. Chemi., 1996, 33(10): 1437-1446
    [8] 姚穆, 纺织材料学, 北京: 纺织工业出版社, 1992, 72-75
    [9] Gillespie J M, Biochemistry and physiology of the skin, Oxford University Press, New York, 1983, 475-510
    [10] 于自然, 黄熙泰, 现代生物化学, 北京: 化学工业出版社, 2001, 20-26
    [11] 约翰.格里宾, 双螺旋探秘-量子物理学与生命(方玉珍, 朱进宇, 朱方, 秦久怡译), 上海: 上海科技教育出版社, 2000. 160-164
    [12] 欧伶, 俞建瑛, 金新根, 应用生物化学, 北京: 化学工业出版社, 2001, 104-106
    [13] 李建武, 生物化学, 北京: 北京大学出版社, 1990, 65-67
    [14] 特怀曼 R M. 高级分子生物学要义(陈淳,许沁等译), 北京: 科技出版社, 2000, 267-267
    [15] 陈莹, 王宇新, 角蛋白及其提取, 材料导报, 2002, 16(12): 65-67
    [16] 沈同, 王镜岩, 生物化学(上), 北京: 高等教育出版社, 1990, 155-156
    [17] 刘让同, 徐博, 温度对巯基乙醇溶解羊毛角蛋白的影响. 毛纺科技, 2004, 2: 39-11
    [18] 林琳, 沈淦清, 拉伸改性处理毛发纤维的氨基酸含量分析, 毛纺科技, 2005, 5: 3-6
    [19] Onions W J, Wool, an introduction to its properties, varieties, uses and production. London: Ernest Benn Ltd. 1962, 57-58
    [20] 姚穆, 纺织材料学, 北京: 纺织工业出版社, 1992, 79-86
    [21] Steinhardt J, Harris M, Combination of wool protein with acid and base: hydrochloric acid and potassium hydroxide. J. Res. Nat. Bur. Standards. 1940, 24: 335-367
    [22] 蒋挺大, 张春萍, 胶原蛋白, 北京: 化学工业出版社, 环境科学与工程出版中心, 2001, 8-9
    [23] Zahn H, über thermisch verkürzte keratinfasern, Naturwissenschaften, 1943, 31: 137-138
    [24] Mitchell T, Feughelman M. Mechanical properties of wool fibers in water at temperatrues above 100℃. Text. Res. J., 1967, 37: 660-666.
    [25] Speakman J B, Coooper C A, The adsorption of water by wool: part 2-The influence of temperature on the affinity of wool for water, J. Text. Inst. 1936, 27: T191-T196
    [26] Walter J W, Soybean proteins: their functional, chemical, and physical properties. J. Agr. Food Chem., 1970, 18(6): 969-976
    [27] Nashef A S, David T O, Honson S L, Effects of Alkali on proteins. Disulfides and their products. J. Agr. Food Chem., 1977, 25(2): 245-251
    [28] Jeunink J, Cheftel J C, Chemical and physicochemical changes in field bean and soybean proteins texturized by extrusion. J. Agr. Food Sci., 1979, 44: 1322-1325
    [29] Douglas F H, Effects of extrusion upon soy concentrate solubility. J. Agric. Food Chem. 1984, 32: 293-296
    [30] David B V, Alexander M K, Thermal destruction process in proteins involving cysteine residues. J. Biolo. Chemi., 1987, 262(7): 2945-2950
    [31] Wang C H, Damodaran S, Thermal destruction of cysteine and cystine residues of soy protein under conditions of gelation. J. Food Sci. 1990, 55(4): 1077-1080
    [32] Zahn H, An investigating of the carbonising of wool. J. Soc. Dyers Col., 1960, 76: 226-231
    [33] Schoberl A, Grafje H, Uber disulfide-austauschreaktionen bei nieder- und hochmolekularen verbindungen, Fetten. Seifen. Anstrichmittel, 1958, 60: 1057-1061
    [34] 郭素华, 利用动物毛生产角蛋白及其提纯方法, 中国专利, 105698A, 1991-12-18
    [35] 郝剑英, 谢宇峰, 孙文峰, 羽毛粉干燥方法及设备的研究, 农机化研究, 2002, (2): 98-100
    [36] Van G A , Faber T A, Kolster P, Method for manufacturing a biodegradable thermoplastic material, WO patent, 9803591, 1998-01-29
    [37] 朱选, 金征宇, 刘当慧, 羽毛角蛋白挤压机制的研究, 中国粮油学报, 1998, 13(4): 16-19
    [38] 张晓晖, 王志民, 冯有善, 处理废弃羽毛的新工艺-膨化法, 饲料研究, 2000, 11: 33-35
    [39] 何武顺. 饲用羽毛粉的加工方法. 粮食与饲料工业, 2001, 2: 22-24
    [40] 朱选, 阳会军, 金征宇等, 羽毛粉的膨化加工, 饲料研究, 2001, 1: 37-39
    [41] 胡新华, 羽毛蛋白的提取研究, 皮革科学与工程, 1997,7(13): 5-8
    [42] Sehgal P K, Studies on Solubilized Keratins from Poultry Feathers. Leather Science, 1986, 33(12): 333-343
    [43] 郑东戈, 羽毛角蛋白的降解, [硕士学位论文], 成都, 成都科技大学, 1991
    [44] 陈宏, 角蛋白的提取. [硕士学位论文], 成都, 成都科技大学, 1991
    [45] 丁雅明, 从畜毛或蹄壳中提取可溶性角蛋白的方法, CN Patent, 1063874A, 1992-08-26
    [46] Singh R, Whiteside G M, A reagent for reduction of disulfide bonds in proteins that reduces disulfide bonds faster than does dithiothreitol, J. Org. Chemi., 1991, 19(56): 2332-2337
    [47] Courtaulds L, Robert L W, Improvement in and relating to the production of artificial protein threads, fibres, filaments, yarns and the like, GB Patent, 667115, 1952-02-27
    [48] Arai K, Nojiri H, Naito S, Process for producing solubilized protein, US Patent, 5763583, 1995-10-6
    [49] Savelli M P, Solans C, Rodenas E, Kinetic study of keratin cystine reduction in W/O microemulsion media. Coll. and Surf. A. Physio. and Eng. Asp.. 1998, 143(1): 103-110
    [50] Schrooyen P M M, Dijkstra P J, Bantjes A, Partially carboxymethylated feather keratins. 2. thermal and mechanical properties of films, J. Agr. Food Chemi., 2001, 49(1): 221-230
    [51] Misra B N, Dogra R, Mehta I K, Grafting onto wool. XI. graft copolymerization of poly (vinyl acetate) and poly (methyl acylate) onto reduced wool in presence of potassium persulfate-ferrous ammonium sulfate (KPS-FAS) system as redox initiator. J. Appli. Poly. Sci., 1981, 26(3): 3789-3794
    [52] Pavlath A E, Houssard C, Cccmirand W, Clarity of films from wool keratin, Text. Res. J., 1999, 69(7): 539-544
    [53] 刘力,丁向东, 孟进军, 高效液相色谱分离羊毛角蛋白, 分析测试通报, 1991, 10(5): 46-49
    [54] Singh R, Whitesides G M, Lees W J, Meso-2,5-Dimercapto -N,N,N”,N”- tetramethyladipamide, A readily available, kineticaliy rapid reagent for the reduction of disulfide in Aqueous solution, J. Org. Chemi., 1991,19(56): 7328-7331
    [55] David J E, A method for determining the penetration of reducing agents into wool using fluorescence microscopy, Text. Res. J.,1989, 569-576
    [56] 市川林次郎, 新井幸三, 龟田隆夫. 角蛋白膜的生产, JP patent, A4-91138, 1992-03-24
    [57] Kikkawa M, Keratin membrane, US Patent, 4135942, 1977-07-11
    [58] Whiteside G M, Lees W J, Singh R. Meso-2,5-Dimercapto -N,N,N”,N”- tetramethyladipamide, US Patent, 5378813, 1995-01-03
    [59] Timmons S F, Blanchard C R, Smith R A, Method of making and cross-linking keratin-based films and sheets, US Patent, 6124265, 2000-09-26
    [60] Timmons S F, Blanchard C R, Smith R A, Method of making and cross-linking keratin-based films, sheets and bulk materials, WO Patent, 9926570, 1999-06-03
    [61] Timmons S F, Smith R A, Porous and bulk keratin bio-polymers, US Patent, 6159495, 2000-12-12
    [62] Charles A, Phyllis I. Process of preparing fibrous protein products. US Patent, 3684522, 1972-08-15
    [63] Yamauchi K, Yamauchi A, Kusunoki T, Preparation of stable aqueous solution of keratins, and physiochemical and biodegradational properties of films. J. Biom. Materi. Research, 1996, 31: 439-444
    [64] Schrooyen P M M, Dijkstra P J, Radulf C, Partially carboxymethylated feather keratins. 1. properties in aqueous systems. J. Agr. Food Chemi., 2000(48): 4326-4334
    [65] 张志, 张梅荣, 孪尊国, 一种角蛋白溶液和固体制备技术. CN 1435432 A, 2003-08-13
    [66] 庞会忠, 过氧乙酸分解羽毛角蛋白质效果的研究, 中国饲料, 1998, 6: 27-28
    [67] Farbenindustrie A, Process for the manufacture of albumose-like degradation products. EU Patent, GB345630. 1931-03-24
    [68] Pierschbacher M D, Erkki R, Variants of the cell recognition site of fibronectin that retain attachment-promoting activity. Proceedings of the National Academy of Sciences of the United States of America, 1984, 81: 5985-5988
    [69] Dowling L M, Crether W G, Inglis A S, The primary structure of component 8c-1, a subunit protein of intermediate filaments in wool keratin. Relationships with proteins from other intermediate filaments, Biochem. J., 1986, 236: 695-703
    [70] Yamauchi K, Maniwa M, Mori T, Poly. Edition, 1998, 9(3): 259-263
    [71] Yamauchi K, Hojo H, Yamamoto Y, Enhanced cell adhesion on RGDS-carrying keratin film, Mater. Sci. Engi. C, 2003, 23: 467-472
    [72] Farbenindustrie A, Process for the manufacture of gold compounds of degradation products of keratin, EU Patent, GB357189. 1931-09-18
    [73] Rudolf von Wuelefing, Ernst Moeller. An improved process for obtaining metal compounds of water-soluble keratin splitting products, EU Patent, GB459747, 1937-01-14.
    [74] Schering K A, Process for the manufacture of therapeutically valuable gold compounds, EU Patent, GB481164, 1938-03-04
    [75] Schaller H, Miyamoto T, Shimamura K, Membranes prepared from keratin-polyacrylonitrile graft copolymers, J. Appli. Poly. Sci., 1980, 25(5): 783-794
    [76] Thompson E O, O’Donnell I J, Quantitative reduction of disulphide bonds in proteins using high concentrations of mercaptoethanol, Biochim. Biophys. Acta. 1961, 53: 447-449
    [77] Tanabe T, Okitsu N, Tachibana A. Preparation and characterization of keratin-chitosan composite film. Biomater., 2002, 23:817-825
    [78] Tanabe T, Okitsu N, Yamauchi K. Fabrication and characterization of chemically crosslinked keratin films. Mater. Sci. Engi. C, 2004, 24: 441-446
    [79] Katoh K, Shibayama M, Tanabe T, Yamauchi K. Preparation and physicochemical properties of compression-molded keratin films. Biomater. 2004, 25: 2265-2272
    [80] Madihally S V, Matthew H W T, Porous chitosan scaffolds for tissue engineering. Biomater., 1999, 20: 1133-1142
    [81] Tachibana A, Furuta Y, Takeshima H, et. al, Fabrication of wool keratin scaffolds for long-term cell cultivation. J. Biotech., 2002, 93: 165-170
    [82] Norin Suisansyo Sanshi Konchu Ngyo Gijutsu Kenkyusho Daikin Ind Ltd. JP Patent, JP Patent 3044239, 2000-03-17
    [83] Katoh K, Tanabe T, Yamauchi K, Novel approach to fabricate keratin sponge scaffolds with controlled pore size and porosity. Biomater., 2004, 25: 4255-4262
    [84] Tachibana A, Kaneko S, Tanabe T, et al., Rapid fabrication of keratin-hydroxyapatite hybrid sponges toward osteoblast cultivation and differentiation. Biomater., 2005, 26: 297-302
    [85] Kurimoto A, Tanabe T, Tachibana A, et al., Keratin sponge: immobilization of lysozyme, J. Biosci. Bioengi., 2003, 96(3): 307-309
    [86] Yamauchi K, Khoda A, Novel proteinous microcapsules from wool keratins, Colloids Surf B: Biointerfaces, 1997, 9: 117-119
    [87] 李其训, 李春晓, 丁晶, 109HH 人工腱的实验研究及临床应用, 骨与关节损伤杂志, 1997, 12(3): 162-163
    [88] Ingen V, Adriaan G, Method for manufacturing a biodegradable thermoplastic material. WO Patent 9803591, 1998-01-29
    [89] http://info.tjkx.com/News/0000143CA4/2004-05-19/000040401A.html
    [90] Schmidt W F, Barone J R, New uses for chicken feathers keratin fiber. Poultry Waste Management Symposium Proceedings, 2004, 99-101
    [91] Misra B N, Chandel P S, Grafting onto wool Ⅰ ceric ion-initiated grafting of poly(methylacrylate) onto wool, J. Poly. Sci., 1977, 15(7): 1545-1548
    [92] Misra B N, Inderjeet K M, Ramesh D, Grafting copolymerisation of poly(ethyl acrylate) onto wool in the presence of ceric ammonium nitrate as redox initiator. J. Poly. Sci. Chemi., 1978, A12(10): 1513-1521
    [93] Misra B N, Inderjeet K M, Deepak S S, Grafting onto wool Ⅸ graft copolymerisation of vinyl monomers by use of vanadium oxyacetylacetonate as initiator, J. Poly. Sci. Chemi., 1980, A14(8): 1255-1268
    [94] Misra B N, Dogra R, Mehta I K. Grafting onto wool Ⅺ graft copolymerisation of poly(vinyl acetate) and poly(methyl acrylate) onto reduced wool in presence of potassium persulfate-ferrous ammonium sulfate (KPS-FAS) system as redox initiator, J. Appli. Poly. Sci., 1981, 26: 3789-3796
    [95] Chandel P S, Misra B N, Grafting onto wool. Ⅱ. BPO-initiated grafting of polystyrene. J. Poly. Sci. Chemi., A polymer chemistry, 1977, 15(7): 1549-1554
    [96] Katoh K, Shibayama M, Tanabe T, Preparation and properties of keratin-poly(vinyl alcohol) blend fiber, J. Appli. Poly. Sci., 2004, 91: 756-762
    [97] 奚伯君, 再生蛋白原液、再生蛋白纤维的生产方法及其产品. CN Patent 1271743A. 2000-11-01
    [98] 许登堡, 一种动物蛋白质纤维及其制备方法. CN Patent 1508303A. 2004-06-30
    [99] 吴振华, 黎明秀, 吴大明, 角蛋白再生纤维的技术. CN Patent 1293266A, 2001-05-02
    [100] 陈博文, 姚金波, 张志, 一种再生角蛋白功能纤维的加工技术. CN Patent 1435516A. 2003-08-13
    [101] http://www.cas.ac.cn/html/Dir/2005/01/31/4291.htm. 2005-1-31.
    [102] Charles A, Method of preparing keratin containing films and coatings, US Patent, 3642498, 1972-02-15
    [103] 戴红, 张宗才, 张新申, 制革废弃物中氨基酸的提取和分离, 氨基酸和生物资源, 2003, 25(3): 46-48
    [104] 邓静, 吴华昌, 周健, 从鸡毛中提取复合氨基酸的研究, 氨基酸和生物资源, 2003, 25(3): 49-51
    [105] 翟军海, 高亚军, 周建斌, 控释/缓释肥料研究概述. 干旱地区农业研究, 2002, 20(1): 44-47
    [106] Mortwedt J J, Shaviv A. Dahlia greidinger sym on fertilization and the Environment. Technion Haifa, 1997, 8-20
    [107] Sims J T. Phosphrorus soil testing: Innovations for water quality protection. Commun. Soil Sci. Plant Anal., 1998, 29: 1471-1489
    [108] 许秀成, 李菂萍, 王好斌, 包裹型缓释/控制释放肥料专题报告. 磷肥与复肥, 2000, 15(6): 7-10
    [109] 联合国工业发展组织编, 化肥手册. 北京: 中国对外翻译出版公司, 1984, 401-404
    [110] 许秀成, 李菂萍, 王好斌, 包裹型缓释/控制释放肥料专题报告. 磷肥与复肥, 2000, 15(3): 1-6
    [111] Trenkel M E, Controlled-release and stabilized fertilized in agriculture. Inter. Fertili. Indus. Assoc., 1997, 11: 11-14
    [112] 徐和昌, 黄沛成, 武冠英, 包膜肥料养分释放速度的测定. 北京化工学院学报(自然科学版), 1994, 21(3): 33-38
    [113] 于经元, 白书培, 康仕芳, 缓释化肥概况(上). 化肥工业, 1999, 26(5): 15-19
    [114] Fan I T. Singh S K, Controlled release-A quantitative treatment. Springer-verlag, Berlin, 1990, 82-90
    [115] Allen S E, Nitrogen release from surfur-coated urea, as affected by coating weight, placement and temperature, Agron. J. 1971, 63: 529-533
    [116] Prasad M, The release of nitrogen from SCU as affected by soil moisture, coating weight and method of placement. Soil Sci. Soc. Am. J., 1976, 40: 134-136
    [117] Oertli J J, Effects of temperature, microbial activity, salinity, and pH on the release of nitrogen of SCU. Zeit Pflanzen Boden, 1973, 134: 227-236
    [118] Sadao S, Ambrosio T G,. Controlled release fertilizers with polyolefin resin coating. Sendai, Japan: Konno Pringting Co., Ltd. 1992, 12-13
    [119] 许秀成, 李菂萍, 王好斌, 包裹型缓释/控制释放肥料专题报告. 磷肥与复肥, 2001, 16(2): 10-12
    [120] Horwitz W, Official methods of analysis of the association of official agricultural chemists. 10th ed. Assoc. Office. Agric. Chemists, Washington DC, 1965
    [121] 许秀成, 李菂萍, 王好斌, 包裹型缓释/控制释放肥料专题报告. 磷肥与复肥, 2002, 17(1): 10-12
    [122] 孙延秀, 国内外长效肥研究概况. 南京:中国科学院南京土壤研究所, 1980
    [123] 许秀成, 李菂萍, 王好斌, 包裹型缓释/控制释放肥料专题报告. 磷肥与复肥, 2001, 16(4): 7-8
    [124] 纳米肥料问世, 江西农业科技, 2003,46
    [125] 吴平霄, 有机和无机矿物控释材料及其控释机理研究. [博士后论文], 广州, 华南农业大学, 2000
    [126] 宋波. 控释肥的包膜与非包膜的技术比较及其机理研究. [硕士学位论文], 广州, 华南农业大学, 2001
    [127] Blouin M, Rindt W, Moore O. Sulfur-coated fertilizers from controlled release: pilot plant production. J. Agr. Food Chemi., 1971, 19: 801-808
    [128] Christianson C B. Factors affecting N release of urea from reactive layer coated urea. Ferti. Rel., 1988, 16:273-284
    [129] Salman O A. Polymer coating on urea pills to reduce dissolution rate. J. Agri. Food Chemi., 1988, 13: 793-802
    [130] 山添文雄, 越野正义, 肥料分析方法详解. 北京, 化学工业出版社, 1983, 483-486
    [131] Oertli J J, Lunt O R, Controlled release of fertilizer minerals by incapsulating membranes: Ⅰ. Factors influencing the rate of release. Soil Science Society of American Proceeding, 1962, 26: 584-587
    [132] Lunt O R, Oertli J J, Controlled release of fertilizer minerals by incapsulating membranes: Ⅱ. Efficiency of recovery, influence of soil moisture, mode of application, and other consideration related to use. Soil Science Society of American Proceeding, 1962, 26: 584-587
    [133] Savant N K, James A F, Urea release from Osmocote fertilizers in water and simulated wetland rice soil. Commun. Soil Sci. Plant Anal., 1985, 16(10): 1071-1078
    [134] Savant N K, Clenumons J R, James A F, A technique for predicting urea release procedures. Plast. Rub. Proc. Appl., 1989, 12: 129-134
    [135] Holcomb E J, A technique for determining potassium release from a slow release fertilizer. Commun. Soil Sci. Plant Anal., 1981, 12: 271-277
    [136] 段平, 缓效多营养包硫尿素氮溶出速率的实验研究. 磷肥与复肥, 2000, 15(2): 21-22
    [137] Kobayashi A, Fujisawa E, Hanyuu T, A mechanism of nutrient release from resin-coated fertilizers and its estimation by kinetic methods. 1. Effect of water vapor pressure on nutrient release. Japan. J. Soil Sci. Plant Nutr., 1997a, 58: 8-13
    [138] Kobayashi A, Fujisawa E, Hanyuu T, A mechanism of nutrient release from resin-coated fertilizers and its estimation by kinetic methods. 2. Release of nutrients affected by the permeability of water vapor through coating material. Japan. J. Soil Sci. Plant Nutr., 1997b, 68: 14-22
    [139] Kobayashi A, Fujisawa E, Kubo S, A mechanism of nutrient release from resin-coated fertilizers and its estimation by kinetic methods. 3. An improved simulation model for nutrient release from coated urea with Gaussian correction. Japan. J. Soil Sci. Plant Nutr., 1997c, 68: 487-492
    [140] Fujisawa E, Kobayashi A, Hanyuu T, A mechanism of nutrient release from resin-coated fertilizers and its estimation by kinetic methods. 4. Relation between release of nitrogen from resin-coated urea and water vapor pressure in saturated salt solution. Japan. J. Soil Sci. Plant Nutr., 1998a, 69: 555-560
    [141] Landels S P, Controlled release fertilizers: supply and demand trends in US nonfarm markets. Proc. ACS national meeting, Division of fertilizers and soil chemistry, 1994
    [142] 穆怀珍, 曾文, 木质素氮肥增效剂研制与增产效应研究. 农业环境保护, 1999, 18(6): 251-253
    [143] 陈强, 壳聚糖包膜多功能缓释肥料的制备及其机理研究, [博士学位论文], 上海, 上海华东理工大学, 2004
    [144] Fujisawa E, Kobayashi A, Hanyuu T, A mechanism of nutrient release from resin-coated fertilizers and its estimation by kinetic methods. 5. Effect of soil moisture level on release rates resin-coated mixed fertilizer. Japan. J. Soil Sci. Plant Nutr., 1998b, 69: 582-589
    [145] Hanyuu T, Kovayashi A, Fujisawa E, A mechanism of nutrient release from resin-coated fertilizers and its estimation by kinetic methods. 6. Release of constituent compounds from resin-coated compound fertilizer. Japan. J. Soil Sci. Plant Nutr., 1999, 70: 117-122
    [146] 侯翠红, 许秀成, 缓效漂浮尿素的实验室研究. 河南化工, 1998, 6: 16-17.
    [147] Yokota Y, Pondevida J L, Preparation of slow release microcapsules containing nutrient by fluidized bed coating method. Philippine J. Sci. 1996, 125: 95-101
    [148] 唐辉, 王亚明, 新型包膜尿素的制备及其特性的研究. 化肥工业, 2003, 30(3): 20-23
    [149] 杜昌文, 周健民, 载体缓控释尿素研制初探. 土壤, 2003, 35(5): 397-400
    [150] Williamson W M, Greenfield L G, Beare M H, Biodegradation assessment of woolscour sludge and fellmongery sludge. J. Environ. Qual. 2000, 29: 1998-2006.
    [151] Duppong L M, Delate K, Liebman M, The effect of natural mulches on crop performance, weed suppression and biochemical constituents of catnip and St. John’s work. Crop Sci, 2004, 44: 861-869
    [152] Plat J Y, Sayag D, Andre L, High-rate composting of wool industry wastes. BioCycle, 1984, 2: 39-42
    [153] Verville R R, Organic feedstock generators team up with local farmers. BioCycle, 1996, 37(8): 58-61
    [154] Das K, Tollner E W, Annis P A, Bioconversion process design applied to textile industry solid wastes. ASAE Tech. Paper no. 97-5022. Am. Soc. of Agric. Eng., St. Joseph, MI, 1997
    [155] Hartley M J, Rahman A, Organic mulches for weed control in apple orchards . Orchardist, 1997, 10: 28-30
    [156] Tiwari V N, Pathak A N, Lehri L K, Effect of cattle dung and rock phosphate on composting of wool-waste. Biol. Wastes, 1989a, 27(3): 237-241
    [157] Tiwari V N, Pathak A N, Lehri L K, Response to differently amended wool-waste composts on yield and uptake of nutrients by crops. Biol. Wastes, 1989b, 28(4): 313-318
    [158] Epstein E, Trace elements, heavy metals and micronutrients. 1997, p. 137-170. In E. Epstein (ed.) The science of composting. Technomic Pub., Lancaster, PA.
    [159] Kumar V, Awathi K S, Efficiency of different manures in relation to their effect on yield and nutrient uptake by grain sorghum. Agrochimica, 1977, 22: 327-334
    [160] Valtcho D Z, Assessment of wool waste and hair waste as soil amendment and nutrient source. J. Environ. Qual., 2005, 34: 2310-2317
    [161] 中华人民共和国国家技术监督局, GB/T 12914-91. 中华人民共和国国家标准, 北京: 中国标准出版社, 1991-03-01, 268-273
    [162] 李磊, 直接甲醇燃料电池聚合物电解质的研究, [博士学位论文], 天津,天津大学,2003: 38-40.
    [163] 李国华, PEM 燃料电池鳞片石墨/树脂复合双极板的研究, [硕士学位论文], 天津, 天津大学, 2003: 20-22.
    [164] 潘朝光, PEM 燃料电池蠕虫石墨/树脂复合双极板的研究, [硕士学位论文], 天津, 天津大学, 2003: 19-20
    [165] 吴洪, 直接甲醇燃料电池用阻醇质子导电膜的研究, [博士学位论文], 天津, 天津大学, 2000: 45-46
    [166] 刘宗浩, 用于 PEMFC 的石墨/聚合物复合材料双极板研究, [博士学位论文], 天津, 天津大学, 2005: 33-34
    [167] Jorce R A, Colorimetric screening assay for cystine plus cysteine in legume seed meals. Analysis Biology. 1978, 87: 641-647
    [168] Ellman G D, Tissue sulfhydryl groups. Arch. Bioch. Biophy., 1959, 82: 70-77.
    [169] Butterworth P H W, Baum H, Porter J W, A modification of the Ellman procedures for the estimation of protein sulfhydryl. Arch. Bioch. Biophy. 1967, 118: 716-723
    [170] 鲁如坤, 土壤农业化学分析方法, 北京, 中国农业科技出版社, 1999: 231-240
    [171] 段建军, 周建斌, 王国栋, NO3-N 的水杨酸比色法快速测定. 西北农林科技大学学报, 2002, 30(3): 76-80
    [172] 陈红军, 肥料中各种形态氮的测定方法. 精细化工中间体. 2004, 35(3): 59-61
    [173] 孙建军, 杨伯伦, 林宏业, 分光光度法测定氨基甲酸甲酯和尿素混合物, 分析实验室, 2004, 23(4): 28-30
    [174] 卢滽泉, 邓振华, 实用红外光谱解析, 北京, 电子工业出版社, 1989, 24-33
    [175] Elzbieta W, Monika R, Andrzej W, Marian Wysocki, Aleksandra W B. The use of Fourier transform-infrared (FTIR) and Raman spectroscopy (FTR) for the investigation of structural changes in wool fibre keratin after enzymatic treatment. J. Molec. Struc.. 2004,704: 315-321
    [176] 姚金波, 滑均凯, 刘建勇, 毛纤维新型整理技术. 北京, 中国纺织出版社, 2000, 92-98
    [177] 沈同, 王镜岩, 生物化学(上册). 北京, 高等教育出版社, 1990, 154-156
    [178] Kuzuhara A, Hori T. Diffusion behavior of reducing agents into keratin fibers using microspectrophotometry. J. Appl. Poly. Sci., 2004, 94: 1131-1138
    [179] Kuzuhara A, Hori T. Reduction mechanism of thioglycolic acid on keratin fibers using microspectrophotometry and FT-Raman spectroscopy. Poly.. 2003. 44, 7963-7970.
    [180] Yang Z W. Novel polymer and inorganic/organic hybrid composite materials for proton exchange membrane applications, Ph. Dissertation. Dallas, 2004
    [181] 吴成义, 张丽英, 粉体成型力学原理, 北京: 冶金工业出版社, 2003, 4-8
    [182] 姚金波, 滑均凯, 刘建勇, 毛纤维新型整理技术. 北京, 中国纺织出版社, 2000, 130-133
    [183] 汪浩, 黄华, 张隐西, 大豆蛋白质塑料加工和力学性能的研究. 中国塑料, 2001, 15(7): 47-50.
    [184] 徐国刚, 窦东有, 徐荣南. 几类甲基丙烯酸 pH-敏感水凝胶的溶胀行为研究. 离子交换与吸附. 1999, 15(6): 487-495
    [185] Spei M, Holzem R, Thermoanalytical investigations of extended and annealed keratins. Colloid. Polym. Sci.. 1987, 265-965
    [186] 杨国文, 塑料助剂作用原理, 成都, 成都科技大学出版社, 1991, 36-38
    [187] Valsecchi C, Gigliotti C, Farini A, Microbial biomass, activity and organic matter accumulation in soils contaminated with heavy metals. Bio. Ferti. Soils, 1995, 20: 253-259
    [188] 佩奇 A L, 米勒 R H, 土壤分析法(闵九康, 郝心仁, 严慧峻等译), 北京, 中国农业科技出版社, 1991: 536-562
    [189] Wardle D. A, Parkinson D, Effect of three herbicides on soil microbial biomass and activity. Plant and Soil, 1990, 122: 21-28
    [190] Zelles L, Bahig M E, Scheunert I, Measurement of bioactivity based on CO2 release and ATP content in soil after different treatments. Chemosphere, 1984, 13(8): 899-913
    [191] 沈其荣, 王岩, 土壤微生物量和土壤固定态铵的变化及水稻对残留 N 的利用. 土壤学报, 2000, 13 (8): 330-338
    [192] 甘建民, 孟盈, 施肥对热带雨林下种植砂仁土壤氮矿化和硝化作用的影响. 农业环境科学, 2003, 22(2): 174-177
    [193] 黄昌勇, 土壤学, 北京: 中国农业出版社, 1996, 32-33
    [194] 中国农业科学院土壤肥料研究所, 中国肥料, 上海: 上海科学技术出版社, 1979, 173-174
    [195] 许前欣, 孟兆芳, 于彩虹, 微生物肥料农业应用的效益评价. 天津农业科学, 2000, 6(2): 204-209
    [196] 尹洪斌, 石元亮, 控释肥料的研究现状与进展, 土壤通报, 2005, 36(3): 422-425
    [197] 袁一, 王文善. 尿素, 北京, 化学工业出版社, 1996, 2
    [198] Broadbent S R, Hammersley J M, Percolation process. Ⅰ. Crystals and mazes; Ⅱ. The connective constant. Cambridge Phil Soc, 1957, 53: 629-645

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700