用户名: 密码: 验证码:
造纸废水灌溉对黄河三角洲盐渍化湿地的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黄河三角洲具有大面积的滨海荒碱地、浅海和滩涂,面临着如盐渍化土地内扩、潮间带湿地萎缩和退化等危机,是典型的生态脆弱区。本文以黄河三角洲沾化县某湿地废水处理系统为例,利用造纸废水生物塘出水构建芦苇湿地处理系统,通过对废水、土壤(0-30cm)和芦苇的定期采样与室内分析,统计分析,和模拟实验等手段,开展了生物塘-芦苇湿地复合系统对造纸废水污染物的去除规律,及废水灌溉对盐碱化土壤的生态、生物及理化指标的修复研究。主要研究结果如下:
     (1)生物塘-芦苇湿地系统能有效去除造纸废水污染物
     复合系统能有效去除废水中有机物、氮、磷、硫酸盐,但受气温和灌溉模式影响明显。塘、芦苇系统对COD累积去除率为48%和31.5%;塘系统对TP、TN去除率为23.94%和21.10%,湿地对氮磷去除率为22.33%和21.11%,以w4、w1效果较好。塘系统对SO42-去除率为56.63%,湿地中w3去除率最高(40.24%)。
     (2)废水灌溉能有效降低湿地土壤盐分
     废水洗脱是土壤脱盐的主要动力,灌溉对土壤Cl-、Na+洗脱率分别占其总去除量的93.27%和96.05%,而植物吸收分别占6.12%和3.59%。与w0比,灌后土壤Cl-、Na+、可溶盐最大洗脱率分别为52.38%、46.57%和34.97%,这是保证生态系统修复成功的前提。气温、降雨和灌溉方式对洗脱效果有影响,洗脱时间越长,降雨量越大,土壤盐分下降越明显。但灌溉方式变化引起的土壤降盐效果差异不显著,对Cl-、Na+及土壤盐去除率最高的灌溉方式分别为w1、w2和w4,并不一致。废水灌溉还能有效降低芦苇内氯、钠含量。灌后芦苇内氯、钠含量分别比未灌溉w0下降了41.18-69.6%和29.9%-56.1%。从试验结果来看,各灌溉处理中以w4、w1综合脱盐效果最好。
     (3)废水灌溉能有效改善湿地生态系统结构和功能
     废水灌溉能提高湿地土壤氮、磷和有机质含量,灌后分别是w0的1.47、1.13和1.29倍,这使得反映土壤生物结构和功能的MBC/TOC和土壤呼吸强度均增加,平均值分别为w0的1.69和1.2倍,且w4、w1表现出较好的微生物活性。而对土壤造成危害的土壤硫酸根,灌后比w0下降了62.03%,以w3下降最明显。
     废水灌溉解除了芦苇缺水和盐分胁迫,微生物活性提高也增强了土壤养分的有效性,芦苇生长状况改善,株内平均氮磷含量分别是w0的1.16和1.44倍,平均株高比w0高6.34-11.01%,平均干生物量是w0的1.25倍(若8月收割,则为1.93倍),而且灌后芦苇内硫含量升高,增强了对土壤硫的吸收去除。
     废水灌溉会减少湿地内植物多样性,杂草平均生物量仅为w0的52.18%,但对整个湿地系统而言,生物多样性包括土壤生物、动物(特别是鸟类)是增加的。
     (4)废水灌溉能提高湿地微生物和湿地酶活性
     废水灌溉后,土壤、植物根系和微生物形成了一个微生态系统。和w0相比,湿地微生物和酶数量均有提高,直接结果就是带来生物多样性的提高,对废水降解能力的增强,和湿地生态系统的修复。微生物和酶活性受气温、有机质和土壤供氧的影响,灌溉使细菌、纤维素分解菌、反硝化菌(DB)、特别是硫酸盐还原菌(SRB,最高为w0的3.24倍)等缺氧和厌氧性微生物增多;但放线菌和真菌增加不明显,甚至受轻微抑制。w0除放线菌和真菌水平较高外,其他微生物及酶含量均低于灌溉样地。灌溉方式也会间接影响有机质和供氧。w1和w4营养和供氧较好,其细菌、放线菌、真菌数量也较多,但SRB、DB数量较低;w1脱氢酶、磷酸酶、蔗糖酶、脲酶最高(分别为w0的3.28、1.69、2.14和1.50倍),其次是w4、w2和w3。
     生态因子的改善,提高了湿地系统去除污染物的功能,实验表明:土壤微生物和酶与废水污染物去除率之间存在正相关,表现为:纤维素菌数量、纤维素酶、脱氢酶和蔗糖酶与废水COD去除率;反硝化菌数量与土壤脱氮;脲酶与废水TN去除率;磷酸酶与废水总磷去除率呈显著正相关。
     根据酶学、土壤微生物活性等指标确定w1为最优废水灌溉模式;其次为w4,考虑到w4对造纸废水处理及土壤脱盐的有效性,也是一种较好的推荐灌溉工艺。
     (5)废水灌溉对系统金属离子迁移的影响
     微量金属离子大多是生物生长的必需元素,在湿地内会被微生物、植物、动物利用或者被吸附固定;实验表明:和w0相比,灌后土壤和芦苇内锌、锰含量有较大升高,但锰离子迁移能力比锌稍差;土壤、芦苇内铜、铬没有产生明显富集。
     钙、镁、钾是芦苇生长必需元素,既能促进土壤钠离子的洗脱,还能增加芦苇细胞内水势,增强抗旱、抗盐能力。和w0相比,灌后土壤Mg和K分别提高了3.93%和16.05%,钙没有明显变化。灌后芦苇穗、茎、根内K、Mg含量均小于w0;穗内Ca小于w0,叶内持平,而根、茎内高于w0,这表明,灌溉解除了干旱和盐分胁迫,使这些离子迁移到地上芦苇顶部的能力减弱。
     K对增加植株细胞水势作用明显,w0穗、叶、茎内K比灌溉处理分别高出17.94%、4.32%和3.04%,但根内K却比灌溉低3.27%。这说明,在受水分和盐分胁迫时,w0中K、Mg会沿着根-茎-叶-穗流动,并在穗内超量积累,以提高水势,抵抗缺水,而且K、Mg的转移能力要比Ca强。
     (6)湿地土壤代谢分泌物与抗盐碱胁迫机制
     对土壤内代谢产物类别和含量动态变化的研究能揭示根际微生态状况和抗盐碱的机理。液相色谱图表明:土壤提取液色谱中都有脯氨酸优势峰,9、11月份样品中还发现可能为草酸和丁二酸的峰。说明在抗胁迫机制中,脯氨酸、草酸都起着重要的作用。一般系统受胁迫越严重,脯氨酸含量越高(如w0、w4),而灌溉减小了胁迫强度,因此连续灌溉后样品中脯氨酸含量有所降低(如w1、w2、w3)。
     研究还发现:10-11月份虽然受低温、干旱、盐分胁迫严重,但并未刺激脯氨酸的产生和积累,这是因为w0芦苇部分死亡,微生物活性也受影响的原因。这表明脯氨酸主要是由芦苇分泌的。土壤中pro的垂直分布特征是上层>中层>下层。
     总之,经过对生物塘-芦苇湿地系统处理造纸废水的研究,发现系统能有效去除废水中有机物,同时废水灌溉还极大的降低了土壤盐分,产生了一系列积极效应:系统内氮、磷、有机质增加;土壤微生物和酶活性增强;MBC/TOC及土壤呼吸强度提高;芦苇株高和产量增加,而杂草的多样性减少;同时也会影响系统内钙、镁、钾、锌、锰等离子迁移,改变系统受盐碱和缺水胁迫的现状和根际代谢状况,极大地改善了滨海盐碱生态系统现状。但修复程度也受到气温、降雨、营养和土壤供气等直接因素和灌溉方式等间接因素的影响,综合比较确定w1和w4为推荐灌溉模式。
Yellow River Delta is a typical weak eco-sensitive zone which have much coastal barren saline-alkali soils, shallow-seas and beaches, where is faced with some crisis such as spreading of soil saline-alkalizing, shrinking and degenerating of mid-tide zone. Using a wetland wastewater treating system in Zhanhua County in Yellow River Delta as an example, by samples collecting and analyzing of wastewater, soil, and reed periodically, and applying the method of statistical analyzing and simulating experiments, we constructed a reed wetland to treat the pond effluent, and carried out some researches on pollutant removal mechanism, and ecological, biological, and phy-chemical remediation for saline-alkali soil from wastewater irrigation. The main results are as follow:
     (1) Pulp wastewater can be treated efficiently by pond-reed system
     Organic matter, nitrogen, phosphorus, and sulfate in wastewater can be removed efficiently by complex system, but the effect was affected by temperature and irrigating mode. Total COD removal rate of pond and wetland system is 48% and 31.5% respectively; Removal rate of TN, TP in wastewater is 23.94%, 21.10% in pond system, and 22.33%, 21.11% in wetlands, and the w4, w1 modes are better than others. The maximum SO42- removal rates are 56.63% in pond and 40.24% in w3 wetland.
     (2) Soil soluable salt can be washed out efficiently by wastewater irrigation
     Wastewater washing is the main drive of soil desalting, which accounts for 93.27%, 96.05% of total Cl- and Na+ removal in soil respectively, and the contribution of plants’absorbability for the two ions are only occupy 6.12% and 3.59%. Comparing to w0, the maximum washing rates of Cl-, Na+ and soluble salt are 52.38%, 46.57% and 34.97% separately after irrigation, which formed the premise of successful ecosystem remediation. Temperature, rainfall and irrigating mode have effect on washing efficiency, longer the washing time, greater the rainfall, then, more evidently of soil desalting. But, the difference of soil desalting efficiency from irrigating modes variety is not marked, and the optimum irrigating modes for Cl-, Na+, and salt removal are w1, w2, and w4.
     Wastewater irrigation can decrease the content of Cl-、Na+ in reed evidently also. Comparing to w0, the content of Cl-, Na+ in irrigated reed is decreased by 41.18-69.6% and 29.9%-56.1%. According to experimenting results, the w4 and w1 irrigating mode are recommended mostly.
     (3) System structure and function are improved efficiently from irrigation
     Irrigation can increase the level of TN, TP, and organic matter of system(1.47, 1.13, and 1.29 multiple comparing to w0 after irrigated), which enhanced the intensity of MBC/TOC and soil respire rate(1.69 and 1.20 multiple to w0) that can reflect the bio-structure and functions of soil, and the w4, w1 modes show higher microbial activities. Comparing to w0, the harmful soil SO42- is decreased by 62.03%(w3).
     Wastewater irrigation can relieve the pressure of fresh water shortage & high salinity, and increase microbe activities, which enhanced the availability of soil nutrient and improved the reed growing conditions: the average N、P level in irrigated reed are 1.16 and 1.44 multiple, the average reed height is increased by 6.34-11.01%, and the average dry biomass is 1.25 multiple than w0(1.93 multiple if we harvest in Aug.), moreover, the sulfate level in irrigated reed increased, which enhanced the absorbability of soil sulfate. Wastewater irrigation can decreased the biodiversity of wetland plants, and the irrigated weed dry biomass is just account for 52.18% of w0. But, for the whole wetlands system, the biodiversity of soil microbes, animals, especially for the birds is increased.
     (4) Activities of wetlands microbe and enzyme were increased from irrigation A micro-ecosystem of soil, plant root and soil microbe was formed after irrigation. Comparing to w0, the quantity of wetland microbes and enzymes were increased, which brought the result of increasing of biodiversity, enhancing of wastewater degradable ability, and renovating of wetlands ecology. The activities of microbes and enzymes were affected by temperature, organic matter and soil air level, irrigation brought the increasing of anoxic and anaerobic microbe quantity such as bacteria, celluloytic bacteria, denitrifying bacteria, and sulfate reduction bacteria especially(3.24 multiple than w0), but the number of fungi and actinomyce was not increased obviously, even, they were mild restrained. Excepting for the number of fungi and actinomyces was high, the content of other microbes and enzymes in w0 were lower than irrigated samples.
     The irrigating modes can affect the organic matter and soil oxygen indirectly. Since the conditions of nutrient and oxygen are perfect in w1, so the number of bacteria, fungi, and actinomyces is higher, but the number of SRB and DB is lower than w0; To enzymes, the quantities of dehydrogenase, phosphatase, sucrase, and urease were most in w1, the next were w4, w2, and w3 in turn.
     Renovation of eco-factors enhanced the function of pollutants degradation. The results show: there were active linear correlation between quantities of soil microbes & enzymes and pollutants removal of wastewater, such as: quantities of celluloytic bacteria, cellulose, dehydrogenase, and sucrase with COD removal; DB with soil denitrifying, urease with wastewater TN removal, and phosphatase with wastewater TP removal (r>0.8,n=16)are good fit for active linear correlation.
     According to enzymes and soil microbe activities, the w1 irrigating mode was the optimum irrigating mode. The next is w4, since it can degrade the wastewater and desalt effectively, it was a better recommended mode also.
     (5) Affect on metal ions’transportation in system after irrigation Trace metal ions are required by most biology growth, and they can be utilized, adsorbed or fixed by microbe, plant and soil animal. The experiments show: comparing to w0, the content of Zn, Mn in irrigated soil and reed were increased greatly, but the transporting ability of Mn is smaller than Zn. Cu and Cr were not apparent enriched in system after irrigation also.
     Soil Ca2+, Mg2+, and K+ were needed by reed growth, and they can accelerate the washing out of Na+ from soil, increase the water potential in reed cell, and enhance the ability of anti-water-shortage and salinity depress. Comparing to w0, soil Mg2+, K+ level were increased by 3.93% and 16.05% respectively, and Ca2+level is not apparent changed; K+, Mg2+ level in spike, stem, and root of irrigated reed were all lower than w0; Ca2+ level is lower in spike, equal in leaves, but higher in root and stem than w0, which means that irrigation can relieve the pressure of water shortage and salinity, and can weaken the transporting ability of these ions from root to upper parts of reed.
     K have apparent function on increasing the water potential of reed cell, and K level in spike, leaves, and stem of w0 is increased by 17.94%, 4.32%, and 3.04% respectively, but is decreased by 3.27% in root than irrigated samples, which means that K+ can be transported following the road of root-stem -leaves-spike and it can be over-accumulated in spike, in order to increase the water potential and ability of resisting water shortage and salinity depress. The transporting ability of K and Mg is higher than Ca.
     (6)Metabolized secretion and the anti-pressure mechanism in wetlands
     Research on the soil metabolized secretion types and dynamic change can reveal the micro-ecology conditions of root rhizosphere and anti-pressure mechanism. The HPLC curve show: there are Proline peak in all soil distilled samples, and others apparent peaks maybe come from Oxalic or Succinic acid in Sep. Nov. samples. It shows that Proline and Oxalic have important functions in anti-pressure mechanism, more serious the pressure, more high the Proline level(such as w0, w4). Since the irrigation can relieve the pressure intensity, the Proline levels in irrigated samples are decreased also(w1,w2,w3).
     Results shows that the Proline in w0 is not produced and accumulated plentifully comparing to irrigated samples even it was faced with serious lower temperature, water shortage and salinity pressures in Oct. and Nov, this is because that the plants is dying and the microbe activities is limited, which indicate that the Proline is produced by reed mainly. The vertical distribution of Proline in soil is topsoil>midsoil>subsoil.
     In a word, according to the research of pulp wastewater treatment using pond-reed system, we discovered that the complex system can removal wastewater pollutants effectively, at the same time, the salinity of soil is dramatic decreased through wastewater washing, which bring many active results: increasing of N, P, and organic matter; enhancing of soil microbes, enzymes, MBC/TOC, and soil respire rate; increasing of reed height and yield, decreasing of weed diversity; affecting of transporting ability of Ca, Mg, K, Zn, and Mn , and improving of water shortage, salinity resistance and rhizosphere metabolized secretion conditions, all those improved the weak ecosystem. The renovating degree of system is affected by temperature, rainfall, nutrient, and soil air etc. directly or indirectly, the w1, w4 irrigating modes are most recommended.
引文
[1]吴玉辉,李凤翥,徐维骝.碱法稻草浆造纸废水生态处理封闭循环的实践与研究[J].上海造纸,2003,34(1):43-48
    [2]丁成,王世和,杨春生,等.草浆废水灌溉对海涂湿地土壤及芦苇生长的影响[J].生态环境, 2005, 14(1):21-25
    [3]张惠,颜世强,刘桂仪,等.黄河三角洲的形成和演变[J].山东国土资源,2003,19(6):44-47
    [4]安永会,张福存,姚秀菊,等.黄河三角洲水土盐形成演化与分布特征[J].地球与环境.2006,34(3):65-70
    [5]李会新.生态保护黄河三角洲湿地生态环境现状的调查研究[J].中国环境管理干部学院学报. 2006,16(3):33-37
    [6]邢尚军,张建锋,宋玉民等.黄河三角洲湿地的生态功能及生态修复[J].山东林业科技,2005,(2):69-70
    [7]姚秀菊,王洪德,张福存,等.黄河三角洲地区地下淡水(微咸水)的形成与演化[J].地球学报,2002,23(4):375-378
    [8]韩言柱,田凌云,许学工.黄河三角洲湿地生态系统及其保护的初步研究.环境科学与技术,2000(2):10~13
    [9]郗金标;宋玉民;邢尚军.黄河三角洲生态系统特征与演替规律[J].东北农业大学学报,2002,30(6):111-114。
    [10]张建锋,邢尚军,郗金标,等.黄河三角洲可持续发展面临的环境问题与林业对策.东北林业大学学报,2002,30(6):115~119
    [11]宋玉民,张建锋,邢尚军,等.黄河三角洲重盐碱地植被特征与植被恢复技术[J].东北林业大学学报,2003,31(6):87-89
    [12]赵延茂,马克斌.黄河三角洲自然保护区植被调查报告.山东林业科技,1994(5):10~13
    [13]王德龙,等.自由水面湿地系统的微生物活性及其变化规律.城市环境与城市生态, 1998, 11(1):21-23.
    [14]张荣社,周琪,李旭东,等.自由表面人工湿地脱氮效果中试研究[J].环境污染治理技术与设备,2002,3(12):9-11页:168
    [15]王德龙,张玉惠,张震,等.自由水面湿地系统的微生物活性及其变化规律[J].城市环境与城市生态. 1998,11(增刊):21-25
    [16] Song Zhi-wen, Zheng Zhao-pei , Li Jie, et al. Seasonal and annual performance of a full-scale constructed wetland system for sewage treatment in China[J]. Ecological Engineering, 2006,26: 272–282
    [17]Sylvia Toet, Richard S.P. Van Logtestijn, Michiel Schreijer,et al. The functioning of a wetland system used for polishing effluent from a sewage treatment plant[J]. Ecological Engineering, 2005, 25: 101–124
    [18]Christian R. Steinmann, Sabine Weinhart, Arnulf Melzer. A combined system of lagoon and constructed wetland for an effective wastewater treatment[J]. Water Research, 2003,37:2035–2042
    [19]刘芳李贵宝,王殿斌,等,白洋淀芦苇湿地跟孔(系)观测调查及其净化污水的研究[J].南水北调与水利科技, 2004,2(6):20-24
    [20]缪绅裕,陈桂珠,黄玉山,等.人工污水中的磷在模拟秋茄湿地系统中的分配与循环[J].生态学报,1999,19(2):236-241
    [21]王希波,孙翠玲.芦苇湿地处理造纸废水技术对黄河三角洲经济和环境的影响[J].中国环境管理,2004,(1):53-54
    [22]李亚治.水葫芦-水草人工湿地系统在再生浆造纸废水处理中的应用研究[J].环境科学动态, 2000,(2):28-29
    [23]余永东,童茜炜.地表漫流一地表流湿地工艺处理废纸造纸废水[J].工业水处理,2003,23(12):59-61
    [24]韩勤有,徐雅娟,高升平.生物塘-人工湿地处理制浆造纸废水工程实践[J].陕西环境,2003,10(4):12-13
    [25]钟玉书,王国生,田敏等.芦苇湿地生态系统净化造纸废水的研究[J].辽宁农业科学,2006,(3):6~8
    [26]邢维芹,骆永明,李立平等,持久性有机污染物的根际修复及其研究方法[J].土壤, 2004, 36 (3): 258~263
    [27]Juhasz A, Naidu R. Bioremediation of high molecular weight polycyclic aromatic ydrocarbons: a review of the microbial degradation of benzo[a]pyrene. International Biodeterioration & Biodegradation, 2000, 45: 57 ~ 88
    [28]赵可夫,范海,宋杰.芦苇湿地在处理污水中的作用及机理的探讨[J].论文选刊,2000,(4):8-11
    [29]王世和,王薇,俞燕.潜流式人工湿地的运行特性研究[J].中国给水排水,2003,19:9-11
    [30]张军,周琪,何蓉等.表面流人工湿地中氮磷的去除机理,生态环境. 2004, 13(1):98-101
    [31] GACHTER R, MEYER J S. The role of microorganisms in mobilization and fixation of phosphorus in sediments[J].Hydrobiologia, 1993, 253: 103-121.
    [32]何蓉,周琪,张军.表面流人工湿地处理生活污水的研究[J].生态环境,2004, 13(2): 180-181
    [33] BAYLEY R W, THOMAS E V, COOPER P F. Some problems associated with the treatment of sewrage by non-biological processes[A]. In: ECKENFELDER W W, CECIL L K, eds. Applications of New Concepts in Physical-Chemical Wastewater Treatment[C]. Oxford, UK:Pergamon Press, 1973: 119-132.
    [34] US ENVIRONMENT PROTECTION AGENCY. Wastewater Stabilization Ponds: Nitrogen Removal[R]. Washington, DC: Office of Water, 1983.
    [35]吴建强,黄沈发,丁玲等.人工湿地中的SND机理以及DO、pH对其的影响[J].环境污染与防治2005,27(6): 476-478
    [36] US ENVIRONMENT PROTECTION AGENCY. Manual-Constructed Wetlands Treatment of Municipal Wastewaters(EPA/625/R-99/010) [R]. Cincinnati, Ohio: Office of Research and Development, National Risk Management Research Laboratory, 1999.
    [37] CRAFT C B, BROOME S W, SENECA E D, et al. Estimating sources of soil organic matter in natural and transplanted estuarine marshes using stable isotopes of carbon and nitrogen[J]. Estuar Coast Shelf Sci, 1988, 26:633-641
    [38]贺锋,吴振斌,陶菁等.复合垂直流人工湿地污水处理系统硝化与反硝化作用[J].环境科学,2005,26(1):47-51
    [39] REDDY K R, GRAETZ D A. Carbon and nitrogen dynamics in wetland soils[A]. In: HOOK D D, et al. eds. The Ecology and Management of Wetlands[C]. Portland OR:Timber Press, 1988:307.
    [40]陈德强,吴振斌,成水平等,人工湿地-氧化塘工艺组合对氮和磷去除效果研究,四川环境2004,23(6):4-7
    [41]刘育,夏北成.不同植物构成的人工湿地对生活污水中氮的去除效应[J].植物资源与环境学报,2005,14(4):46-48
    [42]李旭,张旭,薛玉.沸石芦苇床除氮中试研究[J].环境科学,2003,24,(3):158-160
    [43]Niels P R, Jacob P J, Lars P N. Nitrogen transformations in microenvironments of river beds and riparian zones[J]. Ecological Engineering,2005,24:447–455
    [44] F.E. Matheson,M.L. Nguyen, A.B. Cooper,et al. Fate of 15N-nitrate in unplanted, planted and harvested riparian wetland soil microcosms[J]. Ecological Engineering,2002,19: 249-264
    [45] A. WieXner, U. Kappelmeyer, P. Kuschk, et al. Influence of the redox condition dynamics on the removal efficiency of a laboratory-scale constructed wetland[J]. Water Research, 2005, 39: 248-256
    [46] Arthur F.M. Meuleman,1, Richard van Logtestijn, Gerard B.J. Rijs, et al. Water and mass budgets of a vertical-flow constructed wetland used for wastewater treatment Ecological Engineering, 2003, 20: 31-44
    [47] G. SILYN-ROBERTS , G. LEWIS. In situ analysis of nitrosomonas spp. In wasterwater treatment wetland biofilms[J]. Water Research, 2001, 35(11): 2731–2739
    [48] A.D. Karathanasis, C.L. Potter, M.S. Coyne. Vegetation effects on fecal bacteria, BOD, and suspended solid removal in constructed wetlands treating domestic wastewater[J]. Ecological Engineering, 2003, 20: 157-169
    [49] Lei Yang , Hui-Ting Chang, Mong-Na Lo Huang. Nutrient removal in gravel- and soil-based wetland microcosms with and without vegetation[J]. Ecological Engineering, 2001, 18: 91–105
    [50]曹向东,王宝贞,蓝云兰等.强化塘-人工湿地复合生态塘系统中氮和磷的去除规律[J].环境科学研究,2000,13(2):15-20
    [51] GACHTER R, MEYER J S. The role of microorganisms in mobilization and fixation of phosphorus in sediments[J]. Hydrobiologia, 1993, 253: 103-121
    [52] REDDY K R, KADLEC R H, FLAIG E, et al. Phosphorus assimilation in streams and wetland: critical reviews[J]. Environ Sci Tech, 1996, 31: 4-18.
    [53] WANG N M, WILLIAM J M. A detailed ecosystem model of phosphorus dynamics in reated riparian wetlands[J]. Ecol Eng, 2000, 126: 101-130.
    [54]吴振斌,梁威,成水平.人工湿地植物根区土壤酶活性与污水净化效果及其相关分析[J].环境科学学报, 2001, 21(5):622-624.
    [57] BRIX H. Use of constructed wetland in water pollution control: historical development presentstatuse and future perspectives[J]. Wat Sci Tech, 1994, 30(8): 209-223.
    [56] STEWART J W B, TIESSEN H. Dynamics of soil organic phosphorus[J]. Biogeochemistry, 1987, 4: 41-60.
    [57] REDDY K R, D'ANGELO E M. Biogeochemical indicators to evaluate pollutant removal efficiency in constructed wetlands[J]. Wat Sci Tech, 1997, 35(5): 1-10.
    [28] REED S C, CRITES R W, MIDDLEBROOKS E J. Natural systems for waste management and treatment[M]. The Second Edition. New York: McGraw Hill Inc., 1995.
    [59] KIM S Y, GEARY P M. The impact of biomass harvesting on phosphorus uptake by wetland plants[J]. Wat Sci Tech, 2001, 44(11-12):61-67.
    [60] TANNER C C. Substratum phoshorus accumulation during maturation of gravel-bed constructed wetlands[J]. Wat Sci Tech, 1999, 40(3):147-154.
    [61] MITSCH W J, GOSSELINK J G. Wetlands[M]. The Second Edition. New York: Van Nostrand Reinhold, 1993.
    [62] DRIZO A, FROST C A. Physico-chemical screening of phosphate removing substrates for use in constructed wetland systems[J]. Wat. Res., 1997, 33(7):3 595-3 602.
    [63]俞慎,何振立,黄昌勇.重金属胁迫下土壤微生物和微生物过程研究进展[J].应用生态学报,2003,14(4)∶618-622。
    [64]Gwenaelle Olivie-Lauquet, Gerard G, Aline D, et al. Release of trace elements in wetlands: role of seasonal variability[J]. Water Research, 2001,35(4): 943–952
    [65]何池全,李蕾,顾超.重金属污染土壤的湿地生物修复技术[J].生态学杂志,2003, 22(5):78~81
    [66]谢丹超.湿地修复工程中水生植物对重金属Cu、Zn污染[T]硕士论文,浙江大学,2005
    [67]Greenway M. Constructed wetlands in queenlands:performance efficiency and nutrient bioaccumulation ,Ecol eng [J] 1997,12:39-55
    [68]崔妍.芦苇对湿地重金属吸收的研究[T]硕士论文,大连海事大学,2005
    [69]王金达,刘景双,于君宝,等.沼生植物过渡金属元素含量季节变化特征———以三江平原典型湿地植物为例[J].地理科学,2003,23(2):213-217
    [70]安永会,张福存,姚秀菊,等.黄河三角洲水土盐形成演化与分布特征[J].地球与环境,2006,34(3):65-70
    [71]宋玉民,张建锋,邢尚军,等.黄河三角洲重盐碱地植被特征与植被恢复技术[J].东北林业大学学报,2003,31(6):87-89
    [72]刘庆生,刘高焕,薛凯,等.近代及现代黄河三角洲不同尺度地貌单元土壤盐渍化特征浅析[J].中国农学通报,2006,22(11):353-359
    [73]翁永玲,宫鹏.黄河三角洲盐渍土盐分特征研究[J].南京大学学报(自然科学),2006, 42(6):602-607
    [74]黄昌勇.土壤学.北京:中国农业出版社,2000,171~179).
    [75]关元秀,刘高焕,王劲峰.基于GIS的黄河三角洲盐碱地改良分区.地理学报,2001, 56(2):198~205
    [76]赵可夫,冯立田,张圣强等.黄河三角洲不同生态型芦苇对盐度适应生理的研究II.不同生态型芦苇的光合气体交换特点[J].生态学报2000,20(5):795-800
    [77]郗金标,张福锁,陈阳,等.盐生植物根冠区土壤盐分变化的初步研究[J].应用生态学报,2004,15(1)∶53~58
    [78]尹建道,生愿喜久雄.山东滨海地区盐碱地土壤分析研究[J].林业科技通讯,1998,6:13-16
    [79]杨传平,焦喜才.树木的细胞膜透性与抗盐性[J].东北林业大学学报,1997,25(1): 1~3
    [80]东北林学院土壤学(上下册)北京:中国林业出版社,1982,203~210
    [81]丁成,王世和,杨春生.造纸废水滩涂芦苇湿地处理系统中钠的分布特征[J].中国造纸,2005,24(3):24-26
    [82]罗廷彬,任崴,李彦.咸水灌溉条件下干旱区盐渍土壤盐分变化研究[J].土壤, 2006, 38 (2): 166-170
    [83]陈效民,白冰,黄德安,等.黄河三角洲海水灌溉对土壤盐碱化和导水率的影响[J].农业工程学报,2006,22(2):50-53
    [84]陈效民,白冰,蔡成君.黄河三角洲海水灌溉对土壤性质的影响研究[J].水土保持学报,2004,18(1):19-20
    [85]唐娜,崔保山,赵欣胜,黄河三角洲芦苇湿地的恢复[J].生态学报2006,33(8):2616-2624
    [86]王慧敏,2005年,湖南农业大学硕士论文,不同森林植被下土壤微生物与土壤生化性质的研究
    [87]吴展才,余旭胜,徐源泰,等.采用分子生物学技术分析不同施肥土壤中细菌多样性,中国农业科学,2005, 38(12):2474-2480
    [88]周虹霞,刘金娥,钦佩.外来种互花米草盐沼土壤微生物16SrRNA特征分析-以江苏省潮间带为例[J].云南农业大学学报,2006,21(6):799-806
    [89]殷峻,闻岳,周琪.人工湿地中微生物生态的研究进展,环境科学与技术,2007,30(1):108-112
    [90]项学敏,宋春霞,李彦生等.湿地植物芦苇和香蒲根际微生物特性研究[J].环境保护科学,2004,30(124):35-38。
    [91]樊盛菊,齐树亭,武洪庆等,盐生植物根际对土壤中微生物数量和酶活性的影响.河北大学学报(自然科学版),2006,26(1):38-41
    [92]张鸿,陈光荣,吴振斌.两种人工湿地中氮、磷净化率与细菌分布关系的初步研究[J].华中师范大学学报(自然科学版) ,1999,33(4):575-578
    [93]叶淑红,王艳,万惠萍等.辽东湾湿地微生物量与土壤酶的研究[J].土壤通报2006,37(5):897-901
    [94]林学政,沈继红,刘克斋,等.种植盐地碱蓬修复滨海盐渍土效果的研究[J].海洋科学进展2005,23(1):99-108
    [95]周虹霞,,刘金娥,钦佩.外来种互花米草对盐沼土壤微生物多样性的影响——以江苏滨海为例[J] .生态学报,2005,25(9):2304-2311
    [96]杨磊,贺学礼.芦苇根际AM真菌生态学研究[J].河北农业大学学报,2006,29(3):29-33
    [97]林启美,赵小蓉,孙焱鑫等.纤维素分解菌与无机磷细菌的相互作用[J].生态学杂志,2001,20(3):69-70
    [98] Dammwal N S,Gaur,A.C. Associative effect cellulolytic fungi and Azospillum lip of erum on yield and nitrogen uptake by wheat[J]. Plantand Soil,1983,107:211-218.
    [99]段俊英,何秀良,戴祥鹏.芦苇根际微生物及其生物学特性的研究[J].微生物学杂志1984,4(1):13-19
    [100]袁耀武,张伟,李英军等.水资源利用污水灌溉对土壤中不同微生物类群数量的影响,节水灌溉·2003,(6):15-17
    [101]Koottatatep T, Polprasert C. Role of plant uptake on nitrogen removal inconstructed wetlands located the tropics[J]. Wat. Sci. Tech.,1997,36(12): 1-8
    [102]Verhoven JTA, Meuleman AFM. Wetlands for wastewater treatment: opportunities and limitations[J]. Eco. Eng.,1999,12(1-2): 5-12
    [103]Kuschk P, Wiebner A, Kappelmeyer U, et al. Annual cycle of nitrogen removal by a pilot-scale subsurface horizontal flow in a constructed wetland under moderate climate[J].Wat. Res., 2003,36(17) : 4236-4242.
    [104]吴振斌,梁威,成水平等.复合垂直流构建湿地净化污水机制研究I-微生物类群和基质酶,长江流域资源与环境,2002,11(2):179-183
    [105]梁威,吴振斌,周巧红,等.复合垂直流构建湿地基质微生物类群及酶活性的空间分布[J].云南环境科学,2002,21(1):5-8
    [106]厉婉华.苏南丘陵区不同林分下根际根外土壤微生物区系及酶活性[J].生态学杂志,1994,13(6):11-14
    [107]赵先丽,周广胜,周莉等.盘锦芦苇湿地土壤微生物初步研究[J].气象与环境学报. 2007,23(1):30-33
    [108]吴振斌,周巧红,贺锋,等.构建湿地中试系统基质剖面微生物活性的研究[J].中国环境科学,2003,23(4):422~426
    [109]杨富亿,李秀军,王志春,等.盐碱化湿地稻-鱼复合系统微生物特征[J].湿地科学,2003,1(2):105-110
    [110]陈博谦,尹澄清.污水净化湿地模拟系统中细菌和藻类的生态分布研究[J].生态学报,18(6):634-639
    [111]赵先丽,周广胜,周莉等.盘锦芦苇湿地土壤微生物特征分析[J].气象与环境学报. 2006,22(4):64-67
    [112]Michele B,Byron CC,Vanja KC, et al. molecular characterization of sulfate-reducing bacteria in a New England salt marsh[J]. Environmental Microbiology, 2005,7:1175-1185
    [113]Larry L B. Chracteristics and activities of sulfate -reducing bacteria//,ed Sulfate-reducing bacteria[J].Biotechnology Handbooks 8, Newyork Plenum Press, 1995,1-32
    [114]幸颖,刘常宏,安树青.海岸盐沼湿地土壤流循环中的微生物及其作用[J].生态学杂志,2007,26(4):577-581
    [115]Holmer M,Storkholm P. Sulfate reduction and sulfur cycling in lake sediments[J]. Freshwater Biology,200146: 431-451
    [116]殷峻,闻岳,周琪,等.人工湿地中微生物生态的研究进展,环境科学与技术.2007,30(1):108-112
    [117]刘存歧,王伟伟,李贺鹏等.页:173湿地生态系统中土壤酶的研究进展[J].河北大学学报(自然科学版),2005,25(4):443-448
    [118]王慧敏,2005年,湖南农业大学硕士论文不同森林植被下土壤微生物与土壤生化性质的研究
    [119]Ciurli S, Marzadori C, Benini S, Deiana S, Gessa C. Urease from the soil bacterium Bacillus pasteurii: immobilization on Ca-polygalacturonate[J].Soil Biol Biochem 1996;28(6):811– 7.
    [120]V. Shackle, C. Freeman, B. Reynolds et al,页:173 Exogenous enzyme supplements to promote treatment efficiency in constructed wetlands[J]. Science of the total environment ,2005, 1-7
    [121]李智,杨在娟,岳春雷,等.人工湿地基质微生物和酶活性的空间分布[J].浙江林业科技[J].2005,25(3):1-5
    [122]李传荣,许景伟,宋海燕等.黄河三角洲滩地不同造林模式的土壤酶活性[J].植物生态学报,2006,30(5):802~809
    [123]孙炳寅,朱长生.互花米草(Spartinaalterniflora)草场土壤微生物生物分布及某些酶活性的影响[J].生态学报,1989,9(3):240-244.
    [124]周巧红,吴振斌,付贵萍等.人工湿地基质中酶活性和细菌生理群的时空动态特征[J].环境科学2005,26(2):108-112
    [125]张银龙,林鹏.秋茄红树林土壤酶活性时空动态[J].厦门大学学报(自然科学版),1999,38(1): 129-136.
    [126]Boschkerhts, Cappenbergte. Partens of exter cellular enzyme activities in littoral sediments of Lack Gooimeer, The Netherlands[J]. Femsmicrobiology Ecology, 1998,25:79-86.
    [127]Boetiusa, Lochtek. Regulations of microbial enzymic degradation of organic matter in deep sea sedments[J]. Mar. Ecol. Prog. Ser, 1994,104:299-307.
    [128]Kang H, Freeman C. Phosphatase and arylsulphatase activities in wetland soils: annual variationand controlling factors[J]. 1999,31:449-454.
    [129]付融冰,杨海真,顾国维等.人工湿地基质微生物状况与净化效果相关分析[J].环境科学研究2005,18(6):44-49
    [130]梁威,吴振斌,周巧红,等.构建湿地基质微生物与净化效果及相关分析[J].中国环境科学,2002,22(3):282~285
    [131]周巧红,吴振斌,贺锋等.投加酞酸酯的构建湿地基质微生物活性的研究[J].水生生物学报,2003,27(5):445-451
    [132]Reddy K R, D’angeloe M. Biogeochenmical indicators to evaluate pollutant removal efficiency inconstructed wetlands [J]. Wat.Sci. Tech., 1997,35(5):1-10
    [133]龙健,黄昌勇,滕应等.重金属污染矿区复垦土壤微生物生物量及酶活性的研究[J].中国生态农业学报. 2004,12(3):146-148
    [134]李传荣,许景伟,宋海燕等.黄河三角洲滩地不同造林模式的土壤酶活性[J].植物生态学报,2006,30(5):802~809
    [135]孙启祥,张建锋,FranzMakeschin.微生物与酶的数量与废水处理效果之间的关系分析[J].水土保持学报2006,20(4):98-10
    [136]梁威,吴振斌,周巧红等.复合垂直流构建湿地植物根区磷酸酶及脲酶活性与污水净化的关系. 2002,38(6):545-548
    [137]吴振斌,梁威,邱东茹,等.复合垂直流构建湿地基质酶活性与污水净化效果[J].生态学报,2002,22(7):1012-1018
    [138]岳春雷,常杰,葛滢,等.人工湿地基质中土壤酶空间分布及其与水质净化效果之间的相关性[J].科技通报,2004,20(2):112-115
    [139]吴振斌,梁威,成水平等.人工湿地植物根区土壤酶活性与污水净化效果及其相关分析[J].环境科学学报,2001,21(5):622-625
    [140]杨崇豪,郑志宏.人工湿地污水处理反应器降解有机物的数学模型[J].华北水利水电学院学报,2004,25(2)66-70
    [141]刘芳李贵宝,王殿斌等,白洋淀芦苇湿地根孔(系)观测调查及其净化污水的研究南水北调与水利科技2004,2(6):20-24)
    [142]刘文菊,朱永官.湿地植物根表的铁锰氧化物膜[J].生态学报. 2005,25(2):358-363
    [143]田应兵.湿地土壤碳循环研究进展[J].长江大学学报(自科版), 2005,2(8):1-3
    [144]卢静,朱琨,赵艳锋等.腐殖酸在去除水体和土壤中污染物的作用[J].环境科学与管理, 2006,31(8):151-154
    [145]牛晓音,樊梅英,常杰.人工湿地运行过程中有机物质的积累[J].生态学报,2002,22(8):1240-1246
    [146]程钟,董毛毛.造纸废水灌溉对湿地土壤中有机质含量的影响[J].环境研究与监测,2006,(29~30):29-30
    [147]XU Xiao-feng, SONG Chang-chun, SONG Xia. Limitation of available carbon on microbial respiration in the calamagrostis angustifolia soil—a case study in Sanjiang plain [J].中国科学院研究生院学报.2004,21(4):538-542
    [148]赵先丽,程海涛,吕国红.土壤微生物生物量研究进展[J].气象与环境学报,2006,22(4):68-72
    [149]吕国红,周莉,赵先丽等.芦苇湿地土壤有机碳和全氮含量的垂直分布特征[J].应用生态学报,2006,17(3)∶384~389
    [150]赵先丽,周广胜,周莉等.盘锦芦苇湿地凋落物土壤微生物量碳研究[J].农业环境科学学报,2007,26(增刊):127-131
    [151]孙志高,刘景,王金达等.湿地生态系统氮素输入过程的研究进展[J].地理与地理信息科学,2006,22(1):97-103
    [152]阮晓红,张瑛,黄林楠.微生物在湿地氮循环系统的效应分析[J].水资源保护,2004(6):1-8
    [153]Brix H,Schierup H.Soil oxygenation in constructed reedbeds: The role of macrophyte and soil-atmosphere interface oxygen transport. In: Cooper PF, Findlater B Ceds. Constructed Wetlands in Water Pollution Control.Oxford:Pergamon,1990.53~66.
    [154]Hosomi M, Murakami A, Sudo R. Four-year massbalance for a natural wetland system receiving domestic wastewater. Water Science and Technology, 1994,30(8):235~244.
    [155]白军红,欧阳华,邓伟,等.湿地氮素传输过程研究进展[J].生态学报2005,25(2):326-333
    [156]阳承胜,蓝崇钰,张干,N、P、K在宽叶香蒲人工湿地系统中的分布与积累,深圳大学学报理工版2005,22(3):264-268
    [157]MartinJF,ReddyKR.Interaction and spatial distribution of wetland nitrogen processes. Ecological Modeling, 1997,105:1~21
    [158]TannerCC,KadlecRH,GibbsMM,etal.Nitrogen processing gradients in subsurface-flow treatment wetlands———influence of wastewater characteristics[J].Ecological Engineering, 2002, 18: 499~520.
    [159]吕国红,周广胜,周莉等.盘锦湿地芦苇群落土壤碱解氮及溶解性有机碳季节动[J].气象与环境学报2006,22(4):59-64
    [160]钟传青,黄为一.磷细菌P17对不同来源磷矿粉的溶磷作用及机制.土壤学报, 2004, 41(6): 931~937
    [161]Illmer P, Barbat o A, Schi nner F. Solubilisation of hardly-soluble AlPO4 with P-solubilizing microorganisms. Soil Biology and Biochemistry 1995, 27: 265~270
    [162]朱丽霞,等.根系分泌物与根际微生物相互作用研究综述.生态环境, 2003, 12(l ): 102~105
    [163]覃丽金,王真辉,陈秋波.根际解磷微生物研究进展[J].华南热带农业大学学报,2006,12(2):44-49
    [164]谢艳兵,贾庆宇,周莉,等.盘锦湿地芦苇群落土壤呼吸作用动态及其影响因子分析[J].气象与环境学报,2006,22(4):53-58
    [165]赵建刚,杨琼,陈章和,等.几种湿地植物根系生物量研究,中国环境科学,2003,23(3):290~294
    [166]Farquhar G D et al. Stomatal conductance and photosynthesisJ]. Ann Rev Plant Physiol,1982,33: 317-345
    [167]张甲耀,夏盛林,崔克辉,等.潜流型人工湿地污水处理系统中芦苇的生长特性及净化能力[J].水处理技术,1998,24(6):363-367
    [168]David J, Cooper. Water and soil chemistry, floristics, and phytosociology of the extreme rich high creek fen, in Sout Park,Colorado, USA〔J〕.CanJBot,1996,74:1801~1811
    [169]何池全,赵魁义,余国营,等.湿地生态过程研究进展[J].地球科学进展, 2000,15(2):165-171
    [170]丁永祯,李志安,邹碧.土壤低分子量有机酸及其生态功能[J].土壤, 2005, 37 (3): 243~250
    [171]杨红,黄焕忠,周立祥,等,植物根系分泌物中有机酸的分析方法[J].分析测试学报2001,20(4):19-21
    [172]李德华,贺立源,刘武定,等.土壤中非生物逆境胁迫与根系有机酸分泌[J].武汉植物学研究,2001,19(6):497-507
    [173]Lynch J M, Whipps J M. Substrate flow in the rhizosphere[J]. Plant and Soil, 1990, 129:1-10.
    [174]丁永祯,李志安,邹碧.土壤低分子量有机酸及其生态功能[J].土壤, 2005, 37 (3): 243~250
    [175]郜红建,蒋新,常江,等.根分泌物在污染土壤生物修复中的作用[J].生态学杂志2004, 23(4):135~139
    [176]梁文举,张晓珂,姜勇,等.根分泌的化感物质及其对土壤生物产生的影响[J].地球科学进展,2005,20(3):330-337
    [177]CHEN Yong-liang, GUO Yu-qiang, HAN Shi-jie, et al. Effect of root derived organic acids on the activation of nutrients in the rhizosphere soil[J]. Journal of Forestry Research, 2002,13(2): 115-118
    [178]刘峰,温学森.根系分泌物与根际微生物关系的研究进展[J].食品与药品, 2006,8(9):37-41
    [179]Hawes M C, Gunawardena U, Miyasaka S, et al. The role of root border cells in plant defense[J]. Trends Plant Sci, 2000, 5 (3):128-133.
    [180]朱丽霞,章家恩,刘文高.根系分泌物与根际微生物相互作用研究综述[J].生态环境,2003,12(1) :102-105
    [181]何海霞,丁健桦,杨新磊,等. HPLC法测定芦荟及芦荟饮料中的低分子量有机酸[J].食品科技, 2006(8):231-234
    [182]孔祥虹,李建华.反相高效液相色谱法测定果汁中的有机酸[J].理化检验(化学分册),2004,40(6):331-333
    [183]高海燕,廖小军,王善,等.反相高效液相色谱法测定果汁中11种有机酸条件的优化[J].分析化学,2004,32(12):1645~1648
    [184]王平,周荣.高效液相色谱法测定植物根系分泌物中的有机酸[J].色谱,2006,24(3):239~242
    [185]刘拥海,俞乐.植物草酸的功能及其代谢调控研究进展[J].安徽农业科学, 2006,34(15): 3572-3575
    [186]赵福庚,刘友良,张文华.大麦幼苗叶片脯氨酸代谢及其与耐盐性的关系[J].南京农业大学学报,2002,2(2):7-10.
    [187]赵福庚,刘友良.盐胁迫激活大麦幼苗脯氨酸合成的鸟氨酸途径(英文)[J].植物生理学报,2001,43(1): 36-40.
    [188]陈英华,严重玲,李裕红,等.盐胁迫下红海榄脯氨酸与活性氧代谢特征研究[J].厦门大学学报(自然科学版),2004,43(3):402-405
    [189]李玲,余光辉,曾富华.水分胁迫下植物脯氨酸累积的分子机理[J].华南师范大学学报(自然科学版),2003,(1):126-134
    [190]谭大海,沙伟,张莹莹.芦苇盐胁迫下渗透调节物质含量变化研究[J].齐齐哈尔大学学报. 2006,22(2):84-85
    [191]燕平梅,章艮山.水分胁迫下脯氨酸的累积及其可能的意义[J].太原师范专科学校学报,2000,(4):27-28
    [192]全先庆,张渝洁,单雷等.高等植物脯氨酸代谢研究进展[J].生物技术通报2007(1):14-18
    [193]颜宏,石德成,尹尚军,等.盐、碱胁迫对羊草体内N及几种有机代谢产物积累的影响[J].东北师大学报(自然科学版),2000,32(3):47-54
    [194]王丽,王琳,王宝贞等.复合塘-湿地生态系统处理草浆造纸中段废水运行效果.中国造纸. 2007,26(6): 12-14
    [195]刘硕,王宝贞,王琳等.塘-湿地复合生态系统处理石油化工废水的效能.中国环境科学2006,26(Suppl.):27~31
    [196]王丽,王宝贞,王琳等.仿生强化径流型湿地处理草浆造纸中段废水.中国造纸. 2007,26(12): 32-34
    [197]A.K.C. Chung, Y. Wu, N.F.Y. Tam, M.H. Wong , Nitrogen and phosphate mass balance in a sub-surface flow constructed wetland for treating municipal wastewater. Ecological Engineering, 2008, 32( 1): 81-89
    [198] E. Lesage, D.P.L. Rousseau, E. Meers, et al. Accumulation of metals in a horizontal subsurface flow constructed wetland treating domestic wastewater in Flanders, Belgium. Science of The Total Environment, 2007, 380(1-3) : 102-115.
    [199] Noeon Park, Joon Ha Kim, Jaeweon Cho. Organic matter, anion, and metal wastewater treatment in Damyang surface-flow constructed wetlands in Korea. Ecological Engineering, 2008, 32(1): 68-71
    [200] Yan Wua, N.F.Y. Tama, M.H. Wong. Effects of salinity on treatment of municipal wastewater by constructed mangrove wetland microcosms. In Press, 2008.
    [201] Yanhua Wang, Ryuhei Inamori, Hainan Kong,et al. Influence of plant species and wastewaterstrength on constructed wetland methane emissions and associated microbial populations. Ecological Engineering, 2008, 32(1): 22-29.
    [202] M.E. Poach, P.G. Hunt, G.B. Reddy, et al. Effect of intermittent drainage on swine wastewater treatment by marsh–pond–marsh constructed wetlands. Ecological Engineering, 2007,30(1): 43-50.
    [203] A.E. Gonzalias, P. Kuschk, A. Wiessner, et al. Treatment of an artificial sulphide containing wastewater in subsurface horizontal flow laboratory-scale constructed wetlands. Ecological Engineering, 2007, 31(4): 259-268.
    [204]黄河三角洲滨北盐碱地生态恢复与产业化建设示范带总体规划,滨州市政府,2005年
    [205] S. Miyamoto, Arturo Chacon ,et al, Soil salinity of urban turf areas irrigated with saline water [J] .Landscape and Urban Planning . 2006, 77: 28-38
    [206] Alan J. Lymbery, Robert G. Doupé. Bennett Thomas, et al. Efficacy of a subsurface-flow wetland using the estuarine sedge Juncus kraussii to treat effluent from inland saline aquaculture[J]. Aquacultural Engineering , 2006, 34(1):1-7
    [207] G Zalidis. Management of river water for irrigation to mitigate soil salinization on a coastal wetland[J] .Journal of Environmental Management[J] , 1998, 54(2):161-167
    [208] D. Pokhrel, T. Viraraghavan. Treatment of pulp and paper mill wastewater—a review[J]. Science of The Total Environment,2004,333(1-3):37-58
    [209]Herrero, J.; Pérez-Coveta O.Geoderma. Soil salinity changes over 24 years in a Mediterranean irrigated district[J]. Geoderma,2005, 125( 3-4): 287-308
    [210] Gideon O, Yoel D, Gillerman L, et al. SW—Soil and Water: Effect of Water Salinity and Irrigation Technology on Yield and Quality of Pears[J]. Biosystems Engineering, 2002, 81(2): 237-247
    [211]水和废水监测分析方法(第四版).北京:中国环境科学出版社[M],2002
    [212]鲍士旦主编,土壤农化分析.北京:中国农业出版社[M],2005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700