用户名: 密码: 验证码:
内蒙古大青山中段水源涵养林功能机理与经营模式
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大青山是阴山山脉的主体,位于土默川平原的北部,是大青山南麓土默川平原农田灌溉的重要水资源。本区位于黄河上中游,每年向黄河输水23690万m~3,因此,大青山是黄河上中游重要的水源补给区,在调节我国北方水分平衡和水资源供给中起着重要的作用。本文以大青山中段古路板林场为典型研究对象,以实测数据为主体,结合收集的资料,分析研究了水源涵养林的群落结构、土壤结构、森林小气候功能、水源涵养功能,并对该区水源涵养林的经营提出了建议,以求深入认识该区森林植被的水文作用机理,并为该区水源涵养林的经营管理提供方法和依据。
     其主要研究结论如下:
     (1)森林群落结构特征
     大青山30a生油松人工林密度不宜超过3200株/hm~2;20a生华北落叶松人工林在1700株/hm~2密度范围内林木分化现象还未出现。
     群落的平均大小比数显示,胸径大小比以油松人工林最大,树高大小比落叶松人工林和白桦次生林最大,冠幅大小比以落叶松人工林最大。林分角尺度分析显示,油松林和落叶松林为均匀分布,白桦林为随机分布。群落的点格局分析表明,油松林的尺度在3-43m内呈聚集分布;落叶松林在r>2m时,呈随机分布;白桦林的尺度在2-50m范围内,其分布格局为显著的集群分布。
     (2)森林土壤理化性质
     大青山地区白桦天然次生林和华北落叶松林的土壤容重明显好于其它植被类型下的土壤。在总孔隙度方面也只有白桦天然次生林和落叶松林大于50%,而油松人工林表现最差。在平均土壤容重、总孔隙度、毛管孔隙度、土壤最大持水量、毛管持水量、田间持水量方面,大小依次为白桦次生林>华北落叶松人工林>虎榛子灌丛>油松人工林。
     林地土壤表层有机质的含量白桦林和华北落叶松林要高于其它类型,随着土壤深度的增加,各林分土壤的有机质含量均呈下降趋势。白桦次生林土壤表层全氮含量最高,为0.658%,虎榛子灌丛土壤表层含氮量最低,为0.326%,当土层厚度为40-60cm时,白桦次生林土壤全氮的含量最高,为0.162%,油松人工林土壤全氮的含量最低,仅为0.084%。土壤表层全磷的含量分别为油松0.108%、落叶松0.112%、白桦0.116%、虎榛子0.110%,但当土壤厚度为20-40cm时,落叶松林土壤全磷的含量明显高于表层,说明土壤全磷的分布并不均匀。不同植被类型不同土壤厚度土壤的C/N比值变化较大,0-10cm土层,油松人工林的C/N比值最大,白桦次生林的C/N比值最小,而40-60cm土层,落叶松人工林土壤的C/N比值最大,虎榛子灌丛的C/N比值最小。
     不同植被类型下土壤大孔隙的最大半径范围多分布在1.5-1.8mm范围内;而其大孔隙的最小半径范围多集中在0.6-0.8mm范围内。土壤大孔隙的密度分布规律为:大半径的孔隙密度较小,小半径的孔隙密度较大。不同土壤深度的大孔隙密度显示,一般上层土壤相对较小,下层土壤相对较大。不同植被类型下0-60cm土壤大孔隙半径加权平均值顺序为:虎榛子灌丛(1.09mm)>油松人工林(0.92mm)>白桦次生林(0.90mm)>落叶松人工林(0.87mm)。大孔隙密度的变化范围在90-587个/dm~2之间,平均为258个/dm~2,变异系数为62.59%。用幂函数模拟落叶松林地土壤大孔隙的密度与平均半径的关系,相关系数R~2达到0.892。通过研究,该区土壤的大孔隙可能主要明显地同时受生物因素和物理因素(石砾)的影响。
     (3)森林小气候特征
     油松林内温度比林外温度低0.03℃,林内湿度比林外湿度高0.58%,林内风速比林外风速小1.69m/s;落叶松林内温度比林外温度低0.54℃,林内湿度比林外湿度低0.05%,林内风速比林外风速小0.54m/s;白桦林内温度比林外温度低0.05℃,林内湿度比林外湿度高0.99%,林内风速比林外风速小0.42m/s;不同林分小气候调节能力显示,油松林内温度最高,白桦林内湿度最大,落叶松林内风速最大。
     (4)水源涵养林生态功能
     林冠截留能力与降雨的雨量级别存在密切关系,表现为随着降雨量的增加,林冠截留能力下降。当林外降雨量达到20mm时,林冠的截留率仅为5.21%~19.92%。三种植被类型的林冠层水容量显示,油松林的林冠截留量最大,为0.170mm,落叶松林和白桦林依次为0.104mm和0.052mm。
     枯落物的蓄积量显示,油松人工林的蓄积量最小,仅为5.15 t/hm~2,落叶松人工林枯落物的蓄积量最大,达18.62 t/hm~2。枯落物最大持水深表明,落叶松人工林枯落物的最大持水深最大,为0.65mm,油松人工林最大持水深最小,仅0.11mm。枯落物吸持过程显示,在浸水开始的0.5h内,白桦次生林的初始吸持水量最大,达到1.81g/g,油松人工林的初始吸水量最小,仅为0.70 g/g,是白桦次生林初始吸持水量的38.67%。随着浸水时间的延长,4种枯落物的持水量继续增加,但增加的速度放慢。
     土壤渗透实验显示,不同植被间土壤渗透性变化较大,白桦次生林、落叶松人工林和的土壤透水性较好,对于小强度(降雨强度<土壤稳渗速率)的降雨,地表径流产生的频率较小;油松人工林的土壤透水性较差,就是小强度的降雨,也容易产生地表径流。由此可见,白桦次生林的水土保持功能最好,落叶松人工林次之,油松人工林的最差。有效贮水能力表明,白桦林有效贮水能力最强,虎榛子灌丛最弱,落叶松林和油松林的有效贮水能力依次为36.9mm、31.5mm。
     (5)水源涵养林经营模式
     3种林分的树种结构均存在组成单一的问题,建议先进行择伐或间伐降低林分郁闭度,然后在林内补植乡土树种,将纯林改造为混交林,增加林分生物多样性,提高水源涵养功能。由于油松人工林、落叶松人工林林分年龄结构基本为同龄林,并且以中龄林、幼龄林居多,近熟林少,无成过熟林资源。因此,进行年龄结构调整优化时,应逐步减少同龄林面积的比重,逐步扩大异龄林面积的比重。由于林分密度对林分的径生长有明显的作用,而人工林普遍存在密度过大的问题,建议随人工林年龄的增长,逐步降低林分密度,有助于提高单位面积林分的蓄积量。由于3种林分郁闭度大,不能提供灌草生长发育必要的光照环境,所以林分群落层次结构不完整,灌草层发育不良,建议降低乔木层郁闭度,保证林下灌草生长所需的光照调节,诱导具有乔灌草多层次的林分结构的形成,维持和增强水源林水源涵养功能和森林生物多样性保护功能。
Daqing Mountain is the main body of Yinshan Mountains, located in the northern of Tumochuan Plains, irrigated farmland of Tumochuan Plains in the south of Daqing Mountain. This area is located in the upper and middle reaches of the Yellow River, carry out 236,900,000 m~3 water to Yellow River each year. Therefore, Daqing Mountain is an important source of water supply areas in the upper and middle reaches of the Yellow River, and plays an important role of regulation water balance and water supply. In this paper, Guluban Farmland was typical research objector in the middle of Daqing Mountain, measured data as the main body and combination of information gathered, analyzed community structure of water conservation forest, soil structure, function of forest microclimate, water conservation function, and put forward recommendation to manage water conservation forest. In order to in-depth knowledge of mechanism of hydrological of vegetation in the area, and provided method for management of water conservation forest.
     The main results are as follows:
     (1) Community structure of forests
     The density of 30a pinus tabulaeformis plantation should not be more than 3200 / hm2 in Daqing Mountain, the density of 20a larix prince rupprecht plantation in 1700 / hm2 without differentiation phenomenon.
     Neighborhood comparison shows pinus tabulaeformis plantation's diameter comparison is the biggest, Larix prince rupprecht and Btula platyphlla's height comparison are biggest, Larix prince rupprecht's crown comparison is largest. Uniform angle index indicated that pinus tabulaeformis and Larix prince rupprecht are uniformly distribution, Btula platyphlla is random distribution. Point pattern analysis shows pinus tabulaeformis in the scale of 3-43m is gathered distribution, Larix prince rupprecht in the scale of r>2m is random distribution, Btula platyphlla in the scale of 2-50m is significant gathered distribution.
     (2) Physical and chemical properties of forest soil
     Soil bulk densities of Btula platyphlla and larix prince rupprecht are significant better than other vegetation type in Daqing Mountain. In total porosity, Btula platyphlla and larix prince rupprecht are more than 50%, the performance of pinus tabulaeformis is worst.
     In an average soil bulk density, total porosity, capillary porosity, the largest water holding capacity of soil, capillary water holding capacity, field capacity, followed by Btula platyphlla > larix prince rupprecht >Ostryopsis Decne> pinus tabulaeformis.
     The content of surface soil organic of Btula platyphlla and larix prince rupprecht is higher than others, with the increase in the depth of soil, the content of soil organic decreased in all types. Btula platyphlla's total N content of surface soil is the biggest, which is 0.658%; Ostryopsis Decne's is the smallest, which is 0.326%. When soil depth reaches 40-60cm, Btula platyphlla's total N content is largest, which is 0.162%, pinus tabulaeformis's is the smallest, which is 0.084%. The content of surface soil total P is pinus tabulaeformis 0.108%, larix prince rupprecht 0.112%, Btula platyphlla 0.116%, Ostryopsis Decne 0.110%, when soil depth reaches 20-40cm, the content of larix prince rupprecht is higher than surface. It indicates the total P is not evenly distributed. The C/N ration of different soil in different vegetation changes largely, in 0-10cm layer, pinus tabulaeformis's ration is biggest, Btula platyphlla's ration is smallest, but in 40-60cm layer, larix prince rupprecht's ration is biggest, Ostryopsis Decne's ration is smallest.
     The largest radius scope of macropores in different vegetation is distributed in 1.5-1.8mm; the smallest is concentrated in 0.6-0.8mm. The density of macropores shows that large radius macropores with small density, small radius macropores with large density. The density of macropores in different depth shows that upper soil with relatively small density, the lower soil with relatively large density. The macropores in different vegetation follow the order: Ostryopsis Decne (1.09mm)> pinus tabulaeformis (0.92mm) >Btula platyphlla (0.90mm)> larix prince rupprecht (0.87mm). The density of macropores in the range of 90-587/dm~2, the average is 258/dm~2; the coefficient of variation is 62.59%. Simulated density and average radius of macropores with power function, the correlation coefficient R~2 is 0.892. On the basis of research, the macropores maybe obviously effect by biological and physical factors.
     (3) Characteristics of forest micro-climate
     Inner temperature of pinus tabulaeformis is low 0.03℃than outside, inner humidity is high 0.58% than outside, inner wind speed is small 1.69m/s than outside; inner temperature of larix prince rupprecht is low 0.54℃than outside, inner humidity is low 0.05% than outside, inner wind speed is small 0.54m/s than outside; inner temperature of Btula platyphlla is low 0.05℃than outside, inner humidity is high 0.99% than outside, inner wind speed is small 0.42m/s than outside; Characteristics of different stand shows, inner temperature of pinus tabulaeformis, and inner humidity of Btula platyphlla and inner wind speed of larix prince rupprecht are biggest.
     (4) Ecological functions of water conservation forest
     Canopy interception has close relationship with rainfall levels, with increase of rainfall, interception ability of canopy lower. When rainfall is 20mm, interception rate of canopy was only 5.21-19.92%. The biggest interception ability shows, pinus tabulaeformis's interception is large to 0.170mm, larix prince rupprecht and Btula platyphlla are 0.104mm and 0.052mm.
     The volume of forest litters shows, pinus tabulaeformis is smallest to 5.15t/hm~2; larix prince rupprecht is biggest to 18.62t/hm~2. The water-holding capacity indicates, larix prince rupprecht is 0.65mm, pinus tabulaeformis is only0.11mm. Processes of water-holding capacity shows, in the first half an hour, Btula platyphlla absorbs large of water to 1.81g/g, pinus tabulaeformis only absorbs 0.70g/g, which is 38.67% of Btula platyphlla. With the increase of time, 4 types of litters' water-holding volume is increase, but speed is slow.
     Penetration characteristics changes great in different vegetation, the penetration of Btula platyphlla and larix prince rupprecht is good. In small intensity (intensity of rainfall      (5) Management model of water conservation forest
     The common problem of 3 stands is simply component of species, advised selectively cut to reduce forest canopy density, then replant native trees, change pure forest to mixed forest, increase biological diversity, promote water conservation function. As pinus tabulaeformis and larix prince rupprecht has same age structure, young and middle-age forests are most. When optimization age structure of forest, there should be a gradual reduction in the proportion of the same age forest, and gradually expand the uneven-aged forest. As forest density influenced diameter growth, and plantation always with big density, there should be reduce forest density with age increase, it was helpful to raise volume. With big forest canopy density, stand cannot provide necessary light environment to shrub-grass growth, therefore, the community stands hierarchy incomplete, shrub-grass layer dysplasia. Advised reduce forest canopy density, require light of shrub-grass growth, induce multi-level structure of stands, enhance of water conservation function and biodiversity protection function of water conservation forests.
引文
[1]曾庆波.森林与温度.见:周晓峰主编.中国森林与生态环境[M].北京:中国林业出版社,1999.
    [2]曾友特,余作岳,张文其.小良热带人工混交林早期的温湿效应[J].生态学报,1995,15(增刊):204-210.
    [3]常杰,潘晓东,葛滢,等.青冈常绿阔叶林内的小气候特征[J].生态学报,1999,19(1):68-75.
    [4]常杰,潘晓东,葛滢,等.亚热带常绿阔叶林(Quercus glauca)的小气候特征[J].生态学报,1999,19(1):68-75.
    [5]常宗强等.祁连山水源涵养林枯枝落叶层水文生态功能[J].西北林学院学报,2001,16(增):8-13.
    [6]车克钧,傅辉恩,贺红元.祁连山水源涵养林效益的研究[J].林业科学,1992,28(6):544-548.
    [7]车克钧,傅辉恩,王金页.祁连山水源林生态系统结构与功能的研究[J].林业科学,1998,34(5):29-37.
    [8]陈浩,蔡强国.坡度对坡面径流入渗量影响的试验研究,晋西黄土高原土壤侵蚀试验研究[M].北京:水利电力出版社,1990,17-25.
    [9]陈宏志,胡庭兴,龚伟,等.我国森林小气候的研究现状[J].四川林业科技,2007,28(2):29-32,28.
    [10]陈仁升,康尔泗等.森林水文生态效应若干争论问题讨论[J].冰川冻土,2002,24(6):799-805.
    [11]陈伟,李山东,薛立.水源涵养林的功能和效益综述[J].陕西林业科技,2004,(2):17-28.
    [12]程根伟,余新晓,赵玉涛等.山地森林生态系统水文循环与数学模拟[M].北京:科学出版社,2004.
    [13]程竹华,张佳宝.土壤中优势流现象的研究进展[J].土壤,1998,30(6):315-319.
    [14]崔武社.水源涵养林防护成熟及其经营管理问题的研究[博士学位论文].北京:北京林业大学,2001.
    [15]代海燕.大青山森林生态效益的研究与评价[博士学位论文].呼和浩特:内蒙古农业大学,2008.
    [16]丁宝永,郎奎健,张世英.落叶松人工林动态间伐系统的研究(1)[J].东北林业大学学报,1986,14(4):8-19.
    [17]丁宝永,张树森,张世英.落叶松人工林林木分级的研究[J].东北林学院学报,1980,(2):8-19.
    [18]丁岩钦.昆虫种群数学生态学原理与应用[M].科学出版社,1980.
    [19]范军祥,程庆荣,薛涛.水源涵养林的效益及其计量[J].广东林业科技,1999,15(1):38-41.
    [20]范志平,余新晓.水源保护林定向恢复与经营模式[J].土壤侵蚀与水土保持学报,1999,5(5):113-119.
    [21]范志平,余新晓.中国水源保护林生态系统功能评价与营建技术体系[J].世界林业研究,2000,13(1):51-58.
    [22]冯杰,郝振纯.CT在土壤大孔隙研究中的应用评述[J].灌溉排水,2000,19(3),71-76.
    [23]冯杰,郝振纯.土壤大孔隙流研究中分形几何的应用进展[J].水文地质工程地质,2001,28(3):9-13.
    [24]冯秀兰.密云水库上游水源保护林水土保持效益的定量研究[J].北京林业大学学报,1998,20(6):71-77.
    [25]高人,周广柱.辽东山区不同森林植被类型枯落物层截留降雨行为研究[J].辽东林业科技,2002(5):1-4.
    [26]葛剑平,郭海燕,仲莉娜.地统计学在生态学中的应用(Ⅰ)-基本理论和方法[J].东北林业大学学报,1995,23(2):88-93.
    [27]郭全邦,刘玉成,李旭光.缙云山森林次生演替序列群落的物种多样性动态[J].应用生态学报,1999,10(5):521-524.
    [28]国家气象局编.地面气象观测规范[M].北京:气象出版社,1979,1
    [29]韩铭哲.火烧迹地上红松种群自然更新格局的讨论[J].生态学报,1988,8(4):342-346.
    [30]何东宁,王占林,张洪勋.青海东都地区森林涵养水源效能研究[J].植物生态学报与地植物学学报,1991,15(1):71-78.
    [31]贺庆棠.林业气象学的研究与进展.中国林学会林业气象专业委员会,中国气象学会农业气象专业委员会编.中国林业气象文集[M].北京:气象出版社,1989.
    [32]贺庆棠.前言.中国森林气象学[M].北京:中国农业出版社,2001,3.
    [33]侯向阳,韩进轩.长白山红松林主要树种空间格局的模拟分析[J].植物生态学报,1997,21(3):242-249.
    [34]侯元兆.林业可持续发展和森林可持续经营的框架理论(下)[J].世界林业研究,2003,16(2):1-6.
    [35]黄承标,梁宏温,温远光,等.窿缘桉防护林小气候的初步研究[J].浙江林学院学报,1999.16(3):247-251.
    [36]惠刚盈,克劳斯·冯佳多.森林空间结构量化分析方法[M].北京:中国科学技术出版社,2003,10-11.
    [37]贾志清,宋桂萍,李清河.宁南山区典型流域土壤水分动态变化规律研究[J].北京林业大学学报,1997,19(3):15-20.
    [38]江洪.云杉种群生态学[M].北京:中国林业出版社,1992.
    [39]姜志林,王冬米,叶镜中.苏南丘陵主要森林类型对降水分配格局的影响.见:周晓峰主编.中国森林生态系统定位研究[M].哈尔滨:东北林业大学出版社,1994.327-334.
    [40]靳芳,余新晓,鲁绍伟等.中国森林生态系统生态服务功能及其评价[M].中国林业出版社,2007.
    [41]李昌哲.太行山水土保持林营造技术及效益研究[M].北京:中国科学技术出版社,1991.
    [42]李德成,Velde B,Delerue JF,等.免耕制度下耕作土壤结构演化数字图像分析[J].土壤学报,2002,39(2):214-220.
    [43]李海涛,陈灵芝.暖温带山地森林的小气候研究[J].植物生态学报,1999,23(2):139-147.
    [44]李金良,郑小贤.祁连山水源涵养林经营现状分析和经营对策[J].北京林业大学学报,2004,26(5):89-92.
    [45]李俊清,祝宁.红松的种群结构与动态过程[J].生态学杂志,1990,9(4):6-10.
    [46]李士生,姜志林.苏南丘陵主要森林类型保持水土效益的研究[J].长江流域资源与环境,1994,3(1):55-59.
    [47]李振新,郑华,欧阳志云等.岷江冷杉针叶林下穿透雨空间分布特征[J].生态学报,2004,24(5):1015-1021.
    [48]李志真,谭芳林,叶功富,等.木麻黄沿海防护林小气候效应的定位研究初报[J].福建林业科技,2000,27(1):1-4.
    [49]林业部科技司主编.森林生态系统定位观测方法[M].北京:中国林业出版社,1993.
    [50]刘广全,王浩,秦大庸等.黄河流域秦岭主要林分枯落物的水文生态功能[J].自然资源学报,2002,17(1):55-61.
    [51]刘世荣,温远光,王兵等.中国森林生态系统水文生态功能规律[M].北京:中国林业出版社,1996:61-62.
    [52]刘世荣等.中国森林生态系统水文生态规律研究[M].北京:中国林业出版社,1996.
    [53]刘伟,区自清,应佩峰.土壤大孔隙及其研究方法[J].应用生态学报,2001,12(6):465-468.
    [54]刘文杰,李庆军,张光明,等.西双版纳望天树林干热季不同林窗间的小气候差异[J].生态学报,2000,20(6):932-937.
    [55]刘文杰,张克映,王昌命,等.西双版纳热带雨林干季林冠层雾露形成的小气候特征研究[J].生态学报,2001,21(3):486-491.
    [56]刘智慧.四川省晋云山栲树种群结构和动态的初步研究[J].植物生态学与地植物学学报,1990,14(2):120-127.
    [57]陆阳.南亚热带森林种群分布格局的取样技术研究[J].植生态学与地植物学学报,1986,10(4):272-282.
    [58]罗晶.密云水库集水区森林植被恢复与经营机理及模式研究[博士学位论文].北京:北京林业大学,2001.
    [59]骆建国.浅谈三江流域水源林水保林体系及营造特点[J].林业勘察设计研究,1991,(1):7-13.
    [60]马克明,张喜军,陈继红,等.东北羊草草原群落格局分析数值理论研究[A].见:辛厚文.分形理论及其应用[C].北京:中国科技大学出版社,1993.
    [61]马雪华,田大伦,李承彪,等.森林系统定位研究方法[M].北京:中国科学技术出版社,1994.
    [62]马雪华,杨茂瑞,王建军等.亚热带杉木、马尾松人工林水文功能的研究.见:周晓峰主编.中国森林生态系统定位研究[M].哈尔滨:东北林业大学出版社,1994,346-351.
    [63]马雪华.森林水文学[M].北京:中国林业出版社,1993.
    [64]马雪华.四川米亚罗地区高山冷杉森水文作用的研究[J].林业科学,1987,23(3):253-265.
    [65]牛建植.长江上游暗针叶林生态系统优先流机理研究[博士学位论文].北京林业大学,2003.
    [66]裴铁番,李金中.坡中流模型研究的现状及存在问题[J].应用生态学报,1998,9(5):543-548.
    [67]彭少麟,申卫军,周国逸.马占相思人工林温湿效应的时空动态[J].热带亚热带植物学报,2001,9(4):277-283.
    [68]彭少麟,王伯荪.鼎湖山森林群落分析,Ⅲ种群分布格局[J].热带亚热带森林生态系统研究,1984,(2):24-27.
    [69]彭少麟.南亚热带森林群落动态学[M].北京:科学出版社,1996.
    [70]彭少麟.森林群落植物种群分布格局变因探讨[J].生态科学,1984,3(1):10-15.
    [71]石辉,陈凤琴,刘世荣.岷江上游森林土壤大孔隙特征及其对水分出流速率的影响[J].生态学报,2005,25(3):507-512
    [72]石辉.森林土壤大孔隙特征及其土壤结构稳定性研究[博士后研究出站报告].中国林业科学研究院,2004.
    [73]时忠杰.六盘山香水河小流域森林植被的坡面生态水文影响[博士学位论文].中国林科院,2006.
    [74]史学正,邓西海.用人工模拟降雨仪研究我国亚热带土壤的可蚀性[J].水土保持学报,1995(3):19-36.
    [75]宋丁全,姜志林,郑作孟,等.光皮桦种群不同空间层次的分格局研究[J].福建林学院学报,1999,19(1):4-7.
    [76]孙鹏森.京北水源保护林格局及不同尺度下树种耗水特性的研究[博士学位论文].北京:北京林业大学,2000.
    [77]田大伦,项文化,康文星.湖南第2代杉木幼林的水文过程及养分动态研究[J].林业科学,2001,37(3):64-72.
    [78]王德连.国内外森林水文研究现状和进展[J].西北林学院学报,2004,19(2):156-160.
    [79]王得祥,刘建军,陈海滨.秦岭林区华山松种群结构与动态究[J].西北林学院学报,1999,14(1):48-53.
    [80]王红春.防护林防护成熟理论的研究[博士学位论文].北京:北京林业大学,2001.
    [81]王礼先,解明曙.山地防护林水土保持水文生态效益及其信息系统[M].北京:中国林业出版社,1997.
    [82]王鑫厅,王炜,刘佳慧等.植物种群空间分布格局测定的新方法:摄影定位法[J].植物生态学报,2006,30(4):571-575.
    [83]王彦辉.陇东黄土地区刺槐林水土保持效益的定量研究[J].北京林学院学报,1981,8(1):35-52.
    [84]王彦辉.于澎涛,徐德应等.林冠截留降雨模型转化和参数规律研究[J].北京林业大学学报,1995,20(6):25-29.
    [85]王永安,黄金玲,李晓明.广州市流溪河林场公益林涵养能力及其补偿的研究[J].中南林业规划1994,(1):25-30.
    [86]王永安.论我国水源涵养林建设中的几个问题[J].水土保持学报,1989,3(4):74-82.
    [87]王友芳.水源涵养林的规划原则和体系综述[J].林业勘察设计,2004,(1):20-21.
    [88]王峥峰,安树青,朱学雷,等.热带乔木中种群分布格局及其研究方法的比较[J].应用生态学报,1998,(6):575-580.
    [89]温远光,刘世荣.我国主要森林生态类型降水截持规律的数量分析[J].林业科学,1995,31(4):289-298.
    [90]吴承桢等.我国森林凋落物研究进展[J].江西农业大学学报,2000,(3):18-23.
    [91]吴德东,袁春良,赵雨森等.沙地草地不同绿伞小气候效益的研究[J].林业科技通讯,1999(7):11-14.
    [92]吴宁.贡嘎山麦吊杉群落优势种群的分布格局及相互关[J].植物生态学报,1995,19(3):270-279.
    [93]吴钦孝,刘向东,苏宁虎等.山杨次生林枯枝落叶蓄积量及其水文作用[J].水土保持学报,1992,6(1):71-76.
    [94]吴钦孝,赵鸿雁,刘向东等.森林枯枝落叶层涵养水源保持水土的作用评价[J].土坡侵蚀与水土保持学报,1998,4(2):23-28.
    [95]吴长文,王礼先.林地土壤的入渗及其模拟分析[J].水土保持研究,1995,5(2):71-75.
    [96]肖育檀,曾思齐.长江中上游地区马尾松水保林经营模式的研究[J].中南林学院学报,1997,17(1):7-12.
    [97]谢平,李燕.海岸沙地防护林的小气候效应[J].中国沙漠,2001,21(1):93-96.
    [98]谢宗强,陈伟烈,刘正宇,等.银杉种群的空间分布格局.植物学报[J].1999,41(1):95-101.
    [99]徐化成,范兆飞,王胜.兴安落叶松原始林林木空间格局的研究[J].生态学报,1994,14(2):214-217.
    [100]徐化成.大兴安岭森林[M].北京:科学出版社,1998.
    [101]徐化成.景观生态学[M].北京:中国林业出版社,1995.
    [102]徐燕千,霍应强.广东防护林.见:徐燕千主编.广东森林[M].北京:中国林业出版社、广东科技出版社,1990,336-342.
    [103]闫俊华,周国逸,韦琴.鼎湖山季风常绿阔叶林小气候特征分析[J].武汉植物学研究,2000,18(5):397-404.
    [104]闫文德,张学龙,王金叶等.祁连山森林枯落物水文作用的研究[J].西北林学院学报,1997,12(2):7-14.
    [105]杨海龙.三峡库区小流域森林植被理水调洪规律的研究[博士学位论文].北京林业大学,2004.
    [106]杨茂精,黄镜光,黄色贵,等.稀疏马尾松林混交红椎后的小气候特点[J].林业科学研究,1998,11(5):560-563.
    [107]杨玉坡等著.长江上游(川江)防护林的研究[M].北京:科学出版社,1993.
    [108]余新晓,于志民等著.水源保护林培育、经营、管理、评价[M].北京:中国林业出版社,2001.
    [109]余新晓,赵玉涛,张志强等.长江上游亚高山暗针叶林土壤水分入渗特征研究[J].应用生态学报,2003,14(1):15-19.
    [110]余新晓.北京山地森林生态系统服务功能及其价值评估研究[J].生态学报,2002,22(5):
    [111]袁家庚.乌江流域水源林\水保林营造技术研究成果简介[C].贵州省林学会第五届会员代表大会会刊,1992,219-222.
    [112]岳永杰.北京山区防护林优势树种群落结构研究[博士学位论文].北京:北京林业大学,2008.
    [113]张邦琨,张萍,赵云龙.喀斯特地貌不同演替阶段植被小气候特征研究[J].贵州气象,2000,24(3):17-21.
    [114]张光灿,刘霞,赵玖.树冠截留降雨模型研究进展及其述评[J].南京林业大学学报,2000,24(1):64-68.
    [115]张国珍,宫伟光,刘锋.草牧场防护林幼龄阶段对春季小气候的作用[J].东北林业大学学报,1997,25(6):71-73.
    [116]张洪江,程云,史玉虎,等.长江三峡花岗岩坡面管流产流特性研究[J].水土保持学报,2001,15(1):5-8.
    [117]张金池,胡海波.苏南山区不同土地利用方式对水流失影响研究[J].南京林业大学学报.1994,(2):20-26.
    [118]张金屯.植物种群空间分布的点格局分析[J].植物生态学报,1998,22(4):344-349.
    [119]张璐,林伟强.森林小气候观测研究概述[J].广东林业科技,2002,18(4):52-56.
    [120]张守攻.兴安落叶松天然林林分空间格局的研究[博士学位论文].北京:北京林业大学,1990.
    [121]张水津.林地水土流失的治理措施探讨[J].福建水土保持,2004,16(2):44-47.
    [122]张文辉.裂叶沙参种群生态学研究[M].哈尔滨:东北林业大学出版社,1998.
    [123]张学培,郭冬青,王本楠.林冠截留理念模型的应用[J].北京林业大学学报,1997,19(2):30-34.
    [124]张一平,刘玉洪,马友鑫,等.热带森林不同生长时期的小气候特征[J].南京林业大学学报(自然科学版),2002,26(1):83-871.
    [125]张一平,王馨,刘文杰.热带森林林冠对降水再分配作用的研究综述[J].福建林学院学报,2004,24(3):274-282.
    [126]张永涛.黄前流域不同配置经济林防护林水源涵养功能与价值评估[博士学位论文].山东农业大学,2005.
    [127]张志强,王礼先.森林水文:过程与机制[M].北京:中国环境科学出版社,2002.
    [128]张卓文.森林水文学研究现状及发展趋势[J].湖北林业科技,2004,(3):34-37.
    [129]赵鸿雁,吴钦孝,从怀军.黄土高原人工油松林枯枝落叶截留动态研究[J].自然资源学报,2001,16(4):381-385.
    [130]赵鸿雁,吴钦孝,刘国彬.黄土高原人工油松林枯枝落叶层的水土保持功能研究[J].林业科学,2003,39(1):168-172.
    [131]赵鸿雁,吴钦孝,刘向东.山杨枯枝落叶的水文水保作用研究[J].林业科学,1994,30(2):176-180.
    [132]赵鸿雁,吴钦孝.黄土高原几种枯枝落叶吸水机理的研究[J].防护林科技,1996,29(4):15-18.
    [133]赵鸿雁.黄土高原人工油松林枯枝落叶截留动态研究[J].自然资源学报,2001,16(4):381-385.
    [134]赵平,曾小平,余作岳.华南丘陵人工马占相思林下灌木湿润季节蒸腾与小气候的关系[J].应用生态学报,1997,8(4):365-371.
    [135]赵西宁,吴发启.土坡水分入渗的研究进展和评述[J].西北林学院学报,2004,19(1):42-45.
    [136]赵玉涛,余新晓,张志强等.长江上游亚高山峨媚冷杉林地被物层界面水分传输规律研究[J].水土保持学报,2002,16(3):118-121.
    [137]郑春瑞.系统工程学概述[M].北京:科学技术出版社,1984.
    [138]郑师章,吴千红,王海波,等.普通生态学--原理、方法和应用[M].上海:复旦大学出版社,1993.
    [139]郑小贤.日本防护林的类型及其经营体系[J].林业资源管理,1998,82-85.
    [140]郑小贤.森林资源经营管理[M].北京:中国林业出版社,1999.
    [141]中国林学会编.长江中上游防护林建设论文集[C].北京:中国林业出版社,1991.
    [142]周国逸.几种常用造林树种冠层对降水动能分配及其生态效应分析[J].植物生态学报,1997,21(3);250-259.
    [143]周晓峰,赵惠勋.正确评价森林水文效应[J].自然资源学报,2001,16(5):420-426.
    [144]周晓峰主编.中国森林生态系统定位研究[M].哈尔滨:东北林业大学出版社,1994.
    [145]周择福,洪玲霞.不同林地土壤水分入渗和入渗模拟的研究[J].林业科学,1997,33(1):9-17.
    [146]朱金兆,刘建军,朱清科等.森林凋落物层水文生态功能研究[J].北京林业大学学报,2002,24(5):30-34.
    [147]Andrew W.Westerna,Sen-Lin Zhoua,et al.Spatial correlation of soil moisture in small catchments and its relationship to dominant spatial hydrological processes[J].Journal of Hydrology.2004,286:113-134.
    [148] Austin, M P, Austin, B O. Behaviour of experimental plant communities along a nutrient gradient [J]. Journal of Ecology, 1980,(68):891-918.
    
    [149] Beven K, Germann P. Macropores and water flow in soils[J]. Water Resource Research, 1982,18(5): 1311-1325.
    
    [150] Beven K, Germann P. Water flow in soil macropores II. A combined flow model[J]. European Journal of Soil Science, 1981,32(1):15-29.
    
    [151] Beven K. Micro. Meso. and macroposity and channeling flow phenomena in soils[J]. Soil Sci.Am.J.1981,(45):1245.
    
    [152] Bodhinayake W, Si BC, Noborio K. Determination of hydraulic properties in sloping landscapes from tension and double-ring infiltrometers[J]. Soil science society of America journal,2004,(3):964-970.
    
    [153] Bouldin JD, Freeland RS, Yoder RE, et al. Nonintrusive mapping of preferential water flow paths in West Tennessee using ground penetrating radar Nashvill[C]e. Proceedings of the Seventh TIN Water Resources Symposium,1997:24-29.
    
    [154] Bouma J, Wosten JHM. Characterizing ponded in filtration in a dry cracked clay soil. Journal of hydrology, 1984,(69):297-304.
    
    [155] Bouma J. Soil morphology and preferential flow along macropores[J]. Agricultural water management, 1981, (3):235-250.
    
    [156] Brakensiek DL, Hawls WJ, Longsdon SD. Fractal description of macroporosity[J]. Soil science society of America journal, 1992, (56): 1721-1723.
    
    [157] Carmago J L C & Kapos V. Complex edge effects on soil moisture and microclimate in central Amazonian forest[J]. J Trop Ecol, 1995, (11):205-221
    
    [158] Clark, P. J. & Evans, F. C. Distance to nearest neighbor as a measure of spatial relationships in populations [J]. Ecology,1954,(35):445-453.
    
    [159] Clothier BE, White I. Measurement of sorptivity and soil water diffusivity in the field[J]. Soil science society of America journal, 1981,(45):241-245.
    
    [160] Covington W W & Moore M M. Post-settlement changes in natural fire regimes and forest structure: ecological restoration of old-growth ponderosa pine forests[J]. Journal of Sustainable Forestry, 1994,(2): 153-181.
    [161] Dale, M R T Zbigniewicz, M W. The evaluation of multi-species pattern [J]. Journal of Vegetation Science, 1995,(6):391-398.
    
    [162] Dale, M. R. T. & Blundon, D. J. Quadrat covariance analysis and the scales of interspecific association during primary succession [J]. Journal of Vegetation Science, 1991,(2):103-l 12.
    
    [163] Diigle P J. Statistical analysis of spatial point patterns[M]. New York: Acadamic Press,1983.
    
    [164] Dunkerley D. Measuring interception loss and canopy storage in dry land vegetation: a brief review and evaluation of available research strategies [M].Hydrological Processes, 2000.
    
    [165] Dunne T., Zhang W., Aubry B.. Effects of rainfall, vegetation and microtopography on infiltration and runoff[J]. Water Resource Research, 1991,27(9):2271-2285.
    
    [166] E. C. 波洛(卢泽愚译).数学生态学[M].北京:科学出版社,1988.
    
    [167] Edwards WM, Norton LD, Redmond CE. Characteristic macropores that affect infiltration into nontilled soil[J]. Soil science society of America journal, 1988,52(2):483-487.
    
    [168] Ehlers W, Kopke U, Hesse F, et al. Penetration resistance and root growth of oats in tilled and untilled loose soil. Soil & Tillage research, 1983,3(2):261-275.
    
    [169] Ehlers W. Observation on earthworm channels and infiltration on tilled and untilled loess soil[J].Soil science,1975,(119):242-249.
    
    [170] ERKKI TOMPPO. Models and methods for analyzing spatial patterns of trees.communications institute forestalis [C]. FENNIAE 138. HELSINKI, 1986.
    
    [171] Gaiser RN. Root channels and roots in forest soils[J]. Soil science society of America journal,1952,16(1):62-65.
    
    [172] Gash J. H. C. An analytical model of rainfall interception by forests, quarterly[J]. Journal of Royal Meteorological Society,1979,105(443):43-45.
    
    [173] Gash J. H. C. et al. Comparative estimates of interception loss from three coniferous forests in Great Britain[J]. Journal of Hydrology, 1980,(48):89-150.
    
    [174] Gash J. H. C. et al. Estimation sparse forest rainfall interception with an analytical model[J].Journal of Hydrology, 1995,170:79-86.
    
    [175] Gay L. W., Koerr K. R., Braaten M. O. Solar radiation variability on the floor of pine plantation[J]. Agric. Meteorol, 1971, (8):39-45.
    [176] Germann P, Beven K. Kinematic wave approximation to infiltration into soils with sorbing macropores[J]. Water resources research, 1985,21:990-996.
    
    [177] Germann P, Beven K. Water flow in soil macropore I: An experimental approach[J]. Journal of Soil Science, 1981,(32): 1-13.
    
    [178] Greig-Simth P. Quantitative plant ecology[M]. 3rd ed. Oxford:Blackwell,1983.
    
    [179] Greig-Smith, P. Pattern in vegetation [J]. Journal of Ecology, 1979,(67):755-779.
    
    [180] Greig-Smith, P. Quantitative Plant Ecology [C]. Berkeley: University of California Press,1983,3~(rd) edn.
    
    [181] Jones H. Plant and microclimate: a quantitative approach to environmental plant physiology[M].New York: Cambridge University Press, 1992.
    
    [182] Latham PA, Zuuring HR, Goble DW. A method for quantifying vertical forest structure[J]. For Ecol Manage, 1998,(104):157-170.
    
    [183] Lee R. Forest Microclimatology[M]. New York: Columbia University Press, 1978.
    
    [184] Liken, G. E., and Bormann F. H. et al. Biogeochemistry of a forested ecosystem,Springer-Verlag[M].New York. 1996.
    
    [185] Lloyd C.R., A. D. O. Marques. Spatial ariability of throughfall and stemflow measurements in Amazonian rainforest[J]. Agricultural and Forest Meteorology, 1988,(72):63-73.
    
    [186] Lumoore RJ. Micro, meso and macroposity of soil[J]. Soil Sci. Soc. Am. J. 1981, (45): 671-672.
    
    [187] Luxmoore RJ, Jardine PM, Wilson GV, et al. Physical and chemical controls of preferred path flow through a forested hillslope[J]. Geoderma, 1990,(46): 139-154.
    
    [188] M. Abu-Awwad & M. R. Shatanawi. Water harvesting an infiltration in arid areas affected by surface crust: examples from Jordan[J]. Journal of Arid Environments.1997,(37):443-452.
    
    [189] Madany M H & West N E. Livestock grazing 2 fire regime interactions with in montane forests of Zion National Park[J]. Ecology, 1983, (64): 661- 667.
    
    [190] Mark R Robert. Predicting diameter distribution: a test of the stationary Markov model[J]. Can For Res, 1985(16):130-135.
    
    [191] Mark R. T. Dale. Spatial Pattern Analysis in Plant Ecology [M]. Cambridge University Press, 1999.
    [192] Martens S N, Breshears D D, Meyer C W. Spatial distribution of understory light along the grassland/forest continuum: effect of cover, height and spatial pattern of canopies[J]. Ecol. Moel.,2000,(126):79-93.
    
    [193] Matlack G R. Microenvironment variation within and among forest edge sites in the eastern U nited States[J]. Biological Conservation, 1993, (66): 185-194.
    
    [194] Melinda Moeur. Characterizing Spatial Patterns of Trees Using Stem-Mapped Data [J]. Forest Ecology and Management, 1996,39(4):756-775.
    
    [195] Melinda Moeur. Spatial models of competition and gap dynamics in old-growth Tsuga heterophylla/Thuja plicata forests [J]. Forest Ecology and Management, 1997,(94): 175-186.
    
    [196] Neumann M, Starlinger F. The significance of different indices for stand structure and diversity in forests[J]. For Ecol Manage,2001,(145):91-106.
    
    [197] O'Hara KL, Latham PA, Hessburg P, et al. A structural classification for inland northwest forest vegetation[J]. West J Appl For,1996,(11):97-102.
    
    [198] Ohmann J L T. A spies regioal gradient analysis and spatial pat-tern of woody plant communities of Oregon ferests[J]. Ecol.Monogr., 1998,(68):161-182.
    
    [199] Omoti U, Wild A. Use of fluorescent dyes to mark the pathways of solute movement through soils under leaching condition. 2 Filed experiment[J]. Soil science,1979,(128):98-104.
    
    [200] Oscar A, Gangying H. An analysis of spatial forest structure using neighborhood-based variables[J]. Forest Ecology and Management,2003,183(1):137-145.
    
    [201] Padien D J, Lajtha K. Plant spatial pattern and nutrient distri-bution in pinyon-juniper woodlands along an elevational gradientin northern New Mexico[J]. Int. J. Plant Sci.,1992,(153):425-433.
    
    [202] Perret J, Prasher SO, Kantzas A, et al. Preferential solute flow in intact soil columns measured by SPECT scanning[J]. Soil science society of America journal,2000,(64):469-477.
    
    [203] Peyton RL, Gantzer CJ, Stephen H, et al. Fractal dimension to describe soil macropore structure using x-ray computed tomography[J]. Water resources research,1994,30(3):691-700.
    
    [204] Pielou E C. An introduction to mathematical ecology[M]. New York: Wiley Inter science Publication, 1969.
    
    [205] Pommerening A. Approaches to quantifying forest structures[J]. Forestry, 2002,(75):305-324.
    [206]Radulovich R,Solorzano E,Sollins P.Soil macropore size distribution from water break through curves[J].Soil science society of America journal,1989,(53):556-559.
    [207]Radulovich R,Solorzano E,Sollins P.Soil Macropore Size Distribution from water Breakthrough Curves[J].Soil Sci Soc Am J,1989,(53):556-559.
    [208]Reeves MJ.Recharge and pollution of the English chalk:Some possible mechanisms[J].Engineering geology,1980,(14):231-240.
    [209]Richard Condit,Peter S.Ashton,Patrick Baker,et al.Spatial Patterns in the Distribution of Tropical Tree Species[J].Science,2000,(288):1414-1418.
    [210]Ripley B D.Medleling spatial pattern[J].Journal of Royal Stas-tical Society.Series B,1997,(39):178-212.
    [211]Ripley B D.Spatial statistics[M].New York:Wiley,1981.
    [212]Ripley,B D.Spectral analysis and the analysis of pattern in plant communities[J].Journal of Ecology,1978,(13):255-266.
    [213]Ripley,B D.Statistical Influence for Spatial Processes[M].Cambridge University Press,1988.
    [214]Ripley,B D.The second order analysis of stationary point processes[J].Journal of Applied Probability,1976,(13):255-266.
    [215]Ripley,B.D.Spectral analysis and the analysis of pattern in plant communities[J].Journal of Ecology,1978,(13):255-266.
    [216]Ripley,B.D.Statistical influence for spatial processes[M].Cambridge University Press,1988.
    [217]Ripley,B.D.The second order analysis of stationary point processes[J].Journal of applied probability,1976(13):255-266.
    [218]Rutter A J,et al.A predictive model of rainfall interception in forest,I:Derivation of model from observation in a plantation of Corsican Pine.Agric[J].Meteorol.,1971,(9):367-384.
    [219]Rutter A.J.A predictivemodel of rainfall interception forests,I.Derivation of the model from observation in a plantation of Corsicanpine[J].Agr Met.1971,(9):367-384.
    [220]S.D.雷坦(Wratten,S.D.)& G.L.A.雷坦(Ely,G.L.A.)吴干红.生态学野外及实验室实验手册[M].北京:科学出版社,1986.
    [221]S.D.雷坦(written,S.D.)G.LA.雷坦(Ery,G.LA.)昊干红.生态学野外及实验室实验手册[M].北京:科学出版社,1986.
    [222] Schroth, G, da SILVA, L.F., Wolf, M., Tixerira, W. G, Zech, w. Distribution of throughfall and stemflow in mullti-strata agroforestry, perennial monoculture, fallow and primary foret in centra Amazonia, Brazil[J].Hydrol. Process.l999,(13):1423-1436.
    
    [223] SGS United Kingdom Limited and International Institute for Environment and Development,1999 Sophie Higman. Stephen Bass. Neil Judd, James Mayers and Ruth Nussbaum. The Sustainable Forestry Handbook Earthscan Publications Lid, London, 1999.
    
    [224] Singh P, Rameshwar KS, Thompson ML. Measurement and characterization of macropores by using AUTOCAD and automatic image analysis[J]. Journal of Environment quality. 1991,(20):289-294.
    
    [225] Skopp J., W. R. Gardner. E. J. Tyler. Solute movement in structured soils: two-region model with small intraction[J]. Soil Sci. SocAm. J. 1981 ,(45):837-842.
    
    [226] Sloan, P. G. Moore, I.D. Modeling subsurface stormflow on steeply sloping forested watersheds[J]. Water Resour. Res.,1984,20(12):1815-1822.
    
    [227] Smettem KRJ, Collism-George N. Statistical characterization of soil biopores using a soil peel[J].Geodema, 1985, (36):27-36.
    
    [228] Spies TA. Forest structure: A key to the eco-system[J]. Northwest Sci,1998,(72):34-39.
    
    [229] Tooming H., Niilisk H. Transition coefficients from integrated radiation to photosynthetic active radiation (PAR) under field conditions. Phytoactinometrical Investigations of Plant Canopy. Valgus Publications. Tallinn. PP, 1967,140-149.
    
    [230] Tyler SW, Wheatcraft SW. Fractal processes in soil water retention[J]. Water resources research,1990, (26):1047-1054.
    
    [231] Upton G, Fingleton B. Spatial Data Analysis by Example: Gategorical and Directional Data[M].Chichester: Wiley. 1985.
    
    [232] Upton G, Fingleton B. Spatial Data Analysis by Example: Point Pattern and Quantitative Data[M]. Chichester: Wiley. 1989.
    
    [233] Vermeul VR, Istok JD, Flint AL, et al. An improved method for quantifying soil macroporosity[J]. Soil science society of America journal,1993,(57):809-816.
    
    [234] Viville D, et al. Interception on a mountainous declining spruce stand in the Strengbach catchment (Voges, France)[J]. Journal of Hydrology. 1993,(144): 273-282.
    [235] Waner GS, Nieber JL, More ID, et al. Characerixing macropores in soil by computed tomography[J]. Soil Sci Soc Am J, 1989,(53): 653-660.
    
    [236] Weilr M, Naef F. 2000.Verification of flow processes in soils with combined sprinkling and dye tracer experiments [EB/OL]. [2006-06-21]. http://www.2hydros.de/markus/pdfs/freiburg.pdf.
    
    [237] Wen, X.H. and Gomez-Hernandez, J.J. Upscaling hydraulic conductivities in heterogeneous media: an overview[J]. Journal of Hydrology, 1996,(183):9-32.
    
    [238] Whitechead, D. and Kelliher, F.M. A canopy water balance model for a Pinus radiate stand beore and after thinning[J]. Agriculture and forestry Meteorology, 1991 ,(55): 109-126.
    
    [239] Wilson GV, Luxmoore RJ. Infiltration macroporosity distribution on two watersheds[J]. Soil science society of America journal,1988,(52):329-335.
    
    [240] Xu DY. Forest and atmosphere. In: Zhou X Fed. China Forests and Ecological Environment[M]. Beijing: China Forestry Publishing House, 1999.
    
    [241] Zaslavsky D, Kassif G. Theoretical formulation of piping mechanism in cohesive soils[J].Geotechnique, 1965,15(3):305-316.
    
    [242] Zenner EK, Hibbs DE. A new method for modeling the heterogeneity of forest structure [J]. For Ecol Manage,2000,(129):75-87.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700