用户名: 密码: 验证码:
机理Ⅰ植物缺铁响应机制和信号调控途径
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
缺铁是农业生产上限制作物生产的主要因素之一。对属于双子叶和非禾本科单子叶的机理Ⅰ植物而言,缺铁条件下,根系会作出多种响应来增加吸收利用铁的能力,这些响应包括:诱导高铁还原酶和铁转运体,分泌质子,增加亚根尖根毛发育和侧根发育以及分泌酚类物质等还原性小分子有机物。然而,后两种缺铁响应在改善物铁营养中的贡献仍尚未明确。本文首先以红三叶草(Trifolium pretense L.)为材料,较系统地研究了缺铁诱导的侧根发育和根系分泌的酚类物质在提高根系铁吸收,增加土壤中铁有效性及促进根系质外体铁再利用中的作用及其机制,以及体内酚类物质对生长素代谢的影响及其与缺铁响应之间的关系;另一方面,由于人类活动所导致的大气CO_2浓度增加会促进植物的生长,进而可能影响植物的铁营养,本研究以番茄(Solanum lycopersicom cv.)为材料研究了这一环境因素的变化对植物铁营养吸收的影响;最后,本研究借助病毒诱导的基因沉默技术(VIGS),初步探讨了体内14-3-3蛋白在植物缺铁响应中的调控作用。主要研究结果分为铁吸收机制,体内铁再利用机制,环境因素的影响及铁吸收调控机制等这四个方面,概述如下:
     1、侧根发育与根际微生物在植物吸收铁中的作用(铁吸收机制)
     缺铁条件下,红三叶草的侧根数量显著增加,并且侧根数量与根系高铁还原酶活性之间显著正相关。此外,对Dasgan等(2002,Plant and Soil,241:97-104)报道的结果作相关性分析也发现,两种不同基因型番茄line 227/1(P1)和Roza(P2),以及它们的两个杂交后代(‘P1×P2’和‘P2×P1’)在两个不同水平(10~(-6)和10~(-7)M FeEDDHA)的低铁条件下生长,它们的根系高铁还原酶活性与侧根数量也呈显著正相关。进一步分析表明,这4种番茄的侧根密度大小趋势又与它们的耐缺铁失绿能力的强弱相一致。这些结果证明了缺铁诱导的侧根数量增加可以提高根系高铁还原酶活性,并由此在增强植物耐缺铁能力上发挥重要作用。
     此外,有研究表明土壤微生物能促进植物铁的吸收。本研究中,我们也发现碱性土壤灭菌后,红三叶草的生长和铁吸收受到了明显抑制,但叶面喷施Fe-EDTA溶液和土壤接种根瘤菌使红三叶草的生长和铁吸收均得到恢复。后者现象与根瘤菌结瘤后根系的高铁还原酶活性显著增强有关。
     溶液培养条件下,红三叶草根系在缺铁条件下会分泌大量酚类化合物,在碱性土壤培养条件下,也发现根际土壤中酚类物质积累的现象。鉴于酚类物质具有抑菌性,我们测定了缺铁土壤培养的红三叶草根际微生物种群的变化。微生物16s rDNA PCR-DGGE分析和培养试验表明,缺铁培养的红三叶草根际土壤和人为添加根系分泌的酚类物质培养的土壤的微生物群落结构均发生了明显的变化,且都表现为分泌高铁载体(Siderophore)能力强的微生物数量的增加,说明缺铁诱导的根际微生物群落结构变化很可能是根系分泌的酚类物质引起的。在可培养的微生物中,我们还发现,与根系分泌的酚类物质共培养后,增加了土壤中产生长素类物质的微生物的比例。水培试验证明微生物分泌的生长素类物质能有效地增强红三叶草根系还原铁的能力。结合我们以往的研究,提出了机理Ⅰ植物根系分泌物与微生物互作及其对改善植物铁营养的作用的机理模型,即:缺铁诱导根系分泌的酚类物质首先改变了根际微生物群落结构,提高了根际土壤中能分泌高铁载体和生长素类物质的微生物的比例,新的微生物群落又通过增强高铁载体和生长素类物质的分泌促进植物的铁吸收。
     2、酚类根系分泌物在红三叶草根系质外体铁再利用上的作用(铁再利用机制)
     缺铁根系细胞向根际分泌酚类物质时,须先经过根系的质外体空间。在溶液培养试验中我们发现,用吸着型树脂去除培养液中的酚类根系分泌物后,红三叶草新叶失绿症状更为严重,且后期没有恢复迹象,这一现象暗示了缺铁诱导分泌的酚类物质可能与植物体内的铁再利用有关。进一步分析表明,酚类物质去除后,几乎完全抑制了缺铁根系的质外体铁随缺铁培养时间延长而下降趋势,与之相对应的是,酚类物质去除后,地上部的铁含量明显下降,而根系铁含量却显著提高,表明酚类物质去除后可能减少了根系中的质外体铁向地上部转运,从而加剧了地上部的缺铁症状。然而,去除酚类分泌物同时也增强了缺铁植物根系的高铁还原酶活性和质子分泌,说明这种质外体铁再利用过程并不是由质子分泌利高铁还原酶介导的。根系分泌的酚类物质对根系细胞壁中的铁的解吸动力学试验表明,酚类根系分泌物确能有效释放固定于细胞壁上的铁。上述结果充分证明了缺铁诱导的根系酚类分泌物直接介导了根系质外体铁的再利用,并在改善植物地上部分铁营养中起着十分重要的作用。
     3、大气CO_2浓度增加对植物铁营养的影响(环境因素的影响)
     目前,地球大气中的二氧化碳浓度(CO_2)正在逐年增加。水培试验结果表明空气中CO_2浓度升高后(800μL L~(-1)),不仅可以显著增加低铁(以难溶性氧化铁铁矿粉为铁源)培养的番茄的生物量,而且还可以显著促进铁吸收,改善植物的铁营养。此外,尽管高CO_2浓度处理改善了植物的铁营养,但与正常大气下生长(CO_2浓度350μL L~(-1))的植物相比,根系的铁还原酶活、质子分泌量和亚根尖根毛发育反而更为强烈,并且FER、FRO1和IRT3个基因的表达也显著增强。通过比较,我们还发现高CO_2浓度处理显著增加了番茄的根冠比。因此,我们认为,缺铁响应增强和根冠比增加可能是高CO_2浓度处理改善植物铁营养的原因,其中前者可能是主要原因。此外,高CO_2浓度处理还明显增加了根系的NO含量,这可能增强缺铁响应的原因。
     4、酚类化合物、生长素和14-3-3蛋白在铁吸收上的调控作用(铁吸收调控机制)
     缺铁处理显著增加了红三叶草根系的IAA含量。生长素极性运输抑制剂TIBA或NPA处理植物茎部后,显著抑制了缺铁诱导的根系高铁还原酶活性,质子分泌和亚根尖根毛发育等缺铁响应,但并不影响缺铁诱导的根系酚类物质的积累和分泌,表明IAA没有参与后两种缺铁响应的调控,但参与了前几种缺铁响应的调控过程。此外,缺铁处理明显降低了根系的IAA氧化酶活性。有意思的是,缺铁根系的酚类物质对IAA氧化酶活性具有很强的抑制作用,并且这种抑制作用要显著强于铁营养正常根系的酚类物质,表明缺铁导致IAA氧化酶活性下降很有可能是酚类物质在缺铁根系中积累引起的。综上所述,我们认为:缺铁机理Ⅰ植物根系通过增加酚类物质积累来抑制IAA氧化酶的活性,减少IAA在根系中的降解,提高IAA的含量,进而参与调控植物缺铁诱导的高铁还原酶活性、质子分泌和根毛发育。
     利用VIGS(病毒诱导的基因沉默)技术,沉默了TFT7 14-3-3基因在番茄中的表达,缺铁处理后,我们发现TFT7 14-3-3基因沉默,明显抑制了根系FER基因的表达,同时也抑制了FRO1基因以及IRT基因的表达,根系的高铁还原酶活性也明显降低。基于转录因子FER在植物缺铁响应中的调控作用,我们认为14-3-3蛋白可能是通过调控FER基因的表达来调控下游缺铁响应的诱导。
Iron deficiency is one of the most deleterious factors limiting crop production in the world.Innongraminaceous monocots and dicots,the so called StrategyⅠplants,roots respond to Fedeficiency stress by inducing FCR,IRT,proton secretion,subapical root hair development,lateral root development and releasing of reductants such as phenolic compounds.However,relative little is known about the fuctions of the latter two responses in plant Fe nutrition.In thisresearch,an iron efficient plant,red clover (Trifolium pretense L.),was employed to investigatethe roles of Fe-defciency induced lateral root development and phenolics exudation in enhancingplant Fe uptake,increasing soil Fe bioavailability and facilitating root apoplastic Fe reutilization.The relationship between phenolics accumulation and auxin metabolism in root in the regulationof iron-deficiency induced responses was also investigated.On another hand,the elevatedatmospheric CO_2 level could significantly stimulate the plant grwoth,which would eventuallyaffect the plant Fe nutrition,in this research,the tomato (Solanum lycopersicom cv.)were alsoemployed to investigate the influence of this envrironmental factor on the plant Fe uptake.Finally,the role of 14-3-3 protein in regulation of Fe-deficient induced response in tomato wasalso primarily studied by using VIGS technique.The main results can be devided into foursections:Fe uptake mechanisms,Fe reutilization mechanism influences of environmental factors,and regulation mechanisms of Fe uptake.These results are summarized as following.
     1.Contribution of lateral root development and rhizosphere microbes to the plant ironuptake (Iron uptake mechanisms)
     We found that the lateral root development of red clover was significantly enhanced by Fedeficiency,and the total lateral root number correlated well with the Fe-deficiency-induced FCRactivity.By analyzing the results from Dasgan et al.(2002,Plant and Soil,241:97-104),we alsofound that although the two tomato genotypes line227/1 (P1)and Roza (P2)and their reciprocalF1 hybrid lines (‘P1×P2’and‘P2×P1’)were cultured under two different lower Fe conditions(10~(-6)and 10~(-7)M FeEDDHA),their FCR activities are significantly correlated with the lateralroot numbers.More interestingly,the-Fe chlorosis tolerant ability of these four tomato linesdisplays similar trends with the lateral root density.Taking together,we proposed that theFe-deficiency-induced increases of the lateral root should play an important role in resistance toFe deficiency.
     The soil microbes have been demonstrated to have benefical effects on plant iron uptake insome researches.We also found that the red colver grown in sterilized soil had significantly lessgrowth and Fe uptake than the plants grown in non-sterilized soil.Growth and Fe content ofthese plants were improved by foliar application of Fe-EDTA or rhizobium inoculation which was related to the enhancement of FCR activity after nodule formation.
     In solution cultivation,the red clover roots released a large amount of phenolics when theplants were subject to the Fe deficienct treatment.In addition,the phenolics accumulation in thecalcareous rhizosphere soil of Fe-stressed red clover was also significantly increased.Generally,phenolic compounds have both antimicrobial and growth beneficial effects to mirobes.Therefore,we analyzed the rhizosphere microbial community structure of the red clover plants withdifferent Fe status.The microbial 16S rDNA PCR-DGGE analysis showed that the rhizospheremicrobial community structure was varied with the plant's Fe nutritional status.Interestingly,thesiderophore producing ability of the microbes in the rhizosphere was stronger in Fe-stressedplants than in Fe-sufficient ones.Moreover,the compostion of the siderophore-producingmicrobes of the rhizosphere soil from Fe-stressed red clover plants could be mimicked byincubating the soil with phenolic root exudates.In addition,the percentage of microbes that canproduce auxin-like compounds was also increased by incubating soil microbial suspension onthe agar plates containing phenolic root exudates.The solution cultivation experimentdemonstrated that the ferric reduction capacity of red clover roots was greatly enhanced bymicrobial auxins.Based on these observations and our previous research,we propose as a modelthat root exudates from Fe-deficient plants selectively influence the rhizosphere microbialcommunity,and the microbes in turn favor plant Fe acquisition by producing siderophores andauxins.
     2.Contribution of phenolic root exudates to the iron reutilization in root apoplast of redclover (Iron reutilization mechanism)
     Phenolic compounds secreted by Fe-deficient root cells should pass the root apoplast first.Wefound that removal of secreted phenolics from the root-bathing-Fe solution by sorbing resinresulted in severer chlorosis of new leaves,implying Fe deficiency-induced phenolics secretionmay be involved in the of reutilization root apoplastic Fe.Further analysis shows that phenolicsremoval almost completely inhibited the reutilization of apoplastic Fe in red clover roots,and asa conquence,shoot Fe was significantly decreased but the root Fe was increased,indicating thatthis approach may reduce t root Fe transporting to shoot,and hence stimulated Fe deficiency.Inaddition,phenolic removal also significantly enhanced root ferric chelate reductase activity andproton extrusion,suggesting that the reutilization of root apoplastic Fe is not mediated by protonextrusion or the root ferric chelate reductase.In vitro studies with extracted root cell wallsfurther demonstrate that excreted phenolics efficiently desorbed a significant amount of Fe fromcell walls,indicating that a direct involvement of phenolics in Fe remobilization.Taking alltogether,these results stongly demonstrate that Fe deficiency-induced phenolics secretion is involved in the reutilization of root apoplastic Fe,and should play an important role inimproving shoot Fe nutrition.
     3.Eeffect of the elevated atmospheric CO_2 level on plant Fe nutrition (Influences ofenvironmental factor)
     The CO_2 concentration in atmosphere has been being increased annually.Here,we foundthat the elevated atmospheric CO_2 level (800μL L~(-1))not only significantly increased thebiomass of tomato cultured in low available Fe (the insoluble ferric oxide as the Fe source)nutrient solution,but also improved the plant Fe nutrient status.Interestingly,although thetomatoes cultured in ambient atmosphere (350μL L~(-1)CO_2)was more Fe-deficient,their rootFCR activty,proton secretion,sub-apical root hair development and expressions of FER,FRO1and IRT were weaker than those of the plants treated with elevated atmospheric CO_2.Moreover,the root/shoot ratio of tomatoes was also significantly increased by the elevated atmosphericCO_2 treatment as compared with ambient atmosphere treatment.Based on these observations,we suggested that the enhanced Fe-deficiency-induced responses and the increased root/shootratio may be the reasons that the elevated atmospheric CO_2 treatment improved the plant Fenutrient status,and the former may be the major reseason.In addition,the NO levels in rootswere also increased by the elevated atmospheric CO_2 treatment,which may be the reasonleading to the enhancement of Fe-deficiency-induced responses
     4.Roles of phenolic compounds,auxin and 14-3-3.protein in regulation iron nutritionuptake (Regulation mechanisms of iron uptake)
     The IAA accumulation in red clover roots were also significantly increased by the Fe-deficienttreatment.Application of TIBA or NPA to the red clover stem,which could decrease IAAaccumulation in root,significantly inhibited the Fe-deficiency-induced FCR activity,protonsecretion,and subapical root hair development,but did not inhibit the root phenolicsaccumulation and secretion,suggesting that IAA should be involve in the regulation of theformer four Fe-deficient responses but not the phenolics accumulation and secretion.In contrast.the Fe-deficient treatment significantly decreased the root IAA-oxidase activity.Interestingly,the phenolics from roots of Fe-deficient red clover inhibited IAA-oxidase activity in vitro,andthis inhibition was greater than with phenolics from roots of Fe-sufficient plants,indicating thatthe Fe-deficiency-induced IAA-oxidase inhibition probably is caused by the phenolicsaccumulation.Based on these observations,we propose a model where under Fe-deficient stressin dicots,an increase in root phenolics concentrations plays a role in regulating root IAA levelsthrough an inhibition of root IAA oxidase activity.This response,leads to.or at least partiallyleads to an increase in root IAA levels,which in turn regulates Fe-deficiency-induced FCR activity,proton secretion,and subapical root hair development.
     We silenced the TFT7 14-3-3 gene in tomatoes by using VIGS technique As a consequence,the mRNA levels of FER,FRO1 and IRT were significantly reduced.The FCR activity ofFe-deficient treatment was also obviously lower than than that in non-slienced plants.Takingaccout of the FER functions in regulating Fe-deficiency-induced responses,we suggest that theTFT7 14-3-3 protein may be involved in regulating the downsteam Fe-deficiency-inducedresponses by controlling the FER gene expression first.
引文
1. Abel S, Nguyen MD, Chow W, Theologis A (1995) ACS4, a primary indoleacetic acid-responsive gene encoding 1-aminocyclopropane-1-carboxylate synthase in Arabidopsis thaliana. J Biol Chem 270: 19093-19099
    2. Bauera P, Ling HQ, Guerinotc ML (2007) FIT, the FER-Like iron deficiency induced transcription factor in Arabidopsis. Plant Physiol Biochem 45: 260-261
    3. Baulcombe DC (1999) Fast forward genetics based on virus induced gene silencing. Current Opinion in Plant Biollogy 2: 109-113.
    4. Becker HF, Messens E, Hedgees RW (1985) The influence of agrobactin on the uptake of ferric iron by plants. FEMS Microb Ecol 31: 171-175
    5. Becker R, Fritz E, Manteuffel R (1995) Subcellular localization and characterization of excessive iron in the nicotianamine-less tomato mutant chloronerva. Plant Physiol 108:269-275
    6. Bentson GM, Bazzaz FA (1997) Elevated CO_2 and the magnitude and seasonal dynamics of root production and loss in Betula papyrifera. Plant Soil 190 (2): 2111-216
    7. Berraho EL, Lesueur D, Diem HG, Sasson A (1997) Iron requirement and siderophore production in Rhizobium ciceri during growth on an iron-deficient medium. World J Microb Biotech 13: 501-510
    8. Bienfait HF (1985) Regulated redox processes at the plasmalemma of plant root cells and their function in iron uptake. J Bioenerg Biomembr 17: 73-83
    9. Bienfait HF (1988) Mechanisms in Fe-efficiency reactions of higher plants. J Plant Nutr 11: 605-629
    10. Bienfait HF (1989) Precvention of stress in iron metabolism of plants. Act Bot Neerl 38: 105-129
    11. Bienfait HF, Bino AM, Bliek JF, Duivenvoorden JF, Fontains JM (1983) Characterization of ferric reducing activity in roots of Fe-deficient phaseolus valgaris. Physiol Plant 59:196-202
    12. Bienfait HF, De Weger LA, Kramer D (1987) Control of the development of iron-efficiency reactions in potato as a response to iron deficiency is located in the roots. Plant Physiol 8: 244-247
    13. Bienfait HF, van den Briel W, Mesland-Mul NT (1985) Free space iron pools in roots. Generation and mobilization. Plant Physiol 78:596-600
    14. Blum U, Staman KL, Flint LJ, Shafer SR (2000) Induction and/or selection of phenolic acid-utilizing bulk-soil and rhizosphere bacteria and their influence on phenolic acid phytotoxicity. J Chem Ecol 26: 2059-2078
    15. Bolin B, Kheshgi HS (2001) On strategies for reducing greenhouse gas emissions. Proc Natl Acad Sci USA 98(9): 4850-4854
    16. Boukhalfa H, Crumbliss AL (2002) Chemical aspects of siderophore mediated iron transport. Biometals 15:325-339
    17. Briat JF, Lobreaux S, Grignon N, Vansuyt G (1999) Regulation of plant ferritin synthesis: how and why. Cell Mol Life Sci 56:155-166
    18. Bridges D, Moorhead GBG (2005) 14-3-3 Proteins: A Number of Functions for a Numbered Protein. Science'sSTKE, August 9, 2005; 296: 10-10
    19. Brown DE, Rashotte AM, Murphy AS, Normanly J, Tague BW, Peer WA, Taiz L, Muday GK (2001) Flavonoids act as negative regulators of auxin transport in vivo in Arabidopsis. Plant Physiol 126: 524-535
    20. Brumbarova T, Bauer P (2005) Iron mediated control of the basic helix-loop-helix protein FER, a .regulator of iron uptake in tomato. Plant Physiol 137: 1018-1026
    21. Buer CS, Muday GK (2004) The transparent testa4 mutation prevents flavonoid synthesis and alters auxin transport and the response of Arabidopsis roots to gravity and light. Plant Cell 16: 1191-1205
    22. Bughio N, Takahashi M, Yoshimura E, Nishizawa N K, Mori S (1997) Light-dependent iron transport into isolated barley chloroplasts. Plant Cell Physiol 38:101-105
    23. Bughio N, Yamaguchi H, Nishizawa NK, Nakanishi H, Mori S (2002) Cloning an iron-regulated metal transporter from rice. J Exp Bot 53: 1677-1682
    24. Cao G, Sofic E, Prior RL (1997) Antioxidant and prooxidant behavior of flavonoids: structure-activity relationships. Free Radical Bio Med 22: 749-760
    25. Cesar Llave, Kristin D, Kasschau, James C, Carrington (2000) Virus-encoded suppressor of posttranscriptional gene silencing targets a maintenance step in the silencing pathway. Proc Natl Acad Sci USA 24: 13401-13406
    26. Chaney RL, Brown LC, Tiffin JC (1972) Obligatory reduction of ferric chelates in iron uptake by soybeans. Plant Physiol 50: 203-213
    27. Chaney RL, Chen Y, Green CE, Holden MJ, Bell PF, Luster DG, Angle JS (1992) Root hairs on chlorotic tomatoes are an effect of chlorosis rather than part of the adaptive Fe-stress-response. J Plant Nutr 15: 1857-1875
    28. Chang YC, Ma JF, Iwashita T, Matsumoto H (1999) Effect of Al on the phytosiderophore-mediated solubilization of Fe and uptake of Fe-phytosiderophore complex in wheat (Triticum aestivum). Physiol Plant 106:62-68
    29. Chen L, Dick WA, Streeter JG (2000) Production of aerobactin by microorganisms from a compost enrichment culture and soybean utilization. J Plant Nutr 23:2047-2060
    30. Chen LM, Dick WA, Streeter JG, Hoitink HAJ (1998) Fe chelates from compost microorganisms improve Fe nutrition of soybean and oat. Plant Soil 200: 139-147
    31. Chen Y, Shi J, Tian G, Zheng S, Lin Q (2004) Fe deficiency induces Cu uptake and accumulation in Commelina communis. Plant Sci 166: 1371-1377
    32. Clark RB, Zeto SK (1996) Mineral acquisition by mycorrhizal mazie grown on acid and alkaline soil. Soil Bio Biochem 28: 1495-1503
    33. Cohen CK, Fox TC, Garvin DF, Kochian LV (1998) The role of iron-deficiency stress responses in stimulating heavy-metal transport in plants. Plant Physiol 116:1063-1072
    34. Connolly EL, Fett JP, Guerinot ML (2002) Expression of the IRT1 metal transporter is controlled by metals at the levels of transcript and protein accumulation. Plant Cell 14: 1347-1357
    35. Conroy JP (1992) Influence of elevated atmospheric CO_2 concentrations on plant nutrition. Aust J Bot 40: 445-456
    36. Crawford NM, Kahn ML, Leustek T, Long SR (2000) Nitrogen and Sulfur. In Biochemistry and Molecular Biology of Plants (eds B.B. Buchanan, W. Gruissem & R.L. Jones). American Society of Plant Physiologists. pp. 786-814
    37. Cress WA, Johnson GV, Barton LL (1986) The role of endomycorrhizal fungi in iron uptake by Hillaria jamesii. J Plant Nutr 9:547-556
    38. Crowley DE, Reid CPP, Szaniszlo PJ (1988) Utilization of microbial siderophores in iron acquisition by oat. Plant Physiol 87: 680-685
    39. Crowley DE, Wang YC, Reid CPP, Szaniszlo PJ (1991) Mechanism of iron acquisition from siderophores by microorganisms and plants. Chn Y, Hadar Y(ed).Iron nutrition and interaction in plants. Dordrecht: Kluwer, 213-232
    40. Curie C, Briat J F (2003) Iron transport and signaling in plants. Annu Rev Plant Biol 54: 183-206
    41. Dakora FD, Phillips DA (2002) Root exudates as mediators of mineral acquisition in low-nutrient environments. Plant Soil 245:35-47
    42. Dasgan HY, Romheld V, Cakmak I, Abak K (2002) Physiological root responses of iron deficiency susceptible and tolerant tomato genotypes and their reciprocal F1 hybrids. Plant Soil 241: 97-104
    43. De la Guardia MD, Alc(?)ntara E, Fernandez M (1988) Iron reduction by sunflower roots under iron stress. In FL Crane, D J Morr(?), H L(?)w, eds, Proceedings NATO advanced research workshop on plasma membrane oxidoreductases in control of animal and plant growth. Plenum Press: New York, NY, p. 430
    44. De(?)k M, Horvath GV, Davletova S, Torok K, Sass L, Vass I, Barna B, Kiraly Z, Dudits D (1999) Plants ectopically expressing the iron-binding protein, ferritin,are tolerant to oxidative damage and pathogens. Nat Biotechnol 17:192-196
    45. DeForest L, Zak DR, Pregitzer KS, Burton AJ (2005) Atmospheric nitrate deposition and enhanced dissolved organic carbon leaching: test of a potential mechanism. Soil Sci Soc Am J 69: 1233-1237
    46. Dell'Orto M, Santi S, Nisi PDe, Cesco S, Varanini Z, Zocchi G, Pinton P (2000) Development of Fe-deficiency responses in cucumber (Cucumis sativus L.) roots: involvement of plasma membrane H~+-ATPase activity. J Exp Bot 51: 695-701
    47. Deryl M, Skorupska A (1992) Rhizobial siderophore as an iron source for clover. Physiol Plant 85: 549-553
    48. Dilustro JJ, Day FP, Drake BG, Hinkle CR. (2002) Abundance, production and mortality of fine roots under elevated atmospheric CO_2 in an oak-scrub ecosystem. Environ Exp Bot 48 (2): 149-159
    49. Drew MC (1975) Comparison of the effect of a localized supply of phosphate, nitrate, ammonium and potassium on the growth of the seminal root system, and the shoot, in barley. New Phytol 75: 479-490
    50. Du ST, Zhang YS, Lin XY, Wang Y, Tang CX (2008) . Regulation of nitrate reductase by its partial product nitric oxide in Chinese cabbage pakchoi (Brassica chinensis L. cv. Baoda). Plant Cell Environ 31: 195-204
    51. Durrett TP, Gassmann W, Rogers EE (2007) The FRD3-mediated efflux of citrate into the root vasculature is necessary for efficient iron translocation. Plant Physiol 144:197-205
    52. Duy D, Wanne G, Meda AR, von Wiren N, Soil J, Philippa K (2007) PIC1, an ancient permease in arabidopsis chloroplasts, mediates iron transport. Plant Cell 19: 986-1006
    53. Edding JL, Brown AL (1967) Absorption and translocation of foliar-applied iron. Plant Physiol 42:15-19
    54. Eide D, Broderius M, Fett J, Guerinot ML (1996) A novel iron-regulated metal transporter from plants identified by functional expression in yeast. Proc Natl Acas Sci USA 93: 5624-5628
    55. Friedlingstein P, Solomon S (2005) Contributions of past and present human generations to committed warming caused by carbon dioxide. Proc Natl Acad Sci USA 102(31): 10832-10836
    56. Gortner WA, Kent MJ, Sutherland GK (1958) Ferulic and p-coumaric acids in pineapple tissue as modifiers of pineapple indoleacetic acid oxidase. Nature 181: 630-631
    57. Graziano M, Lamattina L (2007) Nitric oxide accumulation is required for molecular and physiological responses to iron deficiency in tomato roots. Plant J 52:949-960
    58. Green LS, Rogers EE (2004) FRD3 controls iron localization in Arabidopsis.Plant Physiol 136: 2523-2531
    59. Gremion F, Chatzinotas A, Harms H (2003) Comparative 16S rDNA and 16S rRNA sequence analysis indicates that Actinobacteria might be a dominant part of the metabolically active bacteria in heavy metal-contaminated bulk and rhizosphere soil. Environ Microbiol 5: 896 - 907
    60. Grusak MA (1995) Whole-root iron (Ⅲ)-reductase activity throughout the life cycle of iron-grown Pisum saivum L. (Fabacceae): Relevance to the iron nutrition of developing seeds. Planta 197:111-117
    61. Grusak MA, Pezeshgi S (1996) Shoot-to-root signal transmission regulates root Fe (Ⅲ) reductase activity in the dgl mutant of pea. Plant Physiol 110: 329-334
    62. Guerinot ML (1991) Iron uptake and metabolism in the rhizobia/legume symbioses. Plant Soil 130: 199-209
    63. Guerinot ML, Yi Y (1994) Iron: Nutritious, noxious, and not readily available. Plant Physiol 104: 815-820
    64. Hager A, Debus G, Edel HG, Stransky H, Serrano R (1991) Auxin induces exocytosis and the rapid synthesis of a high-turnover pool of plasma-membrane H~+-ATPase. Planta 185: 527-537
    65. Hayman DS, Mosse B (1972) Plant growth response to Vesicular-Arbuscular Mycorrhizae, Ⅲ. Increased up take of labile P from soil. New Phytol 71: 41-47
    66. He XX, Jin CW, Li GX, Yu YH, You GY, Zhou XP, Zheng SJ (2008) Use of the modified viral satellite DNA Vector to silence mineral nutrition-related genes in plants: Silencing of the tomato ferric reductase gene, FRO1, as an example.Science in China Series C: Life Science 51:402-409
    67. Hell R, Hillebrand H (2001) Plant concepts for mineral acquisition and allocation. Curr Opin Biotechnol 12: 161-168
    68. Hell R, Stephan UW (2003) Iron uptake, trafficking and homeostasis in plants.Planta 216: 541-551
    69. Herbik A, Koch G, Mock HP, Dushkov D, Czihal A, Thielmann J, Stephan UW, Baumlein H (1999) Isolation, characterization and cDNA cloning of nicotianamine synthase from barley. A key enzyme for iron homeostasis in plants. Eur J Biochem 265:231-239
    70. Hersman L, Maurice P, Sposito G (1996) Iron acquisition from hydrous Fe(Ⅲ)-oxides by an aerobic Pseudomonas sp. Chem Geol 132: 25-31
    71. Hether NH, Olsen RA, Jackson LL (1984) Chemical identification of iron reductants exuded by plant roots tomatoes, sunflowers, barley, soybeans. J Plant Nutr 7: 667-676
    72. Higuchi K, Suzuki K, Nakanishi H, Yamaguchi H, Nishizawa NK, Mori S (1999) Cloning of nicotianamine synthase genes, novel genes involved in the biosynthesis of phytosiderophores. Plant Physiol 119:471-480
    73. Hungate BA, Holland EL, Jackson RB, Chapin Ⅲ FS, Mooney HA, Field CB (1997) The fate of carbon in grasslands under carbon dioxide enrichment. Nature 388:576-579
    74. Imsande J (1998) Iron, sulfur, and chlorophyll deficiencies: a need for an integrative approach in plant physiology. Physiol Plant 103: 139-144
    75. IPCC (2001) The scientific basic. In: Climate Change (eds. Houghton, JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA), Cambridge University Press, UK.
    76. Ishimaru Y, Suzuki M, Tsukamoto T, Suzuki K, Nakazono M, Kobayashi T, Wada Y, Watanabe S, Matsuhashi S, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2006) Rice plants take up iron as an Fe~(3+)-phytosiderophore and as Fe~(2+). Plant J 45: 335-346.
    77. Jauregui MA, Reisenauer HM (1982) Calcium carbonate and manganese dioxide as regulators of available manganese and iron. Soil Sci 134:105-110
    78. Jin CW, He YF, Tang CX, Wu P, Zheng SJ (2006) Mechanisms of microbially enhanced Fe acquisition in red clover (Trifolium pretense L). Plant Cell Environ 29: 888-897
    79. Jirikowic JL, Damon PE (1994) The medieval solar activity maximum. Climate Change 26:309-316
    80. Jones MD, Durall DM, Tinker PB (1990) Phosphorus relationship and production of extrametncal hyphae by two types of willow ectomycorrhizas at different soil phosphorus leves. New Phytol 115:259-267
    81. Khan AG, Keuk C, Chaudhry TM , Khoo CS, Hayes WJ (2000) Role of plants, mycorrhizae and phytochelators in heavy metal contaminated land remediation. Chemosphere 41: 197-207
    82. Kim SA, Punshon T, Lanzirott A, Li L, Alonso JM, Ecker JR, Kaplan J, Guerinot, ML (2006) Localization of iron in Arabidopsis seed requires the vacuolar membrane transporter VIT1. Science 314: 1295-1298
    83. Kl(?)ring HP, Hauschild C, Heipner A, Bar-Yosef B (2007) Model-based control of CO_2 concentration in greenhouses at ambient levels increases cucumber yield. Agr Forest Meteorol 143: 208-216.
    84. Korshunova YO, Eide D, Clark WG, Guerinot ML, Pakrasi HB (1999) The IRT1 protein from Arabidopsis thaliana is a metal transporter with a broad substrate range. Plant Mol Biol 40: 37-44
    85. Kosieradzka I, Sawosz E, Pastuszewska B, Zuk M, Szopa J, Bielecki W (2004) Effect of feeding potato tubers modified by 14-3-3 protein overexpression on metabolism and health status of rats. J Anim Feed Sci 13: 331-341
    86. Kr(?)ger C, Berkowitz O, Stephan UW, Hell R (2002) A metal-binding member of the late embryogenesis abundant protein family transports iron in the phloem of Ricinus communis L. J Biol Chem 277:25062-25069
    87. Kumagai MH, Donson J, Della-Cioppa G, Harvey D, Hanley K, Grill LK (1995) Cytoplasmic Inhibition of Carotenoid Biosynthesis with Virus-Derived RNA. Proc Natl Acad Sci USA 92: 1769-1683
    88. Lambert DH, Baker DE, Cole HJ (1979) The role of mycorrhizae in the interactions of phosphorus with zinc, copper and other elements. Soil Sci Soc Am J 43: 976-980
    89. Landsberg EC (1982) Transfer cell formation in the root epidermis: a prerequisite for Fe-efficiency? J Plant Nutr. 5:415-432
    90. Landsberg EC (1984) Regulation of iron-stress-responses by whole plant activity. J Plant Nutr 7: 609-621
    91. Landsberg EC (1994) Transfer cell formation in sugar beet roots induced by latent Fe deficiency. Plant Soil 165: 197-205
    92. Landsberg EC (1996) Hormonal regulation of iron-stress response in sunflower roots: a morphological and cytological investigation. Protoplasma 194: 69-80
    93. Lanquar V, Lelievre F, Bolte S, Hames C, Alcon C, Neumann D, Vansuyt G, Curie C, Schroder A, Kramer U, Barbier-Brygoo H, Thomine S (2005) Mobilization of vacuolar iron by AtNRAMP3 and AtNRAMP4 is essential for seed germination on low iron. EMBO J 24: 4041-4051
    94. Larbi A, Morales F, L(?)pez-Mill(?)n AF, Gogorcena Y, Abad(?)a A, Moog PR, Abad(?)a J (2001) Technical advance: reduction of Fe(Ⅲ)-chelates by mesophyll leaf disks of sugar beet. Multi-component origin and effects of Fe deficiency. Plant Cell Physiol 42:94-105
    95. Lescure AM, Proudhon D, Pesey H, et al. (1991) Ferritin gene transcription is regulated by iron in soybean cell cultures. Proc Natl Acad Sci USA 88:8222-8226
    96. Li CJ, Zhu XP, Zhang FS (2000) Role of shoot in regulation of iron deficiency responses in cucumber and bean plants, J Plant Nutr 23: 1809-1818
    97. Li XL, Geoege E, Marschner H (1991) Phosphorus depletion and pH decrease at the root-soil and hyphae-soil inter-faces of VAM white clover fertilized with ammonium. New Phytol 119: 397-404
    98. Li XX, Li CJ (2004) Is ethylene involved in regulation of root ferric reductase activity of dicotyledonous species under iron deficiency? Plant Soil 261 (1-2): 147-153
    99. Lindsay WL, Norvell WA (1978) Development of a DTPA soil test for zinc, iron, manganese and copper, Soil Sci Soc Ame J 42: 421-428
    100. Lindzen RS (1997) Can increasing carbon dioxide cause climate change? Proc Natl Acad Sci USA 94: 8335-8342
    101. Ling HQ, Bauer P, Bereczky Z, Keller B, Ganal M (2002) The tomato FER gene encoding a bHLH protein controls iron-uptake responses in roots. Proc Natl Acad Sci USA 99: 13938-13943
    102.Lobreaux S, Massenet O, Briat JF (1992) Iron induces ferritin synthesis in maize plantlets. Plant Mol Biol 19: 563-575
    103.Longnecker N (1986) A comparison resistance of soybean and sunflower to iron-deficiency induced chlorosis. PhD thesis. Cornell university, Ithaca, NY
    104.Longnecker N, Welch RM (1990) Accumulation of apoplastic iron in plant roots:A factor in the resistance of soybeans to iron-deficiency induced chlorosis? Plant Physiol 92:17-22
    105.Lynch JM, Whipps JM (1990) Substrate flow in the rhizosphere. Plant and Soil 129(1):1-10
    106.Manthey JA, Luster DG, Crowley DE (1994) Biochemistry of metal micronutrients in the rhizosphere. Lewis publisher p181.
    107.MarilIey L, Vogt G, Blanc M, Aragno M (1998) Bacterial diversity in the bulk soil and rhizosphere fractions of Lolium perenne and Trifolium repens as revealed by PCR restriction analysis of 16S rDNA. Plant Soil 198: 219-224
    108.Marschner H (1995) Mineral Nutrition of Higher Plant. (Academic Press)
    109.Marschner H, Romheld V (1994) Strategies of plants for acquisition of iron.Plant Soil 165:261-274
    110.Marschner H, R(?)mheld V (1995) Mineral nutrition of higher plants. New York: Academic press, pp889-890.
    111 .Marschner H, Romheld V, Kissel M (1986) Different strategies in higher plants in mobilization and uptake of iron. J Plant Nutr 9: 695-713
    112.Marschner P, Crowley DE (1998) Phytosiderophores decrease iron stress and pyoverdine production of Pseudomonas fluorescens Pf-5 (pvdinaZ). Soil Biol Biochem30: 1275-1280
    113.Marschner P, Crowley DE, Sattelmacher B (1997) Root colonization and iron nutritional status of a Pseudomonas fluorescens in different plant species. Plant Soil 196: 311-316
    114.Masalha J, Kosegarten H, Elmaci (?), Mengel K (2000) The central role of microbial activity for iron acquisition in maize and sunflower. Bio Fertile Soil 30: 433-439
    115.Masaoka Y, Kojima M, Sugihara S, Yoshihara T, Koshino M, Ichihara A (1993) Dissolution of ferric phosphate by alfalfa (Medicago sativa L.) root exudates. Pant Soil 155-156: 75-78
    116.Masaoka Y, Koshino H, Arakawa Y, Asanuma S (1997) Growth-promoting effect of root exudates of Fe-deficient alfalfa on Rhizobium meliloti. Proceeding of Ⅷ International plant Nutrition Colloquium, Tokyo. Japan. pp505-506
    117.Maschner H, R(?)mheld V (1995) Mineral Nutrition of Higher Plants. New York: Academic press, pp889-890
    118.Mathesius U (2001) Flavonoids induced in cells undergoing nodule organogenesis in white clover are regulators of auxin breakdown by peroxidase J Exp Bot 52: 419-426
    119.Moog PR, van der Kooij TA, Bruggemann W, Schiefelbein JTW, Kuiper PJ (1995) Responses to iron deficiency in Arabidopsis thaliana: The Turbo iron reductase does not depend on the formation of root hairs and transfer cells. Planta 195: 505-513
    120.Moran R (1982) Formulae for determination of chlorophyllous pigments extracted with N,N-Dimethyformamide, Plant Physiol 69: 1376-1381
    121.Morgan PW, Hall WC (1962) Effect of 2,4-dichlorophenoxyacetic acid on the production of ethylene by cotton and grain sorghum. Physiol Plant 15: 420-427
    122.Mori S (1999) Iron acquisition by plants. Curr Opin Plant Biol 2:250-253
    123.Mukherjee I, Campbell NH, Ash JS, Connolly EL (2006) Expression profiling of the Arabidopsis ferric chelate reductase (FRO) gene family reveals differential regulation by iron and copper. Planta 223: 1178-1190
    124.Nacry P, Canivenc G, Muller B, Azmi A, Van Onckelen H, Rossignol M, Doumas P (2005) A role for auxin redistribution in the responses of the root system architecture to phosphate starvation in Arabidopsis. Plant Physiol 138: 2061-2074
    125.NASA (2002) http:// www.giss.nasa.gov.
    126.Negishi T, Nakanishi H, Yazaki J, Kishimoto N, Fujii F, Shimbo K, Yamamoto K, Sakata K, Sasaki T, Kikuchi S, Mori S, Nishizawa NK (2002) cDNA microarray analysis of gene expression during Fe-deficiency stress in barley suggests that polar transport of vesicles is implicated in phytosiderophore secretion in Fe-deficient barley roots. Plant J 30: 83-94
    127.O'Brian TP, Mcully ME (1981) The study of plant structure: principles and seclected methods. Melbourne, Australia: Termarcarphi Pty.Ltd
    128.Ohwaki Y, Sugahara K (1997) Active extrusion of protons and exudation of carboxylic acids in response to iron deficiency by roots of chickpea (Cicer arietnum L.). Plant Soil 189: 49-55
    129.Olsen RA, Bennett JH. Blume D, Brown JC (1981) Chemical aspects of Fe stress response mechanism in tomatoes. J Plant Nutr 3: 905-921
    130.Ovreas L, Forney L, Daae FL, Torsvik V (1997) Distribution of bacterioplankton in meromictic Lake Saelenvannet, as determined by denaturing gradient gel electrophoresis of PCR-amplified gene fragments coding for 16S rRNA. Appl Environ Microbiol 63: 3367-3373
    131.Pacovesky RS, Fuller G (1988) Mineral and lipid composition of Glycine-Glomus-Bradyrhizobium symbioses. Physiol Plant 72:733-746
    132.Peer WA, Bandyopadhyay A, Blakeslee JJ, Makam SN, Chen RJ, Masson PH, Murphy AS (2004) Variation in expression and protein localization of the PIN family of auxin efflux facilitator proteins in flavonoid mutants with altered auxin transport in Arabidopsis thaliana. Plant Cell 16: 1898-1911
    133.Phellips IDJ (1975) Apical dominance. Ann Rev Plant Physiol 26:341-367
    134.Pilet PE (1966) Effect of p-hydroxybenzoic acid on growth, auxin content and auxin catabolism. Phytochemistry 5: 77-82
    135.Puig S, Andres-Colas N, Garcia-Molina A, Penarrubia L (2007) Copper and iron homeostasis in Arabidopsis: responses to metal deficiencies, interactions and biotechnological applications. Plant Cell Environ 30: 271-290
    136.Raaijmakers JM, Van Der Sluis I, Koster M, Bakker PAHM, Weisbeek PJ, Schippers B (1995) Utilization of heterologous siderophores and rhizosphere competence of fluorescent Pseudomonas spp. Can J Microbiol 41: 126-135
    137.Rabotti G, Zocchi G (1994) Plasma-membrane bound H~+-ATPase and reductase activities in Fe-deficient cucumber roots. Physiol Plant 90: 779-785
    138.Raju PS, Clark RB, Ellis JR, Maranville JW (1990) Effects of species of VA-mycrorrhizal fungi on growth and mineral uptake of sorghum at different temperatures. Plant Soil 121: 165-170
    139.Rastetter EB, Vitousek PM, Field C, Shaver GR, Herbert D, Agren GI (2001) Resource optimization and symbiotic nitrogen fixation. Ecosystems 4: 369-388
    140.Rauha J P, Rentes S, Heinonen M, Hopia A, K(?)hk(?)nen M, Kujala T, Pihlaja K, Vuorela H, Vuorela P (2000) Antimicrobial effects of Finnish plant extracts containing flavonoids and other phenolic compounds. Int J Food Mocorb 56: 3-12
    141.Raymond KN, Mueller G, Matzanke BF (1984) Complexation of iron by siderophores: A review of their solution and structural chemistry and biological function. Top Cur Chem 123: 49-102.
    142.Rice-Evans CA, Miller NJ (1996) Antioxidant activities of flavonoids as bioactive components of food. Biochem Soc T 24: 790-795
    143.Roberts M (2003) 14-3-3 Proteins find new partners in plant cell signaling. Trends Plant Sci 8: 218-223
    144.Robinson NJ, Procter CM, Connolly EL, Guerinot ML (1999) A ferric-chelate reductase for iron uptake from soils: Nature 397:694-697
    145.Rogers EE, Guerinot ML (2002) FRD3, a member of the multidrug and toxin efflux family, controls iron deficiency responses in Arabidopsis. Plant Cell 14: 1787-1799
    146.Rogers HH, Prior SA, Runion GB, Mitchell RJ (1995) Root to shoot ratio of crops as influenced by CO_2. Plant Soil 187:229-248
    147.Romera FJ, Alc(?)ntara E (1994) Iron-deficiency stress responses in cucumber (Cucumis sativus L.) roots: a possible role for ethylene? Plant Physiol 105: 1133-1138
    148.Romera FJ, Alc(?)ntara E (2004) Ethylene involvement in the regulation of Fe-deficiency stress responses by Strategy Ⅰ plants. Funct Plant Biol 31: 3215-328
    149.Romera FJ, Alc(?)ntara E, Guardia MD (1992) Role of roots and shoots in the regulation of the Fe efficiency responses in sunflower and cucumber. Physiol Plant 85: 141-146
    150.R(?)mheld V (1987) Different strategies for iron acquisition in higher plants. Physiol Plant 70: 231-234
    151.R(?)mheld V, Marschner (1983) Mechanism of iron uptake by peanut plants. Ⅰ. Fe (Ⅲ) reduction, chelate splitting and release of phenolics. Plant Physiol 71:949-954
    152.R(?)mheld V, Marschner H (1981) Iron deficiency stress induced morphological and physilogical changes in root tips of sunflower. Physiol Plant 53: 357-360
    153.R(?)mheld V, Marschner H (1983) Mechanism of iron uptake by peanut plants. Ⅰ. Fe(Ⅲ) reduction, chelate splitting and release of phenolics. Plant Physiol 71:949-954
    154.R(?)mheld V, Marschner H (1986) Mobilization of iron in the rhizosphere of different plant species. Adv in Plant Nutri 2:155-204
    155.R(?)mheld V, Marschner H (1990) Genotypical difference among graminaceous species in release of phytosiderophores and uptake of iron-phytosiderophores. Plant Soil 123:147-153
    156.Rosenfleld CL, Reed DW, Kent MW (1991) Dependency of iron reduction on development of a unique root morphology in Ficus benjamina L. Plant Physiol 95:1120-1124
    157.Rousseau JVD, Sylvia DM, Fox AJ (1994) Contribution of ectomycorrhiza to the potential nutrient absorbing surface of pine in pure culture. Agric Ecosys Environ 28: 421-424
    158.Rroco E, Kosegarten H, Harizaj F Imani J, Mengel K (2003) The importance of soil microbial activity for the supply of iron to sorghum and rape. Euro J Agronomy 19: 487-493
    159.Sarwar M, Arshad M, Martens DA, Frankenberger JWT (1992) Trytophan-dependent biosynthesis of auxins in soil. Plant Soil 147: 207-215
    160.Sasakil T, Kurano N, Miyachi S (1998) Induction of Ferric Reductase Activity and of Iron Uptake Capacity in Chlorococcum littorale Cells under Extremely High-CO_2 and Iron-Deficient Conditions. Plant Cell Physiol 39: 405-410
    161.Savino G, Briat JF, Lobr(?)aux S (1997) Inhibition of the iron-induced ZmFerl maize ferritin gene expression by antioxidants and serine/threonine phosphatase inhibitors. J Biol Chem 272:33319-33326
    162.Schmidt W (1993) Iron stress-induced redox reactions in bean roots. Physiol Plant 89: 448-452
    163.Schmidt W (1999) Mechanisms and regulation of reduction-based iron uptake in plants. New Phytol 141:1-26
    164.Schmidt W (2003) Iron solutions: acquisition strategies and signaling pathways in plants. Trends Plant Sci 8: 188-193
    165.Schmidt W, Bartels M (1996) Formation of root epidermal transfer cells in Plantago. Plant Physiol 110:217-225
    166.Schmidt W, Boomgaarden B, Ahrens V (1996) Reduction of root iron in Plantago lanceolata during recovery from Fe deficiency. Physiol Plant 98: 587-593.
    167.Schmidt W, Tittel J, Schikora, A (2000) Role of hormones in the induction of iron deficiency responses in Arabidopsis roots. Plant Physiol 122: 1109-1118
    168.Scholz G, Becker R, Pich A, Stephan UW (1992) Nicotianmine-a common constituent of strategies Ⅰ and Ⅱ of iron acquisition by plants: a review. J Plant Nutr 15: 1647-1665
    169.Schurr U (1999) Dynamics of nutrient transport from the root to the shoot. Prog Bot 60:234-253
    170.Schwertmann U, Cornell RM (1991) Iron oxides in the laboratory: Preparation and Characterization. Weinheim VCH.
    171.Schwyn B, Neilands JB (1987) Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160: 47-56
    172.Shenker M, Oliver I, Helman M, Hadar Y, Chen Y (1992) Utilization by tomatoes of iron mediated by a siderophores produced by rhizopus arrhizus. J Plant Nutr 15:2173-2182
    173.Shingles R, North M, McCarty RE (2002) Ferrous ion transport across chloroplast inner envelope membranes. Plant Physiol 128:1022-1030
    174.Siebner-Freibach H, Hadar Y, Chen Y (2003) Siderophores sorbed on Ca-montmorillonite as an iron source for plants. Plant Soil 251: 115-124
    175.Singleton VL, Rossi JAJ (1965) Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Ame J Enol Viticult 16: 144-158
    176.Smith KG, Reed DJ (1997) Mycorrhizal symbosis. London: Academic Press. London, pp589-590
    177.Soerensen KU, Twrry RE, Jolley VD, Brown JC (1989) Iron-stress response of inoculated and non-inoculated roots of an iron inefficient soybean cultivar in split-root system. J Plant Nutr 12:437-447
    178.Soerensen KU, Twrry RE, Jolley VD, Brown JC, Vargas ME (1988) The interaction of iron-stress response and root nodules in iron efficient and inefficient soybeans. J Plant Nutr 11:853-865
    179.Susin S, Abian J, Peleato ML S(?)nchez-Baeza F, Abadia A, Gelpi E, Abad(?)a J (1994) Flavin excretion from roots of iron-deficient sugar beet (Beta vulgaris L). Planta 193: 514-519
    180.Susin S, Abian J, Sanchez-beyes JA Peleato ML, Abadia A, Gelpi E, Abadia J (1996) Riboflavin 3'- and 5'-sulphate, two novel flavins accumulating in the roots of iron-deficient sugar beet (Beta vulgaris). J Biol Chem 268:20958-20965
    181.Svenning M, Junttila O, Macduff J (1996) Differential rates of inhibition of N_2 fixation by sustained low concentrations of NH_4~+ and NO_3~- in northern ecotypes of white clover (Trifolium repens L.). J Exp Bot 47: 729738
    182.Szaniszlo PJ, Powell PE, Reid CCP, Cline GR (1981) Production of hydroxamate siderophore iron chelators by ectomycorrhizal fungi. Mycologia 73: 1158-1174
    183.Takagi S (1976) Naturally occurring iron-chelating compounds in oat- and rice-root washings. Ⅰ. Activity measurement and preliminary characterization. Soil Sci Plant Nutr 22:423-433
    184.Takahashi M, Yamaguchi H, Nakanishi H, Shioiri T, Nishizawa NK, Mori S (1999) Cloning two genes for nicotianamine aminotransferase, a critical enzyme in iron acquisition (StrategyⅡ) in graminaceous plants. Plant Physiol 121:947-956
    185.Tanimoto M, Roberts K, Dolan L (1995) Ethylene is a positive regulator of root hair development in Arabidopsis thaliana. Plant J 8: 943-948
    186.Teng NJ, Wang J, Chen T, Wu X, Wang Y, Lin J (2006) Elevated CO_2 induces physiological, biochemical and structural changes in leaves of Arabidopsis thaliana. New Phytol 172(1): 92-103
    187.Terry R E, Hartzook A, Jolley VD, Brown JC 1988) Interactions of iron nutrition and symbiotic nitrogen fixation in peanuts. J Plant Nutr 11:811-820
    188Terry RE, Soerensen KU, Jolley Von D, Brown JC (1991) The role of active Bradyrhizobium japonicum in iron stress response of soybeans. Plant Soil 130: 225-230
    189.Thomson DJ (1997) Dependence of global temperatures on atmospheric CO_2 and solar irradiance. Proc Natl Acad Sci USA 94: 8370-8377
    190.Tiffin LO (1966) Iron translocation: plant culture, exudate sampling, iron citrate analysis. Plant Physiol 45:280-283
    191.Uauy C, Distelfeld A, Fahima T, BlechI A, Dubcovsky J (2006) A NAC gene regulating senescence improves grain protein, zinc, and iron content in wheat. Science 134: 1298-1300
    192.Van Raalte CD, Valiela I, Carpenter EJ, Teal JM (1974) Inhibition of nitrogen fixation in salt marshes measured by acetylene reduction. Estuar Coast Mar Sci 2: 301-305
    193.Van Wuytswinkel O, Vansuyt G, Grignon N, Fourcroy P, Briat JF (1999) Iron homeostasis alteration in transgenic tobacco overexpressing ferritin. Plant J 17:93-97
    194.Vansuyt G, Robin A, Briat JF, Curie C, Lemanceau P (2007) Iron acquisition from Fe-pyoverdine by Arabidopsis thaliana. Mol Plant-Microbe In 20: 441-447
    195.Varotto C, Maiwald D, Pesaresi P, Jahns P, Salamini F, Leister D (2002) The metal ion transporter IRT1 is necessary for iron homeostasis and efficient photosynthesis in Arabidopsis thaliana. Plant J 31: 589-599
    196.Vert G, Grotz N, Dedaldechamp F, Gaymard F, Guerinot ML, Briat JF, Curie C (2002) IRT1, an Arabidopsis transporter essential for iron uptake from the soil and for plant growth. Plant Cell 14: 1223-1233
    197.Vincent JM (1970) A Manual for the Practical Study of the Root-Nodule Bacteria. Int. Biol. Prog. Handbook No. 15. Blackwell Scientific Publications, Oxford.
    198.Von Wir(?)n N, Klair S, Bansal S, Briat JF, Khodr H, Shioiri T, Leigh RA,Hider RC (1999) Nicotianamine chelates both Fe~(Ⅲ) and Fe~(Ⅱ). Implications for metal transport in plants. Plant Physiol 119:1107-1114
    199.Vose PB (1982) Iron nutrition in plants: a world overview. J Plant Nutr 5: 233-249
    200.Wallace A (1982) The effect of nitrogen fertilizer and nodulation on lime-induced chlorosis in soybeans. J Plant Nutr 5:363-368
    201.Wang Y, Brown HN, Crowley DE, Szaniszlo PJ (1993) Evidence for direct utilization of a siderophore, ferrioxamine B, in axenically grown cucumber. Plant Cell Environ 16:579-585
    202.Wang YH, Garvin DF, Kochian LV (2002) Rapid induction of regulatory and transporter genes in response to phosphorus,potassium, and iron deficiencies in tomato roots. Evidence for cross talk and root/rhizosphere-mediated signals. Plant Physiol 130: 1361-1370
    203.Waters BM, Blevins DG, Eide DJ (2002) Characterization of FRO1, a pea ferric-chelate reductase involved in root iron acquisition. Plant Physiol 129:85-94
    204.Wei LC, Loeppert RH, Ocumpaugh WR (1997) Fe-deficiency stress response in Fe-deficiency resistant and susceptible subterranean clover: important of induced H~+ release. J Exp Bot 48: 239-246
    205.Welch RM, Norvell WA (1993) Growth and nutrient uptake by barley (Hordeum vulgare L. cv Herta). Studies using an N-(2-hydroxyethyl)ethylenedinitriIotriacetic acid-buffered nutrient solution technique. Ⅱ. Role of zinc in the uptake and root leakage of mineral nutrients. Plant Physiol 101: 627-631
    206.Welch RM, Norwell WA, Schaeffer SS, Shaff JE, Kochian LV (1993) Induction of iron (Ⅲ) and copper (Ⅱ) reduction in pea (Pisum sativum L.) roots by Fe and Cu status: does the root-cell plasmalemma Fe (Ⅲ) chelate reductase perform a general role in regulating cation uptake? Planta 190: 555-561
    207.Welkie GW (2000) Taxonmic distribution of dicotyledonous species capable of root excretion of riboflavin under iron deficiency. J Plant Nutr 23: 1819-1831
    208.White MC, Baker FD, Chaney RL (1981) Metal complexation in xylem fluid. 1. Chemical composition of tomato and soybean stem exudates. Plant Physiol 67: 292-300
    209.WHO (2001) http://www.who.int/nut/ida.
    210.Woodward AW, Bartel B (2005) Auxin: regulation, action, and interaction. Ann Bot 95: 707-735
    211.Wu H, Li L, Du J, Yuan Y, Cheng X, Ling HQ (2005) Molecular and biochemical characterization of the Fe(Ⅲ) chelate reductase gene family in Arabidopsis thaliana. Plant Cell Physiol 46: 1505-1514
    212.Xu WF, Shi WM (2006) Expression profiling of the 14-3-3 gene family in response to salt stress and potassium and iron deficiencies in young tomato (Solanum lycopersicum) roots: Analysis by real-time RT-PCR. Ann Bot 98: 965-974
    213.Yagi K (1971) Riboflavin 5'-monosulfate. Methods Enzymol 18: 465-467
    214.Yang CH, Crowley DE (2000) Rhizosphere Microbial Community structure in relation to root location and plant iron nutritional status. Applied Environ Microb 66(1):345-351
    215.Yehuda Z, Chen Y, Marino PG, Marschner H, Hadar Y, Chen Y (1996) The role of ligand exchange in the uptake of iron from microbial siderophores by graminaceous plants. Plant Physiol 112:1273-1280
    216.Yehuda Z, Shenker M, Hadar Y, Chen Y (2000) Remdy of Chlorosis induced by iron deficiency in plant with the fungal siderophore rhizoferrin. J Plant Nutr 23(11&12):1991-2006
    217.Yi Y, Guerinot ML (1996) Genetic evidence that induction of root Fe(Ⅲ) chelate reductase activity is necessary for iron uptake under iron deficiency. Plant J 10: 835-844.
    218.Zhang FS, Li L (2003) Using competitive and facilitative interactions in intercropping systems enhances crop productivity and nutrient-use efficiency.Plant Soil 248:305-312.
    219.Zhang FS,Romheld V,Marschner H(1991)Role of the root apoplasm for iron acquisition by wheat plants.Plant Physiol 97:1302-1305
    220.Zheng SJ,Arakawa Y,Yahara S,Yamamoto Y,Matsumoto H,Masaoka Y(2000)Resistant mechanism to iron deficiency in red clover:Ⅱ.The characteristics and functions of root exudates.Abstracts of the Annual Meeting of Japanese Society of Soil Science and Plant Nutrition.Tokyo,Japan.46-72
    221.Zheng SJ,He YF,Arakawa Y,Masaoka Y(2005a)A modified method for measuring root iron reductase activity under normal laboratory conditions.Pedosphere 15:363-368
    222.Zheng S J,He YF,Arakawa Y,Masaoka Y(2005b)A copper-deficiency-induced root reductase is different from the iron-deficiency induced one in red clover(Trifolium pratense L.).Plant Soil 273:69-76
    223.Zheng S J,Tang CX.,Arakawa Y,Masaoka Y(2003)The responses of red clover(Trifolium pratense L.)to iron deficiency:A root Fe(Ⅲ)chelate reductase.Plant Sci 164:679-687
    224.Zhong H,L(?)uchli A(1993)Changes of the cell wall composition and polymer in primary roots of cotton seedlings under Salinity.J Exp Bot 44:773-778
    225.Zocchi G,Cocucci SM(1990)Fe uptake mechanism in Fe-efficient cucumber roots.Plant Physiol 92:908-911
    226.吴平,印莉萍,张立平(2001)植物营养分子生理学.北京:科学出版社,264-265
    227.杨频,高飞(2002)生物无机化学.北京:科学出版社,p84.
    228.俞雪挥(2005)缺铁条件下红三叶草根系分泌物与根际微生物的互作效应.浙江大学硕士学位论文pp32-45

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700