用户名: 密码: 验证码:
基于FVS-BGC的森林生长收获模拟系统应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
森林未来的生长情况如何?采用何种措施才能将森林培育成用材林、公益林、碳汇林?气候和环境变化能在多大程度上影响森林生长?这些都是林学家和森林经营管理者想要知道的问题。森林生长模型是用来预测森林发展变化情况的重要工具,与一般的经验生长收获模型相比,加入了气候、立地条件及生理学模型和参数的过程模型成为当前模型界研究的重点和热点问题,既能模拟森林经营措施又能模拟树木生理生态生长过程的混合模型应运而生。
     本研究以引自美国的基于混合模型的森林生长模拟系统FVS-BGC为研究对象,在充分解析原系统的基础上进行了消化吸收,并以北京市油松、侧柏两个试验树种为例建立起适合北京地区试验树种的FVS-BGC系统,得到的主要结论有:
     (1)解析了FVS-BGC系统的组成、执行过程及主要生长模型。系统运行需要5类输入数据:单木数据、林分数据、气候数据、立地数据和树木生理数据,能够输出5类单木、林分在日、年水平上的生长及生态生理学预测结果。生长模型是FVS-BGC系统的核心组成部分,系统共包括7类经验生长模型:胸径—树高模型、树冠率模型、冠幅模型、树冠竞争因子模型、胸径生长模型、树高生长模型和枯损率模型;6类生理生态学模拟模块:辐射模块、水分模块、光合作用模块、呼吸作用模块、气孔导度模块、生产力模块。
     (2)研究了系统生长模型关键自变量,结合前人研究对系统主要生长模型进行了优化,具体内容包括:1)优化了油松地位指数表;2)建立了林分平均木—优势木树高生长模型;3)建立了树冠竞争因子模型;4)优化了油松、侧柏林分密度指数模型,并计算出两树种最大林分密度指数;5)优化了胸径—树高模型、树冠宽(冠幅)模型和胸径生长模型,采用相关指数作为所建各模型的拟合效果评价指标,结果表明各模型相关性较高,优化后模型的相关指数较前人有所提高。
     (3)确定了FVS-BGC系统需要的3类参数,气候参数、立地参数和树木生理参数。FVS-BGC系统共需要5类日水平的气候参数:最高温度、最低温度、相对湿度、降雨量、总辐射和大气透射率。在确定立地参数和树木生理参数时采用了试验结合参考文献的方法。试验确定了油松、侧柏4种立地类型0~30cm的土壤饱和含水量,并据此计算出绝对水体积参数。确定了树木生理参数中油松、侧柏两树种的最高光合作用速率分别为7μmol·m-2.s-1和5μmol.m-2·s-1;光合作用最高温度和最适温度分别为25℃和45℃;比叶面积分别为11m2/kg和17m2/kg,冠层消光系数分别为0.8和0.7;叶、干、根生物量占全株比例分别为:叶15%、68%、干17%、29%和根59%、12%;各器官含碳率均为50%。
     (4)本文建立的北京地区油松、侧柏生长的FVS-BGC系统可以同时输出经验生长收获模型和过程模型两种预测结果。使用20年的固定复位样地数据(间隔5年)对系统进行了检验,两种系统预测结果均与实测值接近,模拟效果良好。分别使用了2块油松、侧柏典型样地对系统预测效果及灵敏度进行了评价,从模拟结果可以看出经验生长收获模型模拟结果比过程模型模拟结果要高出28%,结果和国外有关研究类似。最后使用FVS-BGC系统模拟了油松、侧柏两块高密度林分经胸径下层疏伐和树高上层疏伐后林分生长情况,并根据预测结果确定出最佳的经营措施。
     本文深入研究了FVS-BGC系统,首次从源代码水平解析了系统生长模型,总结出了区域FVS-BGC系统构建方法;首次使用该系统进行了北京市油松、侧柏单木及林分水平生理生态过程的模拟,并对比研究了对同一对象采用不同模拟方法的预测结果,分析了经验生长收获模型与过程模型预测结果的差异。本研究为建立我国区域森林生长模拟系统提供了参考,研究结果有一定的理论实践意义。
How the forest growth in the future? Which method was suited for cultivating the forest to timber forest, public welfare forest or carbon sick forest? In which extent the climate or the environmental change could affect the forest growth? Forest scientists and forest managers wanted wishfully to find out the answers of all these questions. Forest growth model is an important tool for forecasting the forest development and the process-based model with climate, site and physiology factors was became the focus point in the model research scope. Hybrid model which could model the forest management measures and the tree physiological ecology growth processes in the same time was emerged as the times require.
     Process-based models forest growth simulation system FVS-BGC (Forest vegetation simulator & Bio-Geochemical Cycles) was studied in deeply level for building a FVS-BGC system for Beijing area with two experimental species Pinus tabulaeformis and Platycladus orientalis. The valuable experiences in this researching process could been very useful and set a strong foundation for building a regional or a nationwide FVS-BGC system. Four major conclusions in this study were in below part.
     (1) The system components, executive process and key growth models were analyzed. The system running needs five type data, tree-level data, stand-level data, climate data, site data and tree physiology data. Also, five output data of tree or stand level in daily or yearly growth and physiological ecology data could be predicted. Growth models were the mainly component of FVS-BGC, there are seven types experienced models includes DBH-H model, crown ratio model, crown width model, crown competition factor model, DBH model, height models and mortality model. There are six type physiological ecology modules in FVS-BGC, radiation module, water module, photosynthesis module, respiration module, stomatal conductance module and NPP module.
     (2) Key independent variables were researched and the mainly growth models were optimized rebuilt based on previous studies and the primary works included:1) rebuilt the site index table of Pinus tabulaeformis,2) built the height model of mean tree and the dominant tree, 3) built the crown competition factor model,4) rebuilt the stand density index model of Pinus tabulaeformis and Platycladus orientalis and figured out the maximum stand density index of the two species,5) rebuilt the DBH-H model, crown width model and DBH growth model. Correlation index was used for evaluating the model fitting effect and the results showed that all models had a highly predictive validity.
     (3) Three type parameters of FVS-BGC were determined which includes climate parameters, site parameters and tree physiology parameters. There are five climate parameters in daily level were maximum temperature, minimum temperature, relative humidity, precipitation, total radiation and transmissivity. Two methods of doing experiment and reading references were used for determining the site parameters and the tree physiology parameters. The maximum soil water content of 0-30cm and the absolutely water volume in four site types of Pinus tabulaeformis and Platycladus orientalis were determined by doing experiment. The maximum photosynthesis rate were 7μmol·m-2·s-1and 5pμmol·m-2·s-1, the maximum temperature and the optimum temperature were 25℃and 45℃, the specific leaf area were 11m2/kg and 17m2/kg, the crown extinction coefficient were 0.8 and 0.7 of Pinus tabulaeformis and Platycladus orientalis. The proportion of leaf, stem and root biomass in whole tree was 15%,17%,12% of Pinus tabulaeformis, for Platycladus orientalis the proportion was 15%,17% and 12% respectively. The carbon content rate of each organ set 0.5 forcibly.
     (4) The Beijing FVS-BGC was built based on above works.20 years with 5 yearly repetition measurement fixed plots'data were used for testing the FVS-BGC predicted values and results showed that predicted values were closed to the measured values. The predicted effect and system sensitivity were also tested with 4 typical plots,2 plots for each species, the predicted results showed that experience based values were exceeded the process based values with about 28% which most similar contrasted with other foreign studies. At last, we used FVS-BGC to simulated lower level thinning depended on DBH and upper layer thinning depended on Height with two highly density stands of Pinus tabulaeformis and Platycladus orientalis respectively with the target of selected the optimal forest management decision and we achieved the goal.
     In the new century, the hybrid model became the focus both in forest ecosystem modeling and forest management modeling scope. In this study, we analyzed the growth models in source code level, simulated the physiological ecology growth condition of Pinus tabulaeformis and Platycladus orientalis in both tree level and stand level, contrastive analyzed the predicted results of same object but with different model methods and researched the differences between experienced based model and the processed based model by using the FVS-BGC for the first time. This study provided a reference for building a regional or nationwide forest growth simulation system FVS-BGC and also has a valuable significance of theory and practice.
引文
[1]北京市林业勘察设计院.北京市”十五”森林资源二类调查报告[R],2005.
    [2]北京市土肥工作站.北京市土壤质地类型分布[EB/OL]. [2010-02-25]. http://soil.bjny.gov.cn/index.html.
    [3]毕君,马增旺,许云龙等.人工侧柏群落结构及生物量[J].东北林业大学学报,2000,28(1):13-15.
    [4]曹卫星,罗卫红.作物系统模拟及智能管理[M].北京:华文出版社,2000,30-47.
    [5]陈顶利,傅伯杰.干扰的类型、特征及其生态学意义[J].生态学报,2000,20(4):581-586.
    [6]陈霖生,陈伯贤等译,Lawrence S D著.森林经理学(第三版)[M].哈尔滨:东北林业大学森林经理教研室,1991.
    [7]陈小鸟,由文辉,易兰.浙江天童太白山不同海拔土壤动物的群落结构[J].生态学杂志,2009,28(2):270-276.
    [8]陈雄文.林窗模型BKPF模拟红松针阔混交林群落对气候变化的潜在反应[J].植物生态学报,2000,24(3):327-331.
    [9]陈有民.园林树木学[M].北京:中国林业出版社,2003.
    [10]邓红兵,郝占庆,王庆礼等.红松单木高生长模型的研究[J].生态学杂志,1999,18(3):19-22.
    [11]杜纪山,唐守正,王洪良.天然林区小班森林资源数据的更新模型[J].林业科学,2000,36(2):26-32.
    [12]杜纪山,唐守正.杉木林分断面积生长预估模型及其应用[J].北京林业大学学报,1998,20(4):1-5.
    [13]杜纪山.林木生长和收获预估模型的研究动态[J].世界林业研究,1999,12(4):19-22.
    [14]杜纪山.落叶松林木枯损模型[J].林业科学,1999,35(2):45-49.
    [15]杜纪山.用二类调查样地建立落叶松单木直径生长模型[J].林业科学研究,1999,12(2):160-164.
    [16]段爱国,张建国,童书振.6种生长方程在杉木人工林林分直径结构上的应用[J].林业科学研究,2003,16(4):423-429.
    [17]段文标,李岩,王小梅.小兴安岭红松阔叶混交林林隙土壤温度的时空分布格局[J].应用生态学报,2009,20(10):2357-2364.
    [18]方亮.大青山油松人工林地位指数表的编制与应用[J].内蒙古林学院学报,1990,(2):80-85.
    [19]冯玉龙,李继武,王文章等.用净光合速率评价立地质量的可行性[J].东北林业大学学报,1996,24(6):80-84.
    [20]冯宗炜,王效科,吴刚.中国森林生态系统的生物量和生产力[M].北京:科学出版社,1999.
    [21]傅伟,王天驿.边界层阻力在叶片气体交换过程中的作用[J].植物学报,1994,36(8):614-621.
    [22]高映雪.基于林分生长规律的林分可视化研究[D].硕士学位论文.北京:北京林业大学,2008.
    [23]高兆蔚,俞美星,陈哲明等.柏木人工林地位指数表编制研究[J].林业勘察设计,2004(1):1-3.
    [24]葛剑平.森林生态学建模与仿真[M].哈尔滨:东北林业大学出版社,1996.
    [25]郭交其,赵学军,战士宏等.阿里河林业局人工落叶松林地位指数表的编制[J].内蒙古林业调查设计,2003,26(1):30-31.
    [26]韩中庚.数学建模方法及应用[M].北京:高等教育出版社,2009.
    [27]郝文康,郎奎健.改进的地位级表编制方法及其计算机软件系统的研究[J].东北林业大学学报,1987,15(增刊1):49-55.
    [28]何容,王国兵,汪家社等.武夷山不同海拔植被土壤微生物量的季节动态及主要影响因子[J].生态学杂志,2009,28(3):394-399.
    [29]何燕,李廷轩,王永东.低山丘陵区不同坡位茶园土壤有机碳特征研究[J].水土保持学报,2009,23(2):122-126.
    [30]何宗明,林思祖,愈新妥等.杉木人工林自然生长模型的研究[J].福建林学院学报,1997,17(3):231-234.
    [31]贺康宁,田阳,张光灿.刺槐日蒸腾过程的Penman-Monteith方程模拟[J].生态学报,2003,23(2):251-258.
    [32]贺庆棠.森林气象学[M].北京:中国林业出版社,2001.
    [33]花利忠,江希钿,贺秀斌.3-PG模型在华南尾叶桉人工林的应用研究[J].北京林业大学学报,2007,29(2):100-104.
    [34]花利忠,徐大平,江希钿等.桉树人工林3PG模型[J].福建林学院学报,2004,24(2):140-143.
    [35]惠刚盈,Klaus von Gadow,胡艳波等.结构化森林经营[M].北京:中国林业出版社,2007.
    [36]惠刚盈,盛炜彤.Sloblda树高生长模型及其在杉木人工林中的应用[J].林业科学研究,1996,9(1):37-40.
    [37]惠刚盈,盛炜彤.林分直径结构模型的研究[J].林业科学研究,1995,8(2):127-131.
    [38]惠淑荣,吕永霞Weibull分布函数在林分直径结构预测模型中的应用研究[J].北华大学学报(自然科学版),2003,2(4):101-104.
    [39]贾天松.森林立地质量综合评价方法探讨[J].中南林业调查规划,1991,(3):28-32.
    [40]姜启源.数学模型(第三版)[M].北京:高等教育出版社,2008.
    [41]金明仕J P,文剑平[M].北京:中国林业出版社,1992.
    [42]井上由扶著,陆兆苏,于政中等译.森林经理学[M].北京:中国林业出版社,1982.
    [43]康绍忠.渭北旱塬农林复合系统水量平衡要素变化规律的试验研究[D].博士学位论文.西安:西北农林科技大学,2001.
    [44]亢新刚.森林资源经营管理[M].北京:中国林业出版社,2001.
    [45]科技部农村科技司,北京林业大学.水源保护林总培育、经营、管理与效益检测评价综合配套技术措施[EB/OL]. [2010-01-28]. http://ncs.most.gov.cn/view_a.asp?Id=10387.
    [46]兰再平.北京九龙山油松人工林地位指数表的编制及油松林生长与立地因子的关系[J].林业科学研究,1989,2(5):505-511.
    [47]雷家富.中国森林生态系统经营.北京:中国林业出版社,2007.
    [48]雷向东,张则路,陈晓光.长白落叶松等几个树种冠幅预测模型的研究[J].北京林业大学学报,2006,28(6):75-79.
    [49]李传荣,国庆喜,刘丽娟等.红松中幼混交林的动态预测[J].东北林业大学学报,2000,5(28):57-60
    [50]李春燕.常绿阔叶树种栲树幼苗对不同光环境的光合生理响应[J].生态学杂志,2009,28(9):1801-1807.
    [51]李冬梅.森林经营的概念、理论和存在的问题以及发展趋势和对策[J].林业科技情报,2008,40(3):12-13.
    [52]李风日.落叶松人工林林分动态模拟系统的研究[D].博士学位论文.北京:北京林业大学,1994.
    [53]李俊清.森林生态学[M].北京:高等教育出版社,2006.
    [54]李凯辉,王万林,胡玉昆等.不同海拔梯度高寒草地地下生物量与环境因子的关系[J].2008,19(11):2364-2368.
    [55]李克让,黄玫,陶波等.中国陆地生态系统过程及对全球变化响应与适应的模拟研究[M].北京:气象出版社,2009.
    [56]李怒云,吕佳.林业碳汇计量[M].北京:中国林业出版社,2009.
    [57]李文华.陕北黄土区主要造林树种蒸腾耗水及光合特性研究[D].博士学位论文.北京:北京林业大学,2007.
    [58]李希菲,唐守正.大青山实验局主要树种(组)全林整体模型机精度验证[J].林业科学研究,1991,4(增刊):382-389.
    [59]李媛.森林效益的计量与评价方法[J].林业科技情报,2009,41(1):8-9.
    [60]林培松,高全洲.粤东北山区几种森林土壤有机碳储量及其垂直分配特征[J]_水土保持学报,2009,(5):243-247.
    [61]刘财富,李立,梁玉堂等.辽宁省刺槐人工林地位指数表的编制[J].东北林业大学学报,
    1998,26(2):15-20.
    [62]刘春江,郭旭临,徐振泉.北京西山地区人工油松栓皮栎混交林根系研究初报[J].北京林学院学报,1985,(1):77-84.
    [63]刘建军,王得祥,雷瑞德,吴钦孝.秦岭林区天然油松、锐齿栎林细根周转过程与能态变化[J].林业科学,2002,38(4):1-6.
    [64]刘平,马履一,段劼.森林动态计算机模拟模型研究[J].世界林业研究,2007,20(3):45-50.
    [65]刘平,马履一,王玉涛,孙晓勇.油松中幼人工林单木胸径生长模型研究[J].沈阳农业大学学报,2009,40(2):197-201.
    [66]刘平.美国森林植被模拟系统(FVS)在北京地区人工林上的应用研究[D].博士学位论文.北京:北京林业大学,2007.
    [67]刘淑明,孙炳银,孙长忠.油松蒸腾速率与环境因子关系的研究[J].西北林学院学报,1999,14(4):27-30.
    [68]刘伟平.森林经营与森林经营制度[J].中南林业调查规划,2001,20(增刊):111-113.
    [69]刘鑫,满秀玲,陈立明等.坡位对小叶杨人工林生长及土壤养分空间差异的影响[J].水土保持学报,2007,21(5):76-81.
    [70]刘秀萍,陈丽华,陈吉虎.刺槐和油松根系密度分布特征研究[J].干旱区研究,2007,24(5):647-651
    [71]刘艳,孙颖,Harrison S P全新世初期气候的数值模拟研究[J].地球物理学报,2007,50(5):1337-1350.
    [72]鲁绍伟,刘凤芹,余新晓等.北京山区不同密度油松结构与功能研究[J].2008,15(1):117-121.
    [73]陆元昌等.近自然森林经营的理论与实践[M].北京:科学出版社,2006.
    [74]罗云深.森林植被仿真Agent计算框架的研究与实现[D].硕士学位论文.北京:北京林业大学,2008.
    [75]马达,李吉跃,聂立水等.不同坡向对栓皮栎耗水规律的影响[J].河北林果研究,2005,20(4):323-327.
    [76]马丰丰,贾黎明,段劫等.北京山区侧柏人工林地位指数表的编制[J].北京林业大学学报,2008,30(6):78-82.
    [77]马丰丰.基于FVS的北京地区侧柏单木模型优化及应用[D].硕士学位论文.北京:北京林业大学,2008.
    [78]马钦彦.中国油松生物量的研究[J].北京林业大学学报,1989,11(4):1-10.
    [79]马增旺,毕君,刘德章等.太行山栎类天然次生林立地类型划分[J].河北林业科技,1996,(4):20-23.
    [80]毛克彪,覃志豪.大气辐射传输模型及MODTRAN中透过率计算[J].测绘与空间地理信息,2004,27(4):1-3.
    [81]毛淑娟,胡月明.森林质量评价研究探讨[J].广东林业科技,2007,23(2):67-71.
    [82]孟宪宇,陈东来.山杨次生林地位指数表编制方法的研究[J].北京林业大学学报,2001,23(3):47-51.
    [83]孟宪宇.测树学(第三版)[M].北京:中国林业出版社,2007.
    [84]孟宪宇.使用Weibull函数对树高分布和直径分布的研究[J].北京林业大学学报,1988,10(1):40-48.
    [85]倪纪恒,罗卫红,李永秀等.温室番茄叶面积与干物质生产的模拟[J].中国农业科学,2005,38(8):1629-1635.
    [86]彭镇华.北京林业发展战略[M].北京:中国林业出版社,2007.
    [87]皮尔瑞克,露易丝等著;张洪江,程金花等译.土壤-植物-大气系统热量、物质运移综合模型理论与实践[M].北京:科学出版社,2010.
    [88]蒲玉琳,刘世全,张世熔等.横断山区北段山地土壤基本属性的坡向分异[J].水土保持学报,2007,38(4):112-117.
    [89]秦家鼎.红松(Pnius Koraiensis)天然林地位指数表编制的研究[J].东北林学院学报,1979,(2):23-35.
    [90]区余端,苏志尧,彭桂香,刘刚.车八岭山地常绿阔叶林冰灾后土壤微生物群落功能多样性[J].生态学报,2009,29(11):6156-6164.
    [91]桑卫国,陈灵芝,马克平.蒙古栎红松林演替模型FOROAK研究[J].植物学报,1999,41(6):658-668.
    [92]桑追.克.美国森林管理[J].中国林业,2000,(1):42-43.
    [93]邵国凡,赵士洞.森林动态模拟[M].北京:中国林业出版社,1995.
    [94]邵国凡KOPIDE长白山北坡阔叶红松林生长与演替的计算机模型[D].博士学位论文.北京:中国科学院沈阳应用生态研究所,1989.
    [95]沈国舫.森林培育学[M].北京:中国林业出版社,2001.
    [96]盛裴轩.大气物理学[M].北京:北京大学出版社,2007.
    [97]时明芝,李桂兰.平原地区杨树人工林阳性冠幅与胸径关系的研究[J].林业资源管理,2006,(2):71-74.
    [98]宋永俊.思茅松人工林地位指数表的编制与应用[J].林业调查规划,2004.29(1):5-8.
    [99]宋子炜,郭小平,赵婷宁,代巍.北京山区油松林光辐射特征及冠层结构系数[J].浙江林学院学报,2009,26(1):38-43.
    [100]孙儒泳.生态学基础[M].北京:人民教育出版社,1981.
    [101]孙拖焕.油松人工林三株优势木平均高与蓄积量关系探讨[J].山西林业科技,1985,(3):14-16.
    [102]谭勇,梁宗锁,安玉艳.冬季干旱胁迫下黄土高原三种常绿树种叶片渗透调节物质变化研究[J].水土保持研究,2007,14(3):70-72.
    [103]汤景明,翟明普,崔鸿侠.壳斗科三树种幼苗对不同光环境的形态响应与适应[J].林业科学,2008,44(9):41-47.
    [104]唐守正,杜纪山.利用树冠竞争因子确定同龄间伐林分的断面积生长过程[J].林业科学,1999,35(6):35-41.
    [105]唐守正,李希菲,孟昭和.林分生长模型研究的进展[J].林业科学研究,1993,6(6):672-679.
    [106]唐守正,李希菲.用全林整体模型计算林分纯生长量的方法及精度分析[J].林业科学研究,1995,8(5):471-476.
    [107]唐守正.广西大青山马尾松全林整体生长模型极其应用[J].林业科学研究,1991,4(增刊):8-13.
    [108]陶吉兴,唐明荣.常规地位指数表的误差来源与分析[J].浙江林学院学报,1990,7(4):391-395.
    [109]田大伦.高级生态学[M].北京:科学出版社,2008.
    [110]田晶会,贺康宁,王百田等.黄土半干旱区侧柏气体交换和水分利用效率日变化研究[J].北京林业大学学报,2005,27(1):42-47.
    [111]田有圳,黄金桃,叶照授等.凹叶厚朴一元立木材积方程的研究[J].浙江林学院学报,2002,19(3):255-258.
    [112]王迪生,宋新民.华北落叶松人工林CCF特性的探讨[J].河北林学院学报,1995,10(1):1-6.
    [113]王华田,马履一,徐军亮.油松人工林SPAC水势梯度时空变化规律及其对边材液流传输的影响[J].植物生态学报,2004,28(5):637-643.
    [114]王继强,李吉跃,刘娟娟.八个绿化树种水分状况与水力结构的季节变化[J].北京林业大学学报,2005,27(4):43-48.
    [115]王进鑫,王迪海,刘广全.刺槐和侧柏人工林有效根系密度分布规律研究[J].西北植物学报,2004,24(12):2208-2214.
    [116]王瑞辉,马履一,奚如春等.北京7种原理植物及典型配置绿地用水量测算[J].林业科学,2008,44(10):63-68.
    [117]王瑞辉.北京主要园林树种耗水性及节水灌溉制度研究[D].博士学位论文.北京:北京林业大学,2006.
    [118]王文斗,李凤日,那冬晨等.辽东栎单木生长模型的研究[J].林业科技,2005,30(2):11-13.
    [119]王希群,马履一,贾忠奎等.叶面积指数的研究和应用进展[J].生态学杂志,2005,24(5): 537-541.
    [120]王希群.北京山区油松、侧柏林质量调控理论与技术的研究[D].博士学位论文.北京:北京林业大学,2005.
    [121]王孝安,段仁燕,王明利太白红杉单木胸径生长模型的研究[J].武汉植物学研究,2005,23(2):157-162.
    [122]王笑影,梁文举,闻大中.北方稻田蒸散需水分析及其作物系数确定[J].应用生态学报,16(1):69-72.
    [123]王印肖,李秀文,田冬等.油松造林技术规程[EB/OL]. [2010-02-28]. http://www.hebly.gov.cn/showarticle.php?id=8039.
    [124]王玉学,张素华.油松人工林地位指数表的编制[J].河北林业科技,1990,10(5):23-25.
    [125]王周平,李旭光,石胜友等.重庆缙云山针阔混交林林隙树木更替规律研究[J].2001,25(4):399-404.
    [126]邬建国.略谈理论和模型在生态学中的作用[J].生态学杂志,1994,13(3):76-79.
    [127]吴晓迪,黄超超,同武勤.红外成像实时仿真中大气透射率的计算与分析[J].红外,2006,27(10):24-28.
    [128]武维华.植物生理学[M].北京:科学出版社,2003.
    [129]肖文发,徐德应.森林能量利用与产量形成的生理生态基础[M].北京:中国林业出版社,1999.
    [130]肖兴威,姚昌恬,陈雪峰等.美国森林资源清查的基本做法和启示[J].林业资源管理,2005,2:28-33。
    [131]谢兆鸿,范正森,王艮远.数学建模技术[M].北京:中国水利水电出版社,2003.
    [132]新华网.北京市前半年降水量比常年偏多55%[EB/OL]. [2010-02-25]. http://news.xinhuanet.com/environment/2008-07/02/content_8475114.htm.
    [133]徐程扬.紫椴幼苗、幼树对光的响应与适应研究[D].博士学位论文.北京:北京林业大学,1999.
    [134]徐国祯.森林生态系统经营—21世纪森林经营的新趋势[J].世界林业研究,1997,10(2):15-20.
    [135]徐化成,李湛东,邱扬.东北地区大兴安岭原始火干扰历史[J].生态学报,1997,17(4):337-343.
    [136]徐化成.油松[M].北京:中国林业出版社,1990.
    [137]徐军亮,马履一,王华田.油松人工林SPAC水势梯度的时空变异[J].北京林业大学学报,2003,25(5):1-5.
    [138]徐军亮.京西山区油松、侧柏单木耗水环境影响因子评价与模拟[D].博士学位论文.北京:北京林业大学,2006.
    [139]薛文鹏.渭北地区主要造林树种根系生态学特性研究[D].硕士学位论文.西安:西北农
    林科技大学,2003.
    [140]延晓冬,赵士洞,于振良.中国东北森林生长演替模拟模型及其在全球变化研究中的应用[J].植物生态学报,2000,24(1):1-8.
    [141]杨德军.基于SPAC系统的土壤水动力学模型研究[M].浙江:浙江大学出版社,2009.
    [142]杨锦昌,江希钿,许煌灿等.马尾松人工林直径分布收获模型及其应用研究[J].林业科学研究,2003,16(5):581-587.
    [143]杨娟.利用MODIS卫星资料分析北京地区地表反照率的时空分布及变化特征[D].硕士学位论文.江苏:南京信息工程大学,2006.
    [144]杨丽韫,李文华.长白山原始阔叶红松林细根分布及其周转的研究[J].北京林业大学学报,2005,27(2):1-5.
    [145]于强,谢贤群,孙菽芬.植物光合生产力与冠层蒸散模拟研究进展[J].1999,19(5):744.
    [146]于振良,于贵瑞,赵士洞等.长白山阔叶红松林动态及经营管理模型研究[J].资源科学,2001,23(6):59-63
    [147]张国平,周伟军等译,Lambers H, Chapin F S, Pons T L著.植物生理生态学[M].浙江大学出版社,2005.
    [148]张华.密度和立地条件对北京市山区侧柏人工林根系的影响[D].硕士学位论文.北京:北京林业大学,2006.
    [149]张建国,段爱国.理论生长方程对杉木人工林林分直径结构的模拟研究[J].林业科学,2003,39(6):55-61.
    [150]张建国,段爱国.理论生长方程与直径结构模型的研究[M].北京:科学出版社,2004.
    [151]张金屯.数量生态学[M].北京:科学出版社,2004.
    [152]张敏.森林经营可视化模拟技术研究[D].硕士学位论文.北京:北京林业大学,2009.
    [153]张娜.景观尺度生态系统生产力过程模型研究—以长白山为例[D].博士学位论文.北京:中国科学院地理科学与资源研究所,2001.
    [154]张楠阳,张景群,杨玉霞等.黄土高原不同人工生态林对土壤主要营养元素的影响[J].东北林业大学学报,2009,(11):74-76.
    [155]张萍.北京森林碳储量研究[D].博士学位论文.北京:北京林业大学,2009.
    [156]张荣贵,苏智良,段翔.蓝桉纸浆林地位指数表、立地质量评定表编制及优化栽培模式初建[J].云南林业科技,1997,(3):23-29
    [157]张少昂,王冬梅Richards方程的分析和一种新的树木理论生长方程[J].北京林业大学学报,1992,14(3):99-105.
    [158]张文菊,童成立,刘守龙等.三江平原湿地小叶章生产力模拟模型[J].植物生态学报,2006,30(5):844-851.
    [159]张宪洲.我国自然植被净化第一性生产力的估算与分布[J].自然资源,1992:15-21.
    [160]张小全.环境因子对树木细根生物量、生产于周转的影响[J].林业科学研究,2001a,14(5):566-573.
    [161]张小全,吴可红.森林细根生产和周转研究[J].林业科学,2001b,37(3):126-138.
    [162]张新时.现代生态学的几个热点[J].植物学通报,1990,7(4):1-6.
    [163]赵亚民.落叶松人工林优势木平均高与林分平均高相关关系探讨[J].河北林业科技,1993,(1):32-33.
    [164]赵忠.造林规划设计教程[M].北京:中国林业出版社,2007.
    [165]中国植被编辑委员会.中国植被[M].北京:科学出版社,1983.
    [166]周彬,官凤英,陈光清.利用变动系数求林分平方平均直径的株数累积百分数[J].北京林业大学学报,2001,23(4):84-86.
    [167]周义仓,赫孝良.数学建模实验[M].西安:西安交通大学出版社,1999.
    [168]朱教君,刘世荣.森林干扰生态研究[M].北京:中国林业出版社,2007.
    [169]朱教君,刘足根.森林干扰生态研究[J].应用生态学报,2004,15(10):1703-1710.
    [170]Amthor J S. Scaling CO2 photosynthesis relationships from the leaf to the canopy[J]. Photosynthesis research,1994,39:321-350.
    [171]Baldwin, V C, Dougherty P M, Burkhart H E. A linked model for simulating stand development and growth processes of loblolly pine[J]. Ecol. Stud.,1998,128:305-325.
    [172]Barnes B V, Zak D R, Denton S R, et al. Forest ecology:4th ed[M]. New York:John Wiley and Sons,1998.
    [173]Bartelink H H. Effects of stand composition and thinning in mixed-species forests:a modeling approach applied to Douglas-fir and beech[J]. Tree Physiol,2000,20:399-406.
    [174]Bartelink H H. Landbouwuniversiteit Wageningen[D]. Wageningen Agricultural University, Wageningen, Netherlands,1998:222.
    [175]Battle M, Bender M L, Tans P P, et al. Global Carbon Sinks and Their Variability Inferred from Atmospheric O2 and δ13C[J]. Science,2000,287:2467-2470.
    [176]Beven K. A Sensitivity Analysis of the Penman-Monteith Actual Evapotranspiration Estimates[J]. Journal of hydrology,1979,44(3-4):169-190.
    [177]Biging G S, Dobbertin M. Evaluation of competition indices in individual tree growth models[J]. For. Sci.,1995,41(2):360-377.
    [178]Bolin B, Sukumar R. Global Perspective. Land Use, Land Use Change and Forestry[M]. Cambridge. UK:Cambridge University Press,2000:23-51.
    [179]Bossel H, Krieger H. Simulation of multi-species tropical forest dynamics using a vertically and horizontally structured model[C]. Contrasts between Biologically-based Process Models and Management-oriented Growth and Yield Models. Held in Wageningen, Netherlands,2-6 September 1991. For. Ecol. Manage.,1994,69(1-3):123-144.
    [180]Botkin D B, Janak J F, Wallis J R. Some ecological consequences of a computer model of forest growth[J]. J. Ecol.,1972,60(3):849-872.
    [181]Bragg D C. Behavior and sensitivity of an optimal tree diameter growth model under data uncertainly[J]. Environmental Modelling and software,2005,20:1225-1238.
    [182]Brodle L C, Debell D S. Evaluation of field performance of poplar clones using selected competition indices[J]. New Forests,2004,27(3):201-214.
    [183]Bruce D, Wensel L C. Modeling forest growth:approaches, definitions and problems in proceeding of IUFRO conference:Forest growth modeling and prediction[C].1987:1-8.
    [184]Burknart H E, Tennent R B. Siteindex equations for radiate pine in New Zealand[J]. New Zealand Journal of Forestry Science,1977, (7):408-416.
    [185]Churkina G, Thornton P, Falge, E M, Elbers J A, Erhard M, Grunwald T, Kowalske A S, Rannik U, Sprinz D. Analysis the ecosystem carbon dynamic of four European coniferous forests using a biogeochemistry model[J]. Ecosystems,2003,6:168-184.
    [186]Coffin D P, Lauenrath W K. A gap dynamics simulation model of succession in a semiarid grassland[J]. Ecological Modeling,1989,49:229-236.
    [187]Colbert K C, Larsen D R, Lootens J R. Height diameter equations for thirteen Midwestern bottomland hardwood species[J]. Northern journal of applied forestry,2002,19(4):171-176.
    [188]Cole, D. M.; Stage, A. R. Estimating future diameters of lodgepole pine. Res. Pap. INT-131. Ogden, UT:U. S. Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station,1972,20.
    [189]Coops N C, Waring R H. Estimating forest productivity in the eastern Siskiyou Mountains of southwestern Oregon using a satellite driven process model 3-PGS[J]. Can. J. For. Res.,2001, 31(1):143-154.
    [190]Daniels R F, Burkhart H E, Clason T R. A comparison of competition measures for predicting growth of loblolly pine trees[J]. Canadian Journal of Forest Research,1986,16:1230-1237.
    [191]Deng X, Li X M, Zhang X M. The studies about the photosynthetic response of the four desert plants[J]. Acta Ecologica sinica,2003,23(3):598-605.
    [192]Dixon G E. Crown ratio modeling using stand density index and the Weibull distribution[C]. Internal Report. USDA Forest Service, Forest Management Service Center, Fort Collins, Co., 1985.
    [193]Dixon G E. Essential FVS:A User's Guide to the Forest Vegetation Simulator[R]. Internal Report. U.S. Department of Agriculture, Forest Service, Forest Management Service Center, Fort Collins, CO,2002.
    [194]Doyle T W. In:West D C, Shugart H H, Botkin D B eds. Forsest Succession:Concepts,
    Applications[M]. New York:Springerverlag,1981:56-73.
    [195]Fairweather S E. Development of an individual tree growth model for Pennsylvania in Forest growth modeling and prediction[C]. IUFRO conference, ed. by Ek,1987:61-67
    [196]Fang Z, Bailey R L. Height-diameter models for tropical forests on Hainan Island in southern China[J]. Forest ecology and management,1998,110(11):315-327.
    [197]Fontes L, Landsberg J, Tome J, et al. Calibration and testing of a generalized process-based model for use in Portuguese eucalyptus plantations[J]. Can. J. For. Res.,2006,36(12): 3209-3221.
    [198]Friend A D, Stevens A K, Knox R G, Cannell MGR.A process-based, terrestrial biosphere model of ecosystem dynamics (HYBRID v3.0)[J]. Ecological Modeling,1997,95:249-287.
    [199]Geoogia water science center. Schematic diagram of water circulation[EB/OL]. [2010.1.2]. http://ga.water.usgs.gov/edu/watercyclechinese.html.
    [200]Goudriaan J, Laar H H. Modelling potential crop growth processes[M]. Kluwer Academic Publishers, the Netherlands,1999:32.
    [201]Grote R, Pretzsch H. A model for individual tree development based on physiological processes[J]. Plant Biol,2002, (4):167-180.
    [202]Hall R B. Use of the crown competition factor concept to select clones and spacings for short-rotation woody crops[J]. Tree physiology,1994, (14):899-909.
    [203]Hanewinkel M, Pretzsch H. Modelling the conversion from even-aged to uneven-aged stands of Norway spruce (Picea abis L. Karst.) with a distance dependent growth simulator[J]. For. Ecol. Manag.,2000,134:55-70.
    [204]Hasenauer H, and R A Monserud. A crown ratio model for Austrian forest[J]. For. Ecol. Manage.,1996,84:49-60.
    [205]Hatch, C R. Modeling tree crown size using inventory data. In:Johan, K.; Schmid-Haas, P. eds. Growth of single trees and development of stands. Proceedings of the Joint meeting IUFRO working groups S4.01-02 (Estimation of Increment) and S4.02-03 (Inventories on Successive Occasions); 1979 September 10-14, Vienna, Austria,1980,93-99.
    [206]Heger L. Atrial of Hohenadl's method of stem form and stem volume estimation [J]. Forest chronicle,1965,41:466-475.
    [207]Hofle H H. Waldbau, Naturschutz und Betriebswirtschaft am Beispiel des Niedersachsischen Forstamts Bovenden[J]. Forst und Holz,2000,55:218-220.
    [208]Hungerford R D, Nemani R R., Running S W, Coughlan J C. MTCLIM:A mountain microclimate simulation model[M]. Research Paper INT-414. Intermountain Research Station, Ogden, Utah.1989:52.
    [209]Hunt L A, Kuchar L, Swanton C J. Estimation of solar radiation for use in crop modeling[J]. Agri. For. Meteorol.,1998,91:293-300.
    [210]Jenny H. Factors of soil formation[M]. New York, McGraw-Hill,1941:281.
    [211]Jiang G M, Zhu G J. Different patterns of gas exchange and photochemical efficiency in three desert shrub species under two natural temperatures and irradiances in Mu Us Sandy Area of China[J]. Photosynthetica,2001,39(2):257-262.
    [212]Jogiste K. Productivity of mixed stands of Norway spruce and birch affected by population dynamics:a model analysis[J]. Ecol. Model.,1998,106(1):77-91.
    [213]Karieva P. Diversity begets Productivity[J]. Nature,1994,386(15):686-687
    [214]Kimmins J P, Juan A B, Brad S, et al. Complexity in modeling forest ecosystems:How much is enough?[J]. For. Ecol. Manage.,2008,256:1646-1658.
    [215]Kimmins J P, Mailly D, Seely B. Modelling forest ecosystem net primary production:the hybrid simulation approach used in FORECAST[J]. Ecological Modelling,1999,122: 195-224.
    [216]Kimmins J P. FORCYTE in forestry:The need for a systems approach in forestry education, yield prediction and management[M]. In:E. B. Eddy Distinguished Lecture Series, Faculty of Forestry, University of Toronto,1986.
    [217]Kimmins J P. Identifying key processes affecting long-term site productivity[M]. Impacts of Forest Harvesting on Long-term Site Productivity. Chapman and Hall, London, UK,1994: 119-150
    [218]Kite G W, Soulis E D, Kouwen. A hierarchical approach to the connection of global hydrological and atmospheric models[M]. London, UK:Cambridge University Press,1988.
    [219]Knowe S A, Radosevich S R, Shula R G. Basal area and diameter distribution prediction equations for young Douglas-Fir plantations with hardwood competition:Coast ranges[J]. Western Journal of Applied Forestry,2005,2 (20):77-93.
    [220]Korzukhin M D, Ter-Mikaelian M T, Wagner R G. Process versus empirical models:which approach for forest ecosystem management?[J]. Can. J. For. Res.,1996,26:879-887.
    [221]Krajicek J E, Brinkman K A, Gingrich S F. Crown competition a measure of density[J]. Forest science,1961,7(1):35-42.
    [222]Kustas W P, J M Nonmain. Use of remote sensing for evapotranspiration monitoring overland surfaces[J]. Hydrological Sciences Journal,1996,41(4):495-513
    [223]Law A M, Kelton W D. Simulation modeling and analysis[M]. McGraw Hill, Inc,1991.
    [224]Leemans R E. Evaluating changes in land cover and their importance for global change[J]. Tree,1995,10(2):76-91.
    [225]Leith H, Wittaker R. H. Primary productivity of the biosphere[M]. New York:Springer
    Verlag,1975:237-263.
    [226]Ley T. W., Hill R W, Jensen D T. Errors in Penman-Wright Alfalfa reference evapotranspiration estimates:Ⅰ. Model sensitivity analysis[J]. Transactions of the ASAE, 1994,(6):1853-1861.
    [227]Ley T W, Hill R W, Jensen D T. Errors in Penman-Wright Alfalfa reference evapotranspiration estimates:Ⅱ. Effects of weather sensor measurement variability[J]. Transactions of the ASAE,1994,(6):1862-1870.
    [228]Lieth H, Whittaker R H. Primary productivity of Biosphere[M]. Berlin:Springer,1995.
    [229]Lin C R, Buongiorno J. Fixed versus variable-parameter matrix models of forest growth:the case of maple-birch forests[J]. Ecological model,1997,99(2-3):263-274.
    [230]Liu Chuangmin, Zhang S Y, Lei Yuancai, et al. Evaluation of three methods for predicting diameter distributions of black spruce (Picea mariana) plantations in central Canada[J]. Canadian Journal of Forest Research,2004,34(12):2424-2433
    [231]Liu J G, Ashton P S. FORMOSAIC:an individual-based spatially explicit model for simulating forest dynamics in landscape mosaics[J]. Ecol. Model.,1998,106(2-3):177-200.
    [232]Liu J G, Ashton P S. Individual-based simulation models for forest succession and management[J]. For. Ecol. Manage.,1995,73(1-3):157-175.
    [233]Liu J X, Peng C H, Dang Q L, Apps M J, Jiang H. A component objective model strategy for reusing ecosystem models[J]. Computers and Electronics in Agriculture,2002,35:17-33.
    [234]Lynch T B, Moser J W. A growth model for mixed species stands[J]. For. Sci.,1986,32(3): 697-706.
    [235]Makela A, Landsberg J, Alanr E K, et al. Process-based models for forest ecosystem management:current state of the art and challenges for practical implementation[J]. Tree physiology,2000,20:289-298.
    [236]Malek E. Night-time evapotranspiration vs. daytime and 24h evapotranspiration[J]. J. Hydrol., 1992:119-129
    [237]Martin T A, Hinckley T M, Meinzer F C, et al. Boundary layer conductance, leaf temperature and transpiration of Abies amabilis branches[J]. Tree physiology,1999,19:435-443.
    [238]McCarter J M, Wilson J S, Baker P J, Moffett J L, Oliver C D. Landscape management through integration of existing tools and emerging technologies[J]. J. For.,1998,96:17-23.
    [239]McCormick B H. Visualization in Scientific computing[C]. SIGRAPH Computer Graphics New sletter,1987.
    [240]McMahan A J, Milner K S, Smith E L. FVS-BCG:User's guide to version 1.1 [M]. USDA, Forest health technology enterprise team,2002.
    [241]Mette T, Albrecht A, Ammer C. Evaluation of the forest growth simulator SILVA on dominant trees in mature mixed Silver fir-Norway spruce stands in South-west Germany[J]. Ecological Modelling,2009,220:1670-1680.
    [242]Meyer H A. A mathematical expression for height curves[J]. Journal of forest,1940,38: 415-420.
    [243]Milner K S, Coble D W, McMahan A J, et al. FVSBGC:A dual resolution hybrid model with physiological and biometrical growth engines[C]. Second Forest Vegetation Simulator Conference, Fort Collins, CO. RMRS-P-25. Ogden, UT:U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station,2002.
    [244]Milner K S, Coble D W, McMahan A J, et al. FVSBGC:a hybrid of the physiological model STAND-BGC and the forest vegetation simulator[J]. Canadian Journal of Forest Research, 2003,33(2):466-479.
    [245]Milner K S, Coble D W. The ground surface vegetation model:a process-based approach to modeling vegetative interactions[M]. USA, Unpublished manuscript,1995.
    [246]Milner K S, Coble D W. A mechanistic approach to predicting the growth and yield of stands with complex structures[J]. In Proceedings of the Conference:Uneven-Aged Management: Opportunities, Constraints, and Methodologies,29 Apr.1995, Missoula, Mont. Edited by K.S. O'Hara. University of Montana, Missoula, Mont. MFCES Misc. Publ.,1995,56:144-166.
    [247]Monserud R A, Sterba H, Hasenauer H The singletree stand growth simulator PROGNAUS[C]. Proceedings from the Forest Vegetation Simulator Conference. Held in Fort Collins, CO,1997:50-56.
    [248]Moser J W. Dynamics of an uneven-aged forest stand[J]. For. Sci.,1972,18(3):184-191.
    [249]Munro D D. Forest growth models-a prognosis[C] Proceeding of International Union of Forestry Research Organizations, Stockholm,1974.
    [250]NCDC (National Climatic Data Center). Cooperative summary of the day dataset TD 3200[C]. US. Department of Commerce. National Oceanographic and Atmospheric Adiministration. National Climatic Data Center,1995.
    [251]Oliver C D, Larson B C. Forest stand dynamics[M]. New York:2nd edn, McGraw-Hill,1996.
    [252]Ottorini J M. Growth and development of individual Douglas-fir in stand for applications to simulation silviculture[J]. Ann. Sci. For.,1991,48:651-666.
    [253]Pacala S W, Canham C D, Sliander J A, Kobe R K, Ribbens E. Forest models defined by field measurements:Estimation, error analysis and dynamics[J]. Ecol. Monogr.,1996,66:1-43.
    [254]Pacala S W, Hurtt G C, Baker D, et al. Consistent Land and Atmosphere-Based U.S. Carbon Sink Estimates[J]. Science,2001,292:2316-2320.
    [255]Pacala S W, Canham C D, Silander J A. Forest models defined by field measurements:I. The design of a northeastern forest simulator[J]. Can. J. For. Res.,1993,23:1980-1988.
    [256]Patrick D. Miles Forest Inventory and Analysis Data for FVS Modelers[C]. Patrick D. Miles Forest Inventory and Analysis Data for FVS Modelers,2008:125-131.
    [257]Paula J P, McPherson E G, Mori S M. Equations for predicting diameter, height, crown width, and leaf area of San Joaquin valley street trees[J]. Journal of arboriculture,2001,27(6): 306-317.
    [258]Paula S, Margarida T, Skovsgaard J P, et al. Evaluating a growth model for forest management using continuous forest inventory data[J]. Forest Ecology and Management,1995, 71(3):251-265.
    [259]Payandeh B, Field J E. Yield Functions and Tables for Mixedwood Stands of Northwestern Ontario[C]. Information Report O-X-375, Great Lakes Forestry Centre, Canadian Forestry Service,1986:15.
    [260]Payandeh B, Wang Y H. Variable stocking version of Plonski's yield tables formulated[J]. For. Chron.,1996,72(2):181-184.
    [261]Peng C H, Dang M J. Simulating global soil-CO2 flux and its response to climate change[J]. Journal of Environmental Sciences,2000,12:257-265.
    [262]Peng C H, Liu J X, Dang Q L, Apps M J, Jiang H. TRIPLEX:A generic hybrid model for predicting forest growth and carbon and nitrogen dynamics[J]. Ecological Modelling,2002, 153:109-130.
    [263]Pietsch, S A, Hasenauer H, Kucera J, Cermak J. Modelling effects of hydrological changes on the carbon and nitrogen balance of oak in flood-plains[J]. Tree physiol,2003,23:735-746.
    [264]Porte A, Bartelink H H. Modelling mixed forest growth:a review of models for forest management[J]. Ecological modeling,2002,150:141-188.
    [265]Pretzsch H. Application and evaluation of the growth simulator SILVA 2.2 for forest stands, forest estates and large regions[J]. Forstwiss. Centralbl,2002,212(Suppl.1):28-51.
    [266]Rafael Calama, Gregorio Montero. Interregional nonlinear height-diameter model with random coefficients for stone pine in Spain[J]. Canadian Journal of Forest Research,2004, 34(1):150-163.
    [267]Rastetter E B, King A W, Cosby B J, Hornberger G M, O'eill R V, Hobbie J E. Aggregation fine-scale ecological knowledge to model the coarse-scale attributes of ecosystems[J]. Ecological application,1992,2:55-70.
    [268]Raulier F, Bernier P Y, Ung C H. Modeling the influence of temperature on monthly gross primary productivity of sugar maple stands[J]. Tree Physiol,2000,20:333-345.
    [269]Ritchie M W, Hann D W. Equations for predicting height to crown base for fourteen tree species in Southwest Oregon[R]. Res. Pap.50, For. Res. Lab. Oregon State Univ., Corvallis. OR.1987,14.
    [270]Robinson A P. Forest ecosystem dynamics:systematic approach to modelling in a model rich environment[D]. Thesis, Univ. Minnesota, St. Paul, MN,1998:235.
    [271]Ronald E. McRoberts, Christopher W. Woodall, Veronica C. Lessard, Margaret R. Holdaway. Diameter Growth models for inventory applications[C]. USDA Forest Service Proceedings RMRS,2002.
    [272]Running S W, Coughlan J C. A general model of forest ecosystem processes for regional applications. I. Hydrologic balance, canopy gas exchange and primary production processes[J]. Ecol. Model.,1988,42:125-154.
    [273]Salim E, Ullsten O. Our Forests:Our Future. A Report of the World Commission on Forest and Sustainable Development[R]. Cambridge University Press, UK,1999.
    [274]Satoo T, Madgwick H A. Forest biomass[M]. London, Kluwer Academic Publication,1982.
    [275]Schwalm C R, Alan R E. A process based model of forest ecosystems driven by meteorology[J]. Ecological modeling,2004,179(3):317-348.
    [276]Shugart H H, West D C. Development of an Appalachian deciduous forest succession model and its application to assessment of the impact of the Chestnut blight[J]. J. Environ. Manage., 1977,5(2):161-179.
    [277]Shugart H H. A Theory of Forest Dynamics:the Ecological Implications of Forest Succession Models[M]. New York:Springer Press,1984:278.
    [278]Singh S P, Sharma R S. Provisional growth estimates of some species of mixed tropical forests[J]. Indian For.,1982,108(3):230-236.
    [279]Smith T M, Urban D L. Scale and resolution of forest structural pattern[J]. Vegetatio,1988, 74(2-3):143-150.
    [280]Smith W R, Farrar R M, Murphy J R, et al. Crown and basal area relationships of open-grown Southern pines for modeling competition and growth [J]. Canadian Journal of Forest Research, 1992,22:341-347.
    [281]Stage A R. Prognosis model for stand development[R]. Ogden, Utah:U.S. Dept. of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station,1973.
    [282]Stannard D I. Comparison of Penman-Monteith, Shuttleworth-Wallace, and Modified Priestley-Taylor Evapotranspiration Models for Wildland Vegetation in Semiarid Rangeland[J]. Water resources research,1993,29(5):1379-1392.
    [283]Tanaka K, Yoshifuji N, Tanaka N, et al. Water budget and the consequent duration of canopy carbon gain in a teak plantation in a dry tropical region:Analysis using a soil-plant-air continuum multilayer model[J]. Ecological Modelling,2009,220(12):1534-1543.
    [284]Teck R M, Hilt D E. Individual tree diameter growth model for the Northeastern United States[R]. Res. Pap. NE-649. US. Department of Agriculture, Forest Service, Northeastern Forest Experiment Station,1991:11.
    [285]Tickle P K, Coops N C, Hafner S D, et al. Assessing forest productivity at local scales across a native eucalypt forest using a process model,3PG-SPATIAL[J]. Forest ecology and management,2001,152(1-3):275-291.
    [286]Tilman D, Downing J A, Wedln D A. Does diversity beget stability?[J] Nature,1994, 371(33):113-114.
    [287]Valenti M A, Cao Q V. Use of crown ration to improve loblolly pine taper equations[J]. Canada journal forest research,1986,16:1141-1145
    [288]Valentine H T, Gregoire T G, Burkhart H E, Hollinger D Y. A stand-level model of carbon allocation and growth, calibrated for loblolly pine[J]. Can. J. For. Res.,1997,27(6):817-830.
    [289]Vanclay J K. Modelling forest growth and yield:applications to mixed tropical forests[D]. Royal Veterinary and Agricultural University, Copenhagen, Denmark, Wallingford, UK,1994: 312.
    [290]Veronica C. Lessard, Ronald E. McRoberts, Margaret R. Holdaway. Diameter growth models using Minnesota Forest inventory and analysis data[J]. Forest science,2001,47(3):301-310.
    [291]Vettenranta J. Distance-dependent models for predicting the development of mixed coniferous forests in Finland[J]. Silva Fenn,1999,31(1):51-72.
    [292]Vicente J M, Azuma D, Gedney D. Equations for Predicting uncompacted crown ratio based on compacted crown ratio and tree attributes[J]. Western Journal of Applied Forestry,2004, 19(4):260-267.
    [293]Voet H, Mohren G M. An uncertainty analysis of the process-based growth model FORGRO. Contrasts between biologically-based process models and management-oriented growth and yield models[J]. Forest Ecology and Management,1994,69:157-166;.
    [294]Vogt K A, Vogt D J, Palmiotto P A, et al. Review of root dynamics in forest ecosystems grouped by climate, climatic forest type and species[J]. Plant and soil,1996,187:159-219.
    [295]Vose J M, Clinton B D, Sullivan N H, et al. Vertical leaf area distribution, light transmittance, and application of the Beer-Lambert Law in four mature hardwood stands in the southern Appalachians[J]. Canada journal forest research,1995,25:1036-1043.
    [296]Waring R H, Running S W. Forest ecosystems analysis at multiple scales[M]. Academic press, New York,1998.
    [297]WCED. Our common future[M] UK, Oxford:Oxford Univ Press,1987.
    [298]Wensel L C, Daugherty P J, Meerschaer W J. CACTOS User's Guide:The California conifer timber output simulator[M]. Division of Agricultural Science, University of California, Berkeley. Bulletin,1986.
    [299]Wissel C. Modelling the mosaic cycle of a Middle European beech forest[J]. Ecol. Model., 1992,63(1-4):29-43.
    [300]Wykoff W R, Crookston N L, Stage A R. User's Guide to the Stand Prognosis Model[C]. General Technical Report INT-133, Intermountain Forest and Range Experiment Station, USDA Forest Service,1982:112.
    [301]Wykoff W R. A basal area increment model for individual conifers in the northern Rocky Mountains[J]. Forest Science,1990,36(4):1077-1104.
    [302]Zarnoch S J, Bechtold W A and Stoke K W. Using crown condition variables as indicators of forest health[J]. Canadian Journal of Forest Research,2004,34:1057-1070.
    [303]Zenbei U, Hiroshi S. Agroclimatic evaluation of net primary productivity of natural vegetations[J]. J. Agr. Met.,1985,40(4):343-352.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700