用户名: 密码: 验证码:
贵州典型矿区煤矸石自然风化过程中汞的环境效应初步分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
环境汞污染问题是全球面临的重大问题之一。论文以贵州典型煤矿为例,系统阐述了矿区内煤矸石、土壤、地表水和不同植物中汞的分布、迁移规律以及汞的环境效应。
     通过分析,得出以下结论:
     1、煤矸石中汞平均含量为0.056~2.149 mg/kg,没有表现异常富集。不同风化程度的煤矸石土壤汞含量没有明显的变化规律,平均含量略高于土壤背景值。但在自燃过的煤矸石风化土壤中汞却表现为异常富集,其含量高达2.149 mg/kg。
     2、煤矸石山附近地表水总汞含量普遍偏低,10个采样点地表水总汞含量均未超过Ⅰ类水质标准。
     3、大部分土壤中总汞含量接近全球土壤总汞含量的背景值,但土城矿土壤含量异常高,可能原因是土壤母岩不同或土壤中腐殖质和粘粒的含量存在显著差异所致。
     4、不同的植物对汞的吸收累积能力不同,汞含量范围为0.022~0.061 mg/kg,其中黄豆对汞的吸收累积能力高于其他植物,达到0.061 mg/kg。植物的不同器官对汞的吸收能力不同,一般表现为根>茎叶>果实,但植物中的汞含量和土壤中的汞含量没有显著的相关性。
     5、无论是煤矸石还是土壤,重金属元素Hg基本以残渣态为主,其次为可氧化态,弱酸提取态和可还原态所占比例较少,各形态汞的平均分配系数依次为:残渣态(64.43%)>可氧化态(27.68%)>弱酸提取态(6.86%)>可还原态(1.03%)。
Environmental mercury pollution is one of several essential problems faced from the global. In my research works, typical coal mines in Guizhou as an example, it discusses coal gangue, soil, surface water and the distribution of mercury in plants, as well as the migration of the environmental effects of mercury.
     By analyzing the the conclusions are as follows:
     1. Total mercury levels in coal mine spoils were 0.056~2.149 mg/kg, without significant richment in coal mine spoils. Total mercury levels in coal mine spoils with different weathering time were without distributions trends with different weathering time. And these values were a little higher than the background value of mercury in the soils. The mercury in soils from weathered coal mine spoils with spontaneous combustion, however, show significant enrichment in the soils. The mercury concentrations in these soils were up to 2.149 mg/kg.
     2.Total mercury levels in surface water near the Gangue hill were generally lower, the total mercury of 10 surface water sampling points were not content of more than I water quality standards.
     3.The majority of the total mercury content in soil close to the world's total mercury content of the soil background value, but Tucheng abnormally high content of mineral soil may be due to different soil or rock in the soil humus and clay content due to the existence of significant differences.
     4.Mercury contents in plants were 0.022~0.061 mg/kg and different species were various in mercury accumulation. The mercury contents of Soybean were 0.061 mg/kg,higher than the other plants. There were differences of mercury contents in organs of plant, root >leaf> fruit generally. But there was no remarkable relevance between the concentrations in plant and in soil.
     5. It was found that the concentrations of mercury in coal mine and soils are dominated by residual form, followed by organic-sulfide form. Fe-Mn oxides and acid-exchangeable form are rather low. The percent of the four mercury species in soils are 64.43%, 27.68%, 1.03% and 6.86%, respectively.
引文
[1]王云,魏复盛.土壤环境元素化学[M].北京:中国环境科学出版社,1995
    [2]王心义,杨建,郭慧霞.矿区煤矸石堆放引起土壤重金属污染研究[J].煤炭学报,2006,31(6):808-812
    [3]王雪峰.降雨条件下煤矸石淋溶微量元素传输的动力学研究[J].武汉工业学院学报,2007,26(1):73-75
    [4]冯启言,刘桂建.兖州煤田矸石中的微量有害元素及其对土壤环境的影响[J].中国矿业,2002,11(1):67-69
    [5]冯新斌,洪冰,倪建宇等.煤中部分潜在毒害微量元素在表生条件下的化学活动性[J].环境科学学报,1999,19(4):433-437
    [6]冯新斌,倪建宇,洪业汤等.贵州省煤中挥发性和半挥发性微量元素分布规律的初步研究[J].环境化学,1998,17(2):148-153
    [7]任天祥,伍宗华,羌荣生.区域化探异常筛选与查证的方法技术[M].北京:地质出版社,1998
    [8]刘永懋,翟平阳.甲基汞在水生生物体内富集倍数的研究[J].水资源保护,1996(3):1-9
    [9]刘玉荣,党志,尚爱安.煤矸石风化土壤中重金属的环境效应研究[J].农业环境科学学报,2003,22(1):64-66
    [10]刘汝海,王起超,刘景双.东北地区煤矸石环境危害与对策[J].地理科学,2002,22(1):110-113
    [11]孙丰英,徐卫东.煤矸石堆积区地下水污染效应研究[J].水资源与水工程学报,2006,17(5):56-60
    [12]孙长安,尹忠东,周心澄.煤矸石山重金属元素研究进展[J].中国水土保持科学,2006,4(Supp.):91-94
    [13]余运波,汤鸣皋,钟佐粜,沈照理.煤矸石堆放对水环境的影响-以山东省一些煤矸石堆为例[J].地学前缘,2001,8:163-168
    [14]吴代赦,郑宝山,康往东,李修涛,傅强,刘正初,张金炉.煤矸石的淋溶行为与环境影响的研究-以淮南潘谢矿区为例[J].地球与环境,2004,32(1):55-59
    [15]李仲根,冯新斌,何天容等.王水水浴消解-冷原子荧光法测定土壤和沉积物中的总汞[J].矿物岩石地球化学通报,2005,24(2):140-143
    [16]李俊芳.南宁市郊区土壤中汞污染状况调查.广西农业生物科学[J],1999,18(1):80-83
    [17]迟清华.汞在地壳岩石和疏松沉积物中的分布[J].地球化学,2004(33):641-646
    [18]陈晶,黄文辉,张爱云,唐修义.我国部分地区煤及煤矸石中汞的分布特征.煤田地质与勘探[J],2006,34(1):5-7
    [19]孟紫强,环境毒理学基础[M].北京:高等教育出版社,2003.219-220
    [20]林年丰.医学环境地球化学[M].长春:吉林科学技术出版社,1991.215-220
    [21]环球在线.美国指责中国“出口”大量空气污染物[J].中国日报网站,2006
    [22]郑伟,冯新斌,李广辉,李仲根.硝酸水浴消解-冷原子荧光光谱法测定植物中的总汞[J].矿物岩石地球化学通报,2006,25(3):285-287
    [23]胡社荣,蒋大成.煤层自燃灾害现状与防治对策.中国地质灾害与防治学报[J],2000,11(4):69-72
    [24]赵一阳,都明才.中国浅海沉积物地球化学[M].北京:科学出版社,1994.175-176
    [25]赵燕.煤矸石对地下水污染的机理及过程[J].能源技术与管理,2006,4:54-55
    [26]党志,刘丛强,李忠.煤矸石中微量重金属元素化学活性的实验模拟研究[J].华南理工大学学报,2001,29(12):1-5
    [27]唐修义,黄文辉.中国煤中微量元素[M].北京:商务印书馆,2004,155-165
    [28]徐小清,丘昌强,郑冠强,等.水库鱼体汞积累的预测[J].水生生物学报,1998(22):244-250
    [29]崔龙鹏,白建峰,史永红,颜事龙,黄文辉,唐修义.采矿活动对煤矿区土壤中重金属污染研究[J].土壤学报,2004,41(6):896-903
    [30]阎海鱼,冯新斌,商立海,汤顺林,仇广乐.天然水体中痕量汞的形态分析方法研究[J].分析测试学报,2003.22(5):10-13
    [31]焦建伟.贵州西部煤层中若干有害微量元素的分布及迁移富集规律[J].华北地质矿产杂志,1998,13(3):236-242
    [32]程维平.煤矸石淋溶液对环境影响的研究[J].煤炭加工与综合利用,2005,6:47-49
    [33]解怀生.浙江省长兴县煤山盆地地球化学异常特征及环境质量初步评价[J].中国地质灾害与防治学报,2005,16(4):124-129
    [34]魏复盛,陈静生,吴燕玉等.中国土壤环境背景值研究[J].环境科学,1991(12):12-19
    [35]瞿丽雅.贵州省汞污染防治与生态恢复[J].贵州师范大学学报(自然科学人版),2002(20):56-59
    [36]Bloom NS.,Watras CJ.Observations on Methylmercury in precipitation.Proceedings of Conference on Trace Metal in Lakes,Hmilton[J].The Science of the Total Environment,1988(87/88):199-207
    [37]Colbourn,P.Estimation of the potential oxidation rate of pyrite in coal mine spoils[M]
    [38]Cristine Gleyzes,Sylvaine Tellier,Michel Astruc.Fractionation studies of trace elements in contaminated soils and sedements:a review of sequential estraction procedures[J].Trends in Analytical Chemisery,2002,21(6-7):451-467
    [39]Reclamation Review,1980,3:121-123
    [40]Coquery M.,Welbourn PM.Mercury uptake from contaminated water and sediment by the rooted.and subm aquatic Eriocaulon septangulare.Archives of Environmental Contamination and Toxicology,1994(26):335-341
    [41]Cossa D.,Martin JM.,Takayanagi K.,et al.distribution and cycling of mercury species in the western Mediterranean.Deep-Sea Research Ⅱ,1997(44):721-740
    [42] Costigan,P.A.,Bradshaw,A.D.,Gemmell,R.P.The reclamation of acidic colliery spoil l.Acid production potential.Journal of Ecology, 1981,18: 865-878
    [43] Driscoll,C.T.,Yan,C.,Schofield,C.L.,Munson,R.,Holsapple,J.The mercury cycle and fish in the Adirondack Lakes.Environmental Science & Technology,1994,28(3):136-143
    [44] Gilmour,C.C.,Henry,E.A.,Mitchell,R.Sulfate Stimulation of Mercury Methylation in Fresh-Water Sediments. Environmental Science & Technology, 1992,11
    [45] Horvat M.,Nolde N.,Qu LY,et al.Mercury and other trace elements in Guizhou Province,China:Preliminary assessment of mercury pollution in the areas of Wanshan and Qingzhen.Results from field sampling in September,1999.IJS-DP-8294,December 2000.1-71
    [46] Horvat M.,Nolde N.,Fajon V,et al.Total mercury,methylmercury.and selEnium in mercury polluted areas in the province Guizhou,China.The Science of the Total Environment 2003(304):231-256
    [47] Huckabee JW,Diaz FS,Janze SA. Distribution of mercury in vegetation at Almaden,Spain. Environmental Pollution Series A,Ecological and Biological,1983(30):211-224
    [48] Hudson,R.J.M.,Gherini,S.A,Watras,C.J,Porcella,D.B.Modelling the biogeochemical cycle of mercury in lakes:the mercury cycling model (MCM) and its application to MTL study lakes.In:Watras C.J,Huckabee J.W,editors.Mercury pollution: integration synthesis. Lewis Publishers., 1994,473-526.
    [49] Juwarkar,A.A.,Jambhulkar,H.P.Phytoremediation of coal mine spoil dump through integrated biotechnological approach. Bioresour.Technol.,2007,doi: 10.1016/j.biortech.2007.09.060
    [50] Laurier FJCz,Mason RP,Gill GA.,et al.years of observations.Chemistry, Mercury distributions in the North Pacific Ocean-20 2004(90):3-19
    [51] Liang L,Bloom N S.Determination of Total Mercury by Single-Stage Gold Amalgamation with Cold Vapor Atom Spectrometric Detection[J].J.Anal.Atomic Spectrom.1993,8,591
    [52] Lindqvist O.Special issue of first international on mercury as a global pollutant.Water,Air and Soil Pollution, 1991(56):1-1
    [53] Lamy I,Boutgeviser S,Bermond A. Soil cadmium mobility as a consequence of sewage sludge diposal[J].J. Environ.Qual.,1993,22:731-737
    [54] Massey,H.F.,Harnhisel,R.I.Copper,nickel,and zinc release from acid coal mine spoilmaterials of eastern Kenrucky.Soil Science, 1972,113 (3): 207-212
    [55] Mining Wastes.Balkema,Rotterdam,1987,267-280
    [56] Miskimmin,B.M.,Rudd,J.W.M.,Kelly,C.A. Influence of dissolved organic carbon,pH,and microbial respiration rates on mercury methylation and demethylation in lake water,Canada.Journal fish Aquatic Science, 1992,49:17-22
    [57] Morel FM.,Kraepiel AM.,Amyot M.Thechemical cycle and Bioaccumulation of mercury.Annual Review of Ecology and Systematics,1998(29):543-566
    [58] Moreno FN.,Anderson CWN.,Stewart RB.,et al.Phytoremediation of Mercury-Contaminated Mine Tailings by Induced Plant-Mercury Accumulation.Environmental Practice,2004(6):165-175
    [59] Parr PM.,Crawley H.,Abdulla M.,et al.Human dietary intakes of trace elements:a global literature survey for the period 1970-1991 ,Vienna, 1992
    [60] Quevauviller P,vad der Sloot H A,Ure A. Conclusions of the workshop:harmonization of leaching/extraction tests for environmental risk assessment[J].Sci.Total Environ., 1996,178:133-139
    [61] Quevauviller P,Ure A,Muntau H,et al.Improvement of analytical measurements within the BCR-programme:single and sequential extraction procedures applied to soil and sediment analysis[J].Int.J.Environ.Anal.Chem., 1993,51:129-134
    [62] Quevauviller P.Operationally defined extraction procedures for soil and sediment analysis I.Standardization[J] .Trends Anal.Chem., 1998,17(5):289-298
    [63] Senesi GS.,BaldassarreG,Senesi N.,et al.Trace activities and implications for human health.Chemosphere,inputs into soils by anthropogenic 1999(39):343-377
    [64] Szezepandka,J.,Twardowska,I.Coal mine spoil tips as a large area source of water contamination.In:Rainbow,K.(Ed.),Reclamation,Treatment and Utilization of Coal
    
    [65] Tessier A,Campbell P G C,Bisson M.Sequential extraction procedure for the speciation of particulate trace metals[J].Anal.Chem., 1979,51:844-851
    [66] Tessier A,Campbell P G C,C.Comment on "Pitfalls of sequential extraction" by F. M. M.MOREL[J].WaterRes.,1991,25(1):115-117
    [67] Ullrich,S.M.,Tanton,T.W.,Abdrashitova,S.A. Merucry in the aquatic environment: a review of factors affecting methylation. Critical reviews in Environmental Science and Technology,2001,31(3),241-293
    [68] US EPA Method, 1631 Revision E:Mercury in Water by Oxidation,Purge and Trap,and Cold Vapor Atomic Fluorescence Spectrometry[EB/OL] .United States Environmental Protection Agency.August 2002
    [69] Vandal GM.,Manson RP,McKnight D.,et al.Mercury speciation and distribution in a polar desert lake (Lake Hoare,Antarctica) and two glacial meltwater streams.The Science of the Total Environment, 1998(213):229-237
    [70] Verta,M.Mercury in Finnish forest lakes and reservoirs: anthropogenic contribution to the load and accumulation in fish.Publications of the water and environment research institute.Finland:National Board of Waters and the Environment, 1990
    [71] Wang YD.Phytoremediation of mercury by terrestrial plants.2004.1-41
    [72] WHO.Methylmercury.Environmental Health Criteria 101.International Program on Chemical Safety,World Health Organiza'tion,Geneva,1990
    [73] WHO.Inorganic Mercury.Health Criteria 118.International Program on Chemical Safety,World Health Organization, 1991
    [74] Wiggering,H.Sulfide oxidation—an environmental problem within colliery spoil dumps.Environmental Geology, 1993,22: 99-105
    [75] Yan Haiyu,Feng Xinbin,Shang Lihai,Tang Shunlin,Qiu Guangle.Speciation analysis of ultra trace levels of mercury in natural waters[J].Journal of Instrumental Analysis,2003.22(5):10-13

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700