用户名: 密码: 验证码:
黄土丘陵沟壑区小流域水沙变化与土地利用格局演变的耦合研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黄土高原是我国水土流失最严重的地区,特别是黄土丘陵沟壑区,土壤侵蚀不断加剧,恶化了区域生态环境,严重制约社会、经济的发展。本论文以黄土丘陵沟壑区典型小流域——甘肃省定西市安家沟流域作为研究对象,基于流域长期实验观测所得的气候、水文资料(1977~2008年),结合不同时期的土地利用数据(1987年、1997年和2007年),运用数理统计分析和GIS与RS空间分析等技术,以定性描述与定量分析相结合的方法,对安家沟流域降雨、土壤水、径流和泥沙等水文因子特性进行分析总结;同时,构建了适于研究流域的SWAT分布式水文模型,对流域的水沙变化与土地利用格局演变的耦合关系进行了模拟研究,进一步验证并总结了安家沟流域的水沙及土地利用格局的动态变化规律,阐析了流域水文生态过程对土地利用格局演变的响应机制,为我国黄土丘陵沟壑区优化配置水土资源和有效改善区域生态环境提供理论基础与决策依据。研究主要结论如下:
     (1)安家沟流域降雨是影响流域水沙变化的主要因素,流域降雨时空分布的不均匀性是十分显著的,且暴雨导致该流域严重的水土流失。各类型暴雨发生的次数与年降水的多少有一定相关性,但以年降雨量的多少直接判断暴雨发生频率的高低,以及产流产沙的多少,不科学,有偏差。
     (2)安家沟流域内,降水几乎是其土壤水分的唯一来源,流域年降雨量对年土壤含水量均值有直接的影响,降雨量越大,土壤含水量也就越高。不同土地利用类型的土壤水分年内循环过程均为“水分补偿-水分消耗-水分补偿”。不同土地利用类型的土壤含水量垂直变化有差异,但都以地表0-40cm范围内的水分分布变化最大,且水分变幅随土层深度增加而变小是剖面水分分布的共同特征。从调节土壤水分功能来看,林地调节能力要比耕地和草地的强:同时,不同土地利用类型土壤水分平衡分析结果也表明,林地的蒸散耗水量较大,而地表径流量相对最少。在安家沟流域灌乔木林地能有效地拦蓄径流,增加降雨入渗量,起到保蓄水土、减少水土流失的重要作用。
     (3)在黄土丘陵沟壑区,不同土地利用类型改变了坡地水分和泥沙的贮存状况,研究的5种土地利用类型坡地的单位面积年产流量之间及单位面积年产沙量之间都存在显著差异,但它们年尺度上均值大小变化趋势一致,都符合“坡耕地(小麦)>人工草地(苜蓿)>乔木林地(油松)>自然草地(针茅)>灌木林地(沙棘)”的规律;相同土地利用类型条件下,在研究的坡度范围内(10°~20°),坡地单位面积年产流和产沙量都随着坡度的升高而增大,其中不同坡度坡地单位面积年产流无显著差异,但单位面积年产沙差异显著。
     (4)流域各土地利用类型都不同程度的受到人为干扰,其土地利用变化的主要特色是梯田和林地面积的增加,主要来源是坡耕地转化和荒坡开垦;1997~2007年内梯田、坡耕地和草地的变化速度均快于1987~1997年内的;但流域各土地利用斑块类型在景观中呈均衡化趋势分布。
     (5) SWAT模型应用于安家沟流域时,径流模拟效果好于泥沙,年际尺度模拟计算结果比月尺度理想,其次是丰水季节各月的径流模拟,再次是泥沙月尺度模拟。SWAT模型数值模拟结果表明:产流量方面,流域不同土地利用类型的单位面积的年均产流量的大小依次是,耕地>未利用地>草地>有林地>其他用地(建设用地为主);产沙量方面,流域不同土地利用类型的单位面积的年均产沙量的大小依次是,未利用地>耕地>草地>其他用地>有林地。
     (6)建立情景数值模型,采用固定一个因子(气候或土地利用变化)的方法,定量分析了安家沟流域土地利用格局演变对水沙变化的影响程度。随着林草覆盖率增加,流域的产流产沙随之减少,水沙的变化响应强烈程度先强后弱,即当流域林草覆盖率达到一定值时,其对流域径流泥沙的调节作用将减小。林草地具有很明显的减水减沙的生态水文功能,且对产沙的影响大于对产流的影响。
The Loess Plateau is a region where water and soil erosion is the most serious in china, especially, soil erosion is worsening and the regional ecological environment is deteriorating in loess hilly-gully region, which seriously hampered the harmonious development of social economy. Anjiagou watershed in Dingxi city of Gansu province was selected as research object in this thesis. Based on systemic hydrological and meteorological observation(1977~2008), and the information data of land use of 1987, 1997 and 2007, and relied on mathematical statistic and spatial analysis technology of GIS&Rs and so on, by the method of combining of qualitative description and quantitative analysis, the characteristics of hydrological factors such as rainfall, soil moisture, runoff and sediment in Anjiagou watershed were analyzed and summarized; Meanwhile, a suitable distributed hydrological model SWAT was constructed, that was used to simulate and study the coupling between variation of water and sediment and evolution of land use pattern, the dynamic variation law of water and sediment and land use pattern in Anjiagou watershed was further verified and summarized, and response mechanism that eco-hydrological processes on evolution of land use pattern was interpretated, that can provide theoretical foundation and decision basis for collocating optimally water and soil resources and improving the regional ecological environment of loess hilly-gully region in china.The main conclusions of this thesis were listed as following:
     (1)Rainfall was the main factors affecting variation of runoff and sediment in Anjiagou watershed, spatial and temporal distribution of rainfall was significant uneven. There was correlation between frequency of occurrence of different type rainstorm and yearly precipitation in watershed, but it was unscientific and biased that the level of storm frequency and the amount of runoff and sediment was directly determined by the amount of annual rainfall.
     (2)Annual rainfall impacted directly mean annual soil moisture content in Anjiagou watershed, precipitation was almost the only source of soil moisture, it was more, and soil moisture is greater. Soil moisture cycle of different land use types was "water compensation-water consumption-water compensation". There were differences in the vertical variation of soil moisture content of different land use types, and the greatest variation of soil moisture content distribution was in 0-40cm range of soil layer, it was a common feature of the profile distribution of soil moisture that amplitude of variation of soil moisture becomed smaller with the increase of soil layer depth. View from the function of regulate soil moisture, forest land was stronger than farmland and grassland. Water balance analysis of different land use types also showed that:Evapotranspiration of forest land was larger, its surface runoff was less relatively. So forest land can store runoff and increase infiltration of rainfall effectively, it was an important role in reducing soil erosion and storaging soil and water in Anjiagou watershed.
     (3)In loess hilly-gully region, situation of storage of water and sediment in slope land were changed by different land use types, there was a significant difference among annual runoff per unit area of five kinds of land use types slope lands, and it was same as annual sediment yield per unit area, but their mean trends in years were consistent, and were in accordance with the laws of "sloping farmland (Triticum aestivum L. cv Leguan)>artificial grassland (Medicago sativa L.)>arbor land (Pinus tabuliformis Carr.)>natural grassland (Stipa bungeana Trin.)>shrub land(Hippophae rhamnoides L.)"; under same land use type condition, annual runoff per unit area and annual sediment yield per unit area of slope lands were increased along with rising of the slope in research scale (10°~20°), and about slope lands of different slope degrees, there was no significant difference among annual runoff per unit area, but a significant difference existed among annual sediment yield per unit area.
     (4)A11 of land use types in Anjiagou watershed was disturbed by human in different degrees, the main feature of land use change was the area of forest land and terraced field were obviously increased, and farmland conversion and wasteland reclamation were their main source; the rate of transformation of terraced fields, sloped farmland and grassland were faster in 1997 to 2007 than that in 1987 to 1997, but various land use types in the landscape patch was balanced distribution trend in Anjiagou watershed.
     (5)According to the simulated results by SWAT model on Anjiagou watershed of yearly step, the simulated mean annually runoff had the best veracity, the veracity of simulated value in yearly step was better than that in monthly step. The veracity of monthly simulated value in rainy season was better than that in dry season, the simulated mean monthly sediment had not good veracity. SWAT model simulation results indicated:about runoff, the order of verage annual runoff per unit area of five kinds of land use types was cultivated land>unused land>grass land>forest land>other land(construction Land); about sediment, the order of verage annual sediment per unit area of five kinds of land use types was unused land>cultivated land>grass land>other land>forest land.
     (6)Numerical model scenarios were set up by using the method of fixed a factor(climate or land-use change), impact of evolution of land use pattern to variation of runoff and sediment were analyzed quantitativly. With the increase of vegetation cover, runoff and sediment in watershed were reduced, intensity of their variation response to change of vegetation cover were first strong and then weak, that is, when vegetation cover in watershed reached a certain value, its regulating effect to runoff and sediment would be reduced. Obviously, the ecological and hydrological functions of forest land and grass land were making runoff and sediment reduce, and the impact on sediment was greater than the impact on the runoff.
引文
[1]白霞,陈渠昌,张士杰,等.论黄土沟壑区小尺度水资源优化配置的重要性[J].中国水利水电科学研究院学报,2008,6(2):149-155.
    [2]蔡晓明.生态系统生态学[M].北京:科学出版社,2000.
    [3]柴春山.半干旱黄土丘陵沟壑区不同植被类型水土保持效应及土壤水分研究[D].兰州:兰州大学,2006.
    [4]车骞.基于SWAT模型的黄河源区分布式水文模拟[D].兰州:兰州大学,2006.
    [5]陈百明,刘新卫,杨红.LUCC研究的最新进展评述[J].地理科学进展,2003,22(1):22-29.
    [6]陈军峰,陈秀万.SWAT模型的水量平衡及其在梭磨河流域的应用[J].北京大学学报(自然科学版),2004,40(2):265-270.
    [7]陈军锋,李秀彬,张明.模型模拟梭磨河流域气候波动和十地覆被变化对流域水文的影响[J].中国科学D辑,2004,34(7):668-674.
    [8]陈军锋,李秀彬.土地覆被变化的水文响应模拟研究[J].应用生态学学报,2004,15(5):833-836.
    [9]陈利顶,傅伯杰,王军.黄土丘陵区典型小流域土地利用变化研究——以陕西延安地区大南沟流域为例[J].地理科学,2001,21(1):46-51.
    [10]陈永宗.黄土高原沟道流域产沙过程的初步分析[J].地理研究,1983,02(01):35-47.
    [11]邓慧平,李秀彬,陈军锋,等.流域土地覆被变化水文效应的模拟——以长江上游源头区梭磨河为例[J].地理学报,2003,25(1):53-62.
    [12]丁飞,潘剑君.分布式水文模型SWAT的发展与研究动态[J].水土保持研究,2007,14(1):33-36.
    [13]冯杰.延安市土地利用动态变化及其驱动力分析[D].兰州:西北大学硕士论文,2009:45-47.
    [14]冯耀龙,韩文秀,王宏江,等.面向可持续发展的区域水资源优化配置研究[J].系统工程理论与实践,2003,(3):133-138.
    [15]符素华,刘宝元.土壤侵蚀量预报模型研究进展[J].地球科学进展,2002,17(1):78-84.
    [16]傅伯杰,陈利顶,邱扬,等.黄土丘陵沟壑区土地利用结构与生态过程[M].北京:商务出版社,2002a.
    [17]傅伯杰,邱扬,王军,等.黄土丘陵小流域土地利用变化对水土流失的影响[J].地理学报,2002b,57(6):717-722.
    [18]傅伯杰,陈利顶,王军,等.土地利用结构与生态过程[J].第四纪研究,2003,23(3):247-255.
    [19]傅伯杰,马克明,周华峰,等.黄上丘陵区土地利用结构对土壤养分分布的影响[J].科学通报,1998,43(22):2444-2447.
    [20]傅涛.三峡库区坡面水土流失机理与预测评价建模[D].重庆:西南农业大学,2002.
    [21]高凡.关中地区水土资源可持续承载力及优化配置研究[D].西安:西北大学,2005.
    [22]高吉喜.可持续发展理论探索-生态承载力理论、方法与应用[M].北京:中国环境出版社2002.
    [23]高世铭,杨封科,苏永生.陇中黄土丘陵沟壑区生态环境建设与农业可持续发展[M].郑州:黄河水利出版社,2003:1-95.
    [24]郭生练,熊立华,杨井,等.分布式流域水文物理模型的应用和检验[J].武汉大学学报(工学版),2001,34(1):1-5.
    [25]郭生练,熊立华,杨井,等.基于DEM的分布式流域水文物理模型[J].武汉水利电力大学学报,2000,33(6):1-5.
    [26]郭旭东,陈利顶,傅伯杰.土地利用/土地覆被变化对区域生态环境的影响[J].环境科学进展,1999,7(6):66-75.
    [27]郝芳华,陈利群,刘昌明,等.土地利用变化对产流和产沙的影响分析[J].水土保持学报,2004,18(3):5-8.
    [28]郝芳华,孙峰,张建永.官厅水库流域非点源污染研究进展[J].地学前缘,2002,9(2):385-386.
    [29]黄秉维.编制黄河中游流域土壤侵蚀分区图的经验教训[J].科学通报,1955,12:14-21.
    [30]黄明斌,李玉山.坡地单元降雨产流分析及平均入渗速率计算[J].土壤侵蚀与水土保持学报,1999,5(1):63-68.
    [31]黄平,赵吉国.流域分布型水文数学模型的研究及应用前景展望[J].水文,1997,(5):5-10.
    [32]黄平,赵吉国.森林坡地二维分布型水文数学模型的研究[J].水文,2000(4):1-4.
    [33]黄清华,张万昌.SWAT分布式水文模型在黑河干流山区流域的改进及应用[J].南京林业大学学报(自然科学版),2004,28(2):22-26.
    [34]黄奕龙,陈利顶,傅伯杰,等.黄土丘陵小流域土壤水分空间格局及其影响因素[J].自然资源学报,2005,20(4):483-492.
    [35]贾恒义,雍绍萍,王富乾.神木试区的土壤资源[J].中国科学院水利部西北水土保持研究所集刊,1993,12(18):36-46.
    [36]贾绍风.根据植被估算黄土高原的自然侵蚀和加速侵蚀——以安塞县为例[J].水土保持通报,1995,15(4):27-32.
    [37]贾仰文,王浩,倪广恒,等.分布式流域水文模型原理与实践[M].北京:中国水利水电出版社,2005.
    [38]姜红梅.半干旱黄土高原不同土地利用下土壤有机碳、养分及水分的动态变化[D].兰州:兰州大学,2006.
    [39]蒋定生.黄土高原水土流失与治理模式[M].北京:中国水利水电出版社,1997.
    [40]焦峰,温仲明.黄土丘陵区土地资源及其结构评价[J].水土保持研究,2005,12(1):32-33.
    [41]焦菊英,王万中,郝小品.黄土高原不同类型暴雨的降水侵蚀特征[J].干旱区资源与环境,1999,13(1):34-42.
    [42]焦菊英,王万中,郝小品.黄土高原极强烈侵蚀(灾害性)的降雨产流产沙特征[J].自然灾害学报,1998,7(1):78-82.
    [43]琚彤军,刘普灵,徐学选,等.不同次降雨条件对黄土区主要地类水沙动态过程的影响及其机理研究[J].泥沙研究,2007(4):65-70.
    [44]康慕谊,姚华荣,刘硕.陕西关中地区土地资源优化配置研究[J].自然资源学报,1999,14(4):363-367.
    [45]雷阿林,唐克丽.坡沟系统土壤侵蚀研究回顾与展望[J].水土保持通报,1997,17(3): 37-43.
    [46]李开元,韩仕峰,李玉山,等.黄土丘陵区农田水分循环特征及土壤水分生态环境[J].中科院水利部西北水土保持研究所集刊,1991,(13):83-93.
    [47]李开元,李玉山,邵明安.土壤保墒性能于土坡水分有效性综述[J].中科院水利部西北水土保持研究所集刊,1991,6(13):94-104.
    [48]李兰,郭生练,等.流域水文数学物理耦合模型[A].朱尔明编.中国水利学会优秀论文集[C].北京:中国三峡出版社,2000:322-329.
    [49]李兰,钟名军.基于GIS的LL-Ⅱ分布式降雨径流模型的结构[J].水电能源科学,2003,21(4)35-38.
    [50]李平,李秀彬,刘学军.我国现阶段土地利用变化驱动力的宏观分析[J].地理研究,2001,20(2):129-138.
    [51]李硕,孙波,曾志远,等.遥感和GIS辅助下河流域空间离散化方法研究[J].土壤学报,2004a,41(2):183-189.
    [52]李硕,孙波,曾志远,等.遥感和GIS辅助下河流域养分迁移过程的计算模拟[J].应用生态学报,2004b,15(2):278-282.
    [53]李硕.GIS和遥感辅助下流域模拟的空间离散化与参数化研究与应用[D].南京:南京师范大学,2002.
    [54]李秀彬.全球环境变化研究的核心领域——土地利用/覆被变化国际研究动向[J].地理学报,1996,51(6):553-558.
    [55]李玉山,韩仕峰,汪正华.黄土高原土坡水分性质及其分区[J].中国科学院西北水土保持研究所集刊,1985,2:1-17.
    [56]李玉山.黄土高原森林植被对陆地水循环影响的研究[J].自然资源学报,2001,16(5):427-432.
    [57]李玉山.黄土高原治理开发之基本经验[J].土壤侵蚀与水土保持学报,1999,5(2):51-57.
    [58]李玉山.黄土区土壤水分循环特征及其对陆地水分循环的影响[J].生态学报,1983,3(2):91-101.
    [59]林积泉,王伯铎,马俊杰,等.小流域治理环境质量综合评价指标体系研究[J].水土保持研究,2005,12(1):68-71.
    [60]刘昌明,李道峰.基于DEM的分布式水文模型在大尺度流域应用研究[J].地理科学进展,2003,22(5):438-445.
    [61]刘昌明.黄河流域水资源演化规律与可再生性维持机理研究和进展[M].郑州:黄河水利出版社,2001:22-33.
    [62]刘卉芳,朱清科,孙中峰,等.黄土坡面不同土地利用与覆盖方式的产流产沙效应[J].干旱地区农业研究,2005,23(02):137-141.
    [63]刘纪远,张增祥,庄大方,等.20世纪90年代中国土地利用变化时空特征及其成因分析[J].地理研究,2003,22(1):1-12.
    [64]刘健,张奇.一个新的分布式水文模型在鄱阳湖赣江流域的验证[J].长江流域资源与环境,2009,18(1):19-26.
    [65]刘铭环.竹竿河流域非点源污染研究[D].北京:清华大学,2005.
    [66]刘文兆.小流域水分行为、生态效应及其优化调控研究方面的若干问题[J].地球科学进展, 2000,15(5):541-544.
    [67]刘贤赵,康绍忠.黄土区坡地降雨入渗产流过程中的滞后效应[J].水科学进展,2001,12(1):56-60.
    [68]刘贤赵,康绍忠.降雨入渗和产流问题研究的若干进展及评述[J].水土保持通报,1999,19(2):57-62.
    [69]刘彦随.区域土地利用优化配置[M].北京:学苑出版社:1999,6.
    [70]柳长顺,齐实,史明昌.土地利用与土壤侵蚀关系的研究进展[J].水土保持学报,2001,15(5):10-13,17.
    [71]卢宗凡,苏敏,李够霞,等.黄土丘壑区水土保持生物和耕作措施的研究[J].水土保持学报,1988,2(1):37-48.
    [72]卢宗凡,张文军,苏敏,等.几种水土保持指标的分析与评价[J].水土保持学报,1988,2(4):60-65.
    [73]马俊杰,赵淑敏,冯丹,等.石墨炉原子吸收法测定松花江底泥中微量砷[J].北方环境,1999,2:30-31.
    [74]马履一.国内外土壤水分研究现状与进展[J].世界林业研究,1997(5):26-32.
    [75]马燕.典型干旱区水土资源高效利用与保护模式的理论与实践[D].乌鲁木齐:新疆大学,2007.
    [76]穆兴民.试论黄土高原土坡水资源的地带性与非地带性[J].土壤学报,1999,36(2):237-244.
    [77]牛振国,李保国,张凤荣,等.基于区域土壤水分供给量的土地利用优化模式[J].农业工程学报,2002,18(3):173-177.
    [78]秦福来,王晓燕,张美华.基于GIS的流域水文模型-SWAT (Soil and Water Assessment Tool),首都师范大学学报(自然科学版),2006,27(1):81-85.
    [79]邱扬,傅伯杰,王军,等.黄土丘陵小流域土壤水分时空分异与环境关系的数量分析[J].生态学报,2000,20(5):714-747.
    [80]邱扬,傅博杰,王军,等.黄土丘陵小流域土壤物理性质的空间变异[J].地理学报,2002,57(2):587-549.
    [81]任希岩,张雪松,郝芳华,等.DEM分辨率对产流产沙模拟影响研究[J].水土保持研究,2004,11(1):1-5
    [82]任志远,张艳芳.土地利用变化与生态安全评价[M].北京:科学出版社,2003.
    [83]芮孝芳,黄国如.分布式水文模型的现状与未来[J].水利水电科技进展,2004,24(2):55-58.
    [84]芮孝芳,朱庆平.分布式流域水文模型研究中的几个问题[J].水利水电科技进展,2002,22(3):56-58.
    [85]沈冰,李怀恩,江彩萍.论水蚀实验的相似性研究[J].土壤侵蚀与水土保持学报,1997,3(3):94-96.
    [86]史培军,陈晋,潘耀忠.深圳市土地利用变化机制分析[J].地理学报,2000,55(2):151-160.
    [87]史培军,刘宝元,张科利,等.土壤侵蚀过程与模型研究[J].资源科学,1999,21(5):9-18.
    [88]史培军,宋长青,景贵飞.加强我国土地利用/覆盖变化及其对生态环境安全影响的研究[J].地 球科学进展,2002,17(2):161-168.
    [89]史培军,袁艺,陈晋.深圳市土地利用变化/土地覆被变化对流域径流的影响[J].生态学报,2001,21(7):1041-1049.
    [90]苏子友,杨正礼,王德莲,等.豫西黄土坡耕地保护性耕作保水效果研究[J].干旱地区农业研究,2004,22(3):6-8.
    [91]孙飞达.安家沟流域农林复合生态系统中的土壤侵蚀研究[D].兰州:甘肃农业大学,2005.
    [92]孙三祥.黄土坡地降雨溅蚀量与下渗量关系研究[J].土壤侵蚀与水土保持学报,1997,3(4):92-94.
    [93]唐克丽,王斌科.黄土高原人类活动对土壤侵蚀的影响[J].人民黄河,1994(02):13-16.
    [94]唐克丽.黄土高原水土流失与土壤退化的研究[J].水土保持通报,1987,7(6):12-18.
    [95]唐克丽.土壤侵蚀的研究及其展望[J].水土保持通报,1984,4(5):1-5.
    [96]万超,张恩聪.基于GIS的潘家121水库面源污染负荷计算[J].水力发电报,2003(2):62-68.
    [97]万荣荣,杨桂山.流域土地利用/覆被变化的水文效应及洪水响应[J].湖泊科学,2004,16(3):259-264.
    [98]汪志荣,王文焰,王全九,等.浑水波涌灌的入渗机制与Green-Ampt公式[J].水利学报,1998(10):44-48.
    [99]王军,傅伯杰.黄土丘陵小流域土地利用结构对土壤水分时空分布的影响[J].地理学报,2000,55(1):84-91.
    [100]王礼先.面向21世纪的山区流域经营[J].山地研究,1998,16(1):3-7.
    [101]王全九,邵明安,汪志荣,等.Green-Ampt公式在层状土入渗模拟计算中的应用[J].土壤侵蚀与水土保持学报,1999,5(4):66-70.
    [102]王全九,汪志荣,等.层状土入渗机制与模拟模型[J].水利学报,1998,8(增刊):76-79.
    [103]王全九,王文焰,邵明安,等.浑水入渗机制及模拟模型[J].农业工程学报,1999(1):135-138.
    [104]王全九,张江辉,丁新利.黄土区土壤溶质径流迁移过程影响因素浅析[J].西北水资源与水工程,1999,10(1):9-13.
    [105]王瑞芳,黄成志,董雨亭.甘肃天水市对比小流域暴雨洪水侵蚀产沙特性[J].中国水土保持科学,2006,4(04):78-81.
    [106]王万中,焦菊英.黄土高原坡面降雨产流产沙过程变化的统计分析[J].水土保持通报,1996,16(5):21-28.
    [107]王万中,焦菊英.中国的土壤侵蚀因子定量评价研究[J].水土保持通报,1996,16(5):1-20.
    [108]王文焰,张建丰,汪志荣,等.黄土中沙层对入渗特性的影响[J].岩土工程学报,1995,17(5):36-41.
    [109]王小彬,蔡典雄,金柯,等.旱坡地麦田夏闲期耕作措施对土壤水分有效性的影响[J].中国农业科学,2003,36(9):1044-1049.
    [110]王燕生.遥感水文模型及其应用[J].水文,1989(5):20-24.
    [111]王中根,刘昌明,黄友波.SWAT模型的原理、结构及应用研究,地理科学进展,2003,22(1):79-86.
    [112]卫伟,陈利顶,傅伯杰,等.半干旱黄土丘陵沟壑区降水特征值和下垫面因子影响下的水土流失规律[J].生态学报,2006(11):3847-3853.
    [113]魏文秋,谢淑琴.遥感资料在SCS模型产流计算中的应用[J].环境遥感,1992,(4):243-250.
    [114]吴长文,王礼先.林地坡面的水动力学特性及其阻延地表径流的研究[J].水土保持学报,1995,9(2):32-38.
    [115]吴发启,赵晓光,刘秉正,唐克丽.黄土高原南部缓坡地降雨与侵蚀的关系[J].水土保持研究,1999,6(2):53-60.
    [116]吴普特,周佩华.黄土坡面薄层水流侵蚀试验研究[J].土壤侵蚀与水土保持学报,1996,2(2):40-45.
    [117]吴钦孝,杨文治.黄土高原植被建设与持续发展[M].北京:科学出版社,1998:42-68.
    [118]吴险峰,刘昌明.流域水文模型研究的若干进展[J].地理科学进展,2002,7(4):341-348.
    [119]夏军,朱一中.水资源安全的度量:水资源承载力研究与挑战.自然资源学报,2002,17(3):262-269.
    [120]谢媛媛.黄土高原典型流域土地利用/森林植被变化的水文生态响应研究[D].北京:北京林业大学,2006.
    [121]熊立华,郭生练.分布式流域水文模型[M].北京:中国水利水电出版社,2004.
    [122]徐天蜀,彭世揆,岳彩荣.基于GIS的小流域土壤侵蚀评价研究[J].南京林业大学学报(自然科学版),2002,26(4):43-46.
    [123]徐雨清,王兮之,粱天刚,等.遥感和地理信息系统在半干旱地区降雨—径流关系模拟中的应用[J].遥感技术与应用,2000,15(1):28-31.
    [124]焉莉.基于3S技术的西部石羊河流域土地利用/土地覆盖变化研究[J].地质与资源,2003,12(3):188-192.
    [125]杨桂莲,郝芳华,刘昌明,等.基于'SWAT模型的基流估算及评价一以洛河流域为例[J].地理科学进展,2003,22(5):463-471.
    [126]杨启红.黄土高原典型流域土地利用与沟道工程的径流泥沙调控作用研究[D].北京:北京林业大学,2009.
    [127]杨文治,邵明安.黄土高原土壤水分研究[M].北京:科学出版社,2000:106-121.
    [128]杨文治,余存祖.黄土高原区域治理与评价[M].北京:科学出版社,1992.
    [129]杨永强.无定河流域土地利用/森林植被格局演变对侵蚀产沙的影响研究[D].北京:北京林业大学,2007.
    [130]姚华荣,吴绍洪,曹明明.GIS支持下的区域水土资源优化配置研究[J].农业工程学报,2004,20(2):31-35.
    [131]余文涛,袁清林,毛文永.中国的环境保护[M].北京:科学出版社,1987.
    [132]张东,张万昌,朱利,等.SWAT分布式流域水文物理模型的改进及应用研究[J].地理科学,2005,25(4):434-440.
    [133]张凤荣,王立新,牛振国,等.伊金霍洛度土地利用变化与可持续利用[J].中国沙漠,2002,22(2):166-171.
    [134]张富.黄土高原丘陵沟壑区小流域水土保持措施对位配置研究[D].北京:北京林业大学,2008.
    [135]张汉雄.晋陕黄土丘陵区土地利用与土壤侵蚀动态机制仿真研究[J].科学通报,1997,42 (7):743-746.
    [136]张建云,乐嘉祥,王光生,等.气候异常对我国水资源及水分循环影响的评估模型研究[R].北京:国家“九五”重中之重科技攻关项目,2000.
    [137]张科利,秋吉康宏.坡面细沟侵蚀发生的临界水力条件研究[J].土壤侵蚀与水土保持学报,1998,4(1):41-46.
    [138]张蕾娜,李秀彬,王兆锋,等.一种可用于表征土地利用变化水文效应的水文模型探讨—-SWAT模型在云州水库流域的应用研究[J].水文,2004,24(3):4-8.
    [139]张蕾娜.白河流域土地覆被水文效应的分析与模拟[D].北京:中国科学院地理科学与资源研究所,2004.
    [140]张万儒,庞鸿宾,杨承栋,等.卧龙自然保护区植物生长季节森林土壤水分状况[J].林业科学研究,1990,3(2):103-112.
    [141]张晓明.黄土高原典型流域土地利用/森林植被演变的水文生态响应与尺度转换研究[D].北京:北京林业大学,2007.
    [142]张兴昌,卢宗凡.坡地土壤水分动态及耗水规律研究[J].水土保持研究,1996,3(2):46-56.
    [143]张兴昌,邵明安.坡地土壤氮素与降雨、径流的相互作用机理及模型[J].地理科学进展,2000,19(2):128-133.
    [144]张雪松,郝芳华,杨志峰,等.基于SWAT模型的中尺度流域产流产沙模拟研究[J].水土保持研究,2003,10(4):38-42.
    [145]张雪松,郝芳华,张建永.降雨空间分布不均匀性对流域径流河泥沙模拟影响研究[J].水土保持研究,2004,11(1):9-12.
    [146]赵人俊.流域水文模型——新安江模型与陕北模型[M].北京:水利电力出版社,1984.
    [147]赵世伟,周印东,吴金水.子午岭北部不同植被类型土壤水分特征研究[J].水土保持学报,2002,16(4):119-122.
    [148]赵文武,傅伯杰,陈利顶等.黄土丘陵沟壑区集水区尺度土地利用格局变化的水土流失效应[J].生态学报,2004,24(7):1358-1364.
    [149]赵文武.黄土丘陵沟壑区土地利用变化对土壤侵蚀的影响[D].北京:中国科学院生态环境研究中心,2004.
    [150]赵晓光,吴发启,刘秉正,等.黄土高原坡耕地土壤水分主要受控因子研究[J].水土保持通报,1999,19(1):10-14.
    [151]郑粉莉.黄土区坡耕地细沟间侵蚀和细沟侵蚀的研究[J].土壤学报,1998,35(1):95-103
    [152]朱利,张万昌.基于径流模拟的汉江上游区水资源对气候变化响应的研究[J].资源科学,2005,27(2):16-22.
    [153]朱连奇,许叔明,陈沛云.山区土地利用/覆被变化对土壤侵蚀的影响[J].地理研究,2003,22(4):432-438.
    [154]朱显模.黄土高原水蚀的主要类型及其相关因素[J].水土保持通报,1981,1(3):1-9.
    [155]朱一军,夏军,谈戈.西北地区水资源承载力分析预测与评价[J].资源科学,2003,25(4):43-48.
    [156]朱一军,夏军,探戈.关于水资源承载力理论与方法的研究[J].地理科学进展,2002,21(2):180-188.
    [157]邹厚远.陕北黄土高原植被区划及与林草建设的关系[J].水土保持研究,2000,7(2):96-101.
    [158]Abbott M. B., Bathurst, J. C. et al.. Anintroduction to the European Hydrology System-Systeme Hydrologique European[J]. Journal of Hydrology,1986a,87:45-59.
    [159]Agassi M., Bloem D., and Ben-Hur M.. Efect of drop energy and soil and water chemistry on infiltration and erosion[J]. Water Resource. Res,1994,30:1187-1193.
    [160]Anderson M. G. and Burt T. P., Modeling Strategies, Hydrological Forecasting[J]. Chichester: Jorn Wley&Sons Ltd,1985:1-2,5-8.
    [161]Arnold J. G., Allen P. M.. Estimating hydrologic budgets for three Illinois watersheds[J]. Journal of hydrology,1996,176:57-77.
    [162]Arnold J. G., Srinvasan R., Muttiah R S, et al.. Large Area Hydrologic Modeling and Assessment, Part1:Model debelopment[J]. Journal of the american Water Resources Association,1998,34(1): 73-89.
    [163]Arnold, J. G., Srinivasan R., Muttiah R. S.. Continental scale simulation of the hydrologic balance[J]. Journal of the American Water Resources Association,1999,35(5):1037-1051.
    [164]Arnold, J. G., Williams D. R. Maidment. Continuous-time water and sediment-routing model for large basins[J]. Journal of Hydraulic Engineering,1995,121(2):171-183.
    [165]Baitian W. and Binrui W.. Space and time redistribution of rainfall as a way tO fight drought for afforestation on the loess plateau[J]. Natural Disaster Reduction in China,1996,5(3):265-272.
    [166]Beven, K. J. and Kirkby, M. J.. A physically based variable contributing area model of basin hydrology[J]. Hydrol. Sci. Bull,1979,24(1):43-69.
    [167]Beven K. J., Moore I. D.. Terrain Analysis and Distributed Modeling in Hydrology[M]. Chichester:John Wiley and sons Ltd,1992,213-226.
    [168]Bewket Woldeamlak, Geert Sterk. Dynamics in land cover and its effect on streem flow in chemoga watershed, Blue Nile basin, Ethiopia, Hydrological Process,2005,19:445-458.
    [169]Bormann H., Diekkriiger B., Hauschild M.. Impacts of landscape management on the hydrological behavior of small agricultural catchments[J]. Physics and chemistry of the earth, 1999,24(4):291-296.
    [170]Bormann H., Diekkriiger B., Renschler C.. Regionalisation concept for hydrological modelling on different scales using a physically based model:results and evaluation[J]. Phys Chem Earth (B), 1999.24(7):799-804.
    [171]Bouten B, Heimovaara T. J., Tikttak A.. Spatial patterns of throughfall and soil water dynamics in a Douglas Fir Stand[J].Water Resources Research,1992,28(12):3227-3233.
    [172]Bronstert A., Niehoff D., Burger G.. Effects of climate and land use change on storm runoff generation:present knowledge and modeling capabilities[J]. Hydrological process,2002,16: 509-529.
    [173]Charbonneau R., Fortin J. P. and Morin G.. The CEQUEAU model:description and examples of its use in Problems related to water resource management[J]. Hydrology Science Bulletin,1977, 22(1):193-202.
    [174]Chen L. D., Wang J., Fu B. J., et al.. Land-use change in a small catchment of northern Loess Plateau, China[J]. Agriculture, Ecosystem sand Environment,2001,86:163-172.
    [175]Clarke M. L. and Rendell H. M., The impact of the farming practice of remodelling hillslope topography on badland morphology and soil erosion processes[J]. Catena,2000,40:229-250.
    [176]Covich A. Water and ecosystems. In:P. H. Gleick, ed. Water in crisis:A guide to the world's fresh water resources [M]. Oxford University Press, New York, USA,1993,40-55.
    [177]De Roo A. P. J.,Schmuck G., Perdigao V.. The influence of historic land use change and future planned land use scenarios on floods in the Oder catchment[J]. Physics and chemistry of the earth, 2003,28:1291-1300.
    [178]Dennis M. F., Bryan R. B.. The relationship of soil loss by interrill erosion to slope gradient [J]. Catena,2000,38(3):211-222.
    [179]Devantier B. A., Feldman A. D.. Review of GIS application in hydrologic modeling[J]. Journal of Water Resources Planning and Management,1993,119:246-261.
    [180]Doerra S. H., Shakesbya R. A., Blakeb W. H., et al.. Effects of differing wildfire severities on soil wettability and implications for hydrological response[J]. Journal of Hydrology,2006,319: 295-311.
    [181]Fedra K.. GIS and Enviromental Modeling, In Enviromental Modeling with GIS[M].Oxford: OXford University Press,1993:35-50.
    [182]Freeze R. A., Harlan R. L.. Blueprint of a Physically-based digitally-simulated hydrological response model[J]. Journal of Hydrology,1969,9:237-258.
    [183]Fu B. J. Soil erosion and its control in the loess plateau of China[J]. Soil Use and Management, 1989,5(2):76-81.
    [184]Fu B. J., Chen L. D., Ma K. M., et al..The relationships between land use and soil conditions in the hilly area of the loess plateau in northern Shaanxi, China[J].Catena,2000a 39:69-78.
    [185]Fu B.J., Chen L.D.. A gricultural landscape spatial pattern analysis in the semiarid hill area of loess plateau, China[J].Journal of Arid Environments,2000b,44:291-303.
    [186]Fu B. J., Gulinck H., Masum M. Z.. Loess erosion in relation to land-use change in the ganspoel catchment, central Belgium[J]. Land Degradation&Rehabilitation,1994,5:261-270.
    [187]Fu B.J., Meng Q. H., Q iuY., et al.. Efects of land use on soil erosion and nitrogen loss in the hilly area of the Loess Plateau, China[J].Land Degradation&Development,2004,15:87-96.
    [188]GertA. Schultz, Edwin T. Engman, remote sensing in hydrology and water managoment[M]. Springer-Verlag, Berlin,2000.
    [189]Grayson R. B.and Western A. W..Towards areal estimation of soil water content from point measurements:time and space stability of mean response[J]. Journal of Hydrology,1998,207: 68-82.
    [190]Guy B. T., W. T. Dickinson, and R. P. Rudra. The roles of rainfall and runoff in the sediment transport capacity of in Terrill flow[J].Trans. ASAE,1987,30:1378-1385.
    [191]Hudson N.. Soil Conservation[M]. Cornell Univ. Press, Ithaca, NY,1971.
    [192]Hui Shi, Ming an Shao.Soil and water loss from the Loess Plateau in china[J]. Journal of Arid Environments,2000,45:9-20.
    [193]John G. Lyon. GIS for water resources and watershed manageoent[M]. Taylor&Francis, London, 2003.
    [194]Klocking B., Haberlandr U.. Impact of land use changes on water dynamics-a case study in temperate meso and macroscale river basins[J]. Physic and Chemisery of the Earth,2002,27: 619-629.
    [195]Kovar K. and Nachinebel H. P.. Application of Geographical Information System in Hydrology and Water Resources management[J]. IANHS Publication.1996,235.
    [196]Krausmann F., Haberl H., Schulz N. B., et al.. Land-use change and socio-economic metabolism in Austira-Part Ⅰ:driving forces of land-use change:1950-1995[J]. LandUse Policy,2003a,20: 1-20.
    [197]Krausmann F., Haberl H., Schulz N. B., et al.. Land-use change and socio-economic metabolism in Austria-Part Ⅱ:land-uses cenarios for 2020[J]. Land Use Policy,2003b,20:21-39.
    [198]Lahmer W., Pfutzner B.& Becker A.. Assessment of land use and climate change impacts on Mesoscale[J]. Physics and Chemistry ofthe Earth,2001,26:562-575.
    [199]Lambin E. F., Baulies X., Bockstael N., et al. Land-use and land-cover change[J]. Implementation Strategy. IGBP report No.48, IHDP report No.10,1999.
    [200]Lambin E. F., Turner B. L., Geist H. J., et al.. The causes of land-use and land-cover change: moving beyond the myths[J]. Global Environmental Change,2001(11):261-269.
    [201]Mackay D. S. and Band L. E.. Forest ecosystem processes at the watershed scale:Dynamic coupling of distributed hydrology and canopy growth[J]. Hydrological Processes,1997,11: 1197-1217.
    [202]Maidment D. R.. GIS and hydrologic modeling-An assessment of progress[J]. In Environment Modeling with GIS,1993,35-50.
    [203]Mamedov A.I., I. Shainbery, and G. J. Levy. Rainfall energy effects on runoff and in Terrill erosion in effluent irrigated soils[J]. Soil Science,2000,165(7):535-544.
    [204]Maros Heil Costa, Aurelie Botta A Cardille. Effects of large-scale changes in land cover on the discharge of the Tocantins River, Southeastern Amazonia[J]. Journal of Hydrology,2003,28(3): 206-217.
    [205]Mein, R. G. and Larson, C. L. Modeling infiltration during a steady rain[J]. Wat. Resour. Res, 1973,9(2):384-394.
    [206]Meyer L. D. and Harmon W. C.. Susceptibility of agricultural soils to interrill erosion[J].SoiI. Sci. Soc.Am. J.1984,48:1152-1157.
    [207]Ming bin Huang, Ming an Shao, Lu Zhang, et al.. Water use efficiency and sustainability of different long-term crop rotation systerms in the Loess Plateau of china[J]. Soil & Tillage Reaearch 2003,72:95-104.
    [208]Morin E., David C. G., Robert A. M., et al. Spatial patterns in thunderstorm rainfall events and their coupling with watershed hydrological response [J]. Advances in Water Resources,2006, 29(6):843-860.
    [209]Naef F., Scherrer S., Weiler M. A process based assessment of the potential to reduce flood runoff by land use change[J]. Journal of hydrology,2002,267:74-79.
    [210]Nearing M. A. Jetten V., Baffaut C., et al. Modeling response of soil erosion and runoff to changes in precipitation and cover [J].Catena,2005,61(02-03):131-154.
    [211]Nemani R., Running S. W. and Band L.E. et al. Regional hydrological simulation system:an illustration of the inlegration of ecosystem models in a GIS,. In Environment Modeling with GIS[M].edited by M F Goodchild, B parks, L Steyaert (Oxford:Oxford University Press),1993, 297-304.
    [212]Rai S. C., Sharma E.. Comparative assessment of runoff characteristics under different land use patterns within a Himalayan watershed [J]. Hydrological Processes,1998,12:2235-2248.
    [213]Reenberg A.. Agricultural land use patern dynamics in the Sudan-Sahel——towards an event-driven framework[J]. Land use policy,2001,18:309-319.
    [214]Richard H. M. and Willard M. S.. hydrology modeling:Statistical Methods and Applications[M]. New Jersey:Prentice Hall, Englewood Cliffs,1986,3.
    [215]Ross M. A., Tara P. D..Integrated hydrologic Modeling with Geographic information system[J]. Journal of Water Resources Planning and Management,1993,119:129-139.
    [216]Sahin V., Hall M. J.. The effects of afforestation and deforestation on water yieled[J]. Journal of Hydrology,1996,17(8):293-309.
    [217]Sanchez L.A., Ataroff M., Lopez R.. Soil erosion under different vegetation covers in the Venezuelan Andes[J].The environmentalist,2002,22(2):161-172.
    [218]Sandra vander Linden, Ming-ko Woo. Application of hydrological models with increasing complexity to subarctic catchments[J]. Journal of Hydrology,2003,270:145-157.
    [219]Schlesinger W. H., Reynolds J. F., Gunningham G. L., et al.. Biological feedbacks in global desertification [J]. Science,1990,247:1043-1048.
    [220]Schulze, R. E., Modelling hydrological responses to land use and climate change:a southern African perspective[J]. American Biology,2000,29(1):12-22.
    [221]Shao Zhong Kang, Lu Zhang, Yin li Liang, et al.. Effects of limited irrigation on yield and water use efficiency of winter wheat in the Loess Plateau of china[J]. Agriculture water Manaegment, 2002,55:203-216.
    [222]Srinivasan R., Arnold J.G., Jones C. A.. Hydrologic modeling of the United States with the Soil and Water Assessment Tool.International Journal of Water Resources Development[J].1998,14(3): 315-325.
    [223]Srinivasan R., Ramanarayanan T.S., Arnold J. G., et al.. Large Area Hydrologic Modeling and Assessment Part Water Resources Association[J].1998,34(1):91-101.
    [224]Sun Ge, Riekerd H., Comeford N. B..Modeling the forest hydrology of wetland-upland ecosystems in Florida[J]. Journal of the American Water Association,1998,34(4):827-840.
    [225]Vander Weert R.. Hydrological Conditions in Indonesia[M]. Delft Hydraulics, Jakarta, Indonesia, 1994.
    [226]Verburge P. H., De Koning G. H. J., Kok K., et al.. A spatial explicit allocation procedure for modeling the pattern of land use change based on actual land use[J]. Ecological Modelling,1999a, 116:45-61.
    [227]Verburge P. H., Veldkamp T., Bouma J.. Land use change under conditions of high population pressure:the case of Java[J]. Global Environmental Change-Humanand Policy Dimensions, 1999b,9(4):303-312.
    [228]Warren T. Ford, Glenn H. Beasley, Berni P. Chong, et al.. Preparation of ion exchange resins from carbonaceous adsorbents[J]. Journal of Polymer Science,1982,20(5):1213-1229.
    [229]Young M. H., Wierenga P. J. and Mancino C. F.. Monitoring near-surface soil water storage in Turfgrass using time domain reflectometry and weighing lysimetry[J]. Soil Science Society of America Journal.1997,61:1138-1146.
    [230]Young R. A. and Wiersma J. L. The role of rainfall impact in soil detachment and transport[J]. Water Resour. Res.1973,9:1629-1636.
    [231]Zalewski M.. Ecohydrology the scientific background to use ecosystem properties as management tools toward sustainability of water resources [J]. Ecological Engineering,2000, 16(1):1-8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700